Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

The Little Weather Balloon Company Taking on Google DeepMind

AI has already changed weather forecasting forever.

A WindBorne Systems balloon.
Heatmap Illustration/WindBorne Systems, Getty Images

It’s been a wild few years in the typically tedious world of weather predictions. For decades, forecasts have been improving at a slow and steady pace — the standard metric is that every decade of development leads to a one-day improvement in lead time. So today, our four-day forecasts are about as accurate as a one-day forecast was 30 years ago. Whoop-de-do.

Now thanks to advances in (you guessed it) artificial intelligence, things are moving much more rapidly. AI-based weather models from tech giants such as Google DeepMind, Huawei, and Nvidia are now consistently beating the standard physics-based models for the first time. And it’s not just the big names getting into the game — earlier this year, the 27-person team at Palo Alto-based startup Windborne one-upped DeepMind to become the world’s most accurate weather forecaster.

“What we’ve seen for some metrics is just the deployment of an AI-based emulator can gain us a day in lead time relative to traditional models,” Daryl Kleist, who works on weather model development at the National Oceanic and Atmospheric Administration, told me. That is, today’s two-day forecast could be as accurate as last year’s one-day forecast.

All weather models start by taking in data about current weather conditions. But from there, how they make predictions varies wildly. Traditional weather models like the ones NOAA and the European Centre for Medium-Range Weather Forecasts use rely on complex atmospheric equations based on the laws of physics to predict future weather patterns. AI models, on the other hand, are trained on decades of prior weather data, using the past to predict what will come next.

Kleist told me he certainly saw AI-based weather forecasting coming, but the speed at which it’s arriving and the degree to which these models are improving has been head-spinning. “There's papers coming out in preprints almost on a bi-weekly basis. And the amount of skill they've been able to gain by fine tuning these things and taking it a step further has been shocking, frankly,” he told me.

So what changed? As the world has seen with the advent of large language models like ChatGPT, AI architecture has gotten much more powerful, period. The weather models themselves are also in a cycle of continuous improvement — as more open source weather data becomes available, models can be retrained. Plus, the cost of computing power has come way down, making it possible for a small company like Windborne to train its industry-leading model.

Founded by a team of Stanford students and graduates in 2019, Windborne used off-the-shelf Nvidia gaming GPUs to train its AI model, called WeatherMesh — something the company’s CEO and co-founder, John Dean, told me wouldn’t have been possible five years ago. The company also operates its own fleet of advanced weather balloons, which gather data from traditionally difficult-to-access areas.

Standard weather balloons without onboard navigation typically ascend too high, overinflate, and pop within a matter of hours (thus becoming environmental waste, sad!). Since it’s expensive to do launches at sea or in areas without much infrastructure, there’s vast expanses of the globe where most balloons aren’t gathering any data at all.

Satellites can help, of course. But because they’re so far away, they can’t provide the same degree of fidelity. With modern electronics, though, Windborne found it could create a balloon that autonomously changes altitude and navigates to its intended target by venting gas to descend and dropping ballast to ascend.

“We basically took a lot of the innovations that lead to smartphones, global satellite communications, all of the last 20 years of progress in consumer electronics and other things and applied that to balloons,” Dean told me. In the past, the electronics needed to control Windborne’s system would have been too heavy — the balloon wouldn’t have gotten off the ground. But with today’s tiny tech, they can stay aloft for up to 40 days. Eventually, the company aims to recover and reuse at least 80% of its balloons.

The longer airtime allows Windborne to do more with less. While globally there are more than 1,000 conventional weather balloons launched every day, Dean told me, “We collect roughly on the order of 10% or 20% of the data that NOAA collects every day with only 100 launches per month.” In fact, NOAA is a customer of the startup — Windborne already makes millions in revenue selling its weather balloon data to various government agencies.

Now, with a potentially historic hurricane season ramping up, Windborne has the potential to provide the most accurate data on when and where a storm will touch down.

Earlier this year, the company used WeatherMesh to run a case study on Hurricane Ian, the Category 5 storm that hit Florida in September 2022, leading to over 150 fatalities and $112 billion in damages. Using only weather data that was publicly available at the time, the company looked at how accurately its model (had it existed back then) would have tracked the hurricane.

Very accurately, it turns out. Windborne’s predictions aligned neatly with the storm’s actual path, while the National Weather Service’s model was off by hundreds of kilometers. That impressed Khosla Ventures, which led the company’s $15 million Series A funding round earlier this month. “We haven’t seen meaningful innovation in weather since The Weather Channel in the 90s. Yet it’s a $100 billion market that touches essentially every industry,” Sven Strohband, a partner and managing director at Khosla Ventures, told me via email.

With this new funding, Windborne is scaling up its fleet of balloons as it prepares to commercialize. The money will also help Windborne advance its forecasting model, though Dean told me robust data collection is ultimately what will set the company apart. “In any kind of AI industry, whoever has the top benchmark at any given time, it’s going to fluctuate,” Dean said. “What matters is the model plus the unique datasets.”

Unlike Windborne, the tech giants with AI-based weather models — including, most recently, Microsoft — aren’t gathering their own data, instead drawing solely on publicly accessible information from legacy weather agencies.

But these agencies are starting to get into the game, too. The European Centre for Medium-Range Weather Forecasts has already created its own AI-based model, the Artificial Intelligence/Integrated Forecasting System, which it runs in parallel to its traditional model. NOAA, while a bit behind, is also looking to follow suit.

“In the end, we know we can't rely on these big tech companies to just keep developing stuff in good faith to give to us for free,” Kleist told me. Right now, many of the top AI-based weather models are open source. But who knows if that will last? “It's our mission to save lives and property. And we have to figure out how to do some of this development and operationalize it from our side, ourselves,” Kleist said, explaining that NOAA is currently prototyping some of its own AI-based models.

All of these agencies are in the early stages of AI modeling, which is why you likely haven’t noticed weather predictions making a pronounced leap in accuracy as of late. It’s all still considered quite experimental. “Physical models, the pro is we know the underlying assumptions we make. We understand them. We have decades of history of developing them and using them in operational settings,” Kleist told me. AI-based models are much more of a black box, and there’s questions surrounding how well they will perform when it comes to predicting rare weather events, for which there might be little to no historical data for the model to reference.

That hesitation might not last long, though. “To me it’s fairly obvious that most of the forecasts that would actually be used by users in the future will come from machine learning models,” Peter Dueben, head of Earth systems modeling at the European Centre for Medium Range Weather Forecasting, told me. “If you just want to get the weather forecast for the temperature in California tomorrow, then the machine learning model is typically the better choice,” he added.

That increased accuracy is going to matter a lot, not just for the average weather watcher, but also for specific industries and interest groups for whom precise predictions are paramount. “We can tailor the actual models to particular sectors, whether it's agriculture, energy, transportation,” Kleist told me, “and come up with information that's going to be at a very granular, specific level to a particular interest.” Think grid operators or renewable power generators who need to forecast demand or farmers trying to figure out the best time to irrigate their fields or harvest crops.

A major (and perhaps surprising) reason this type of customization is so easy is because once AI-based weather models are trained, they’re actually orders of magnitude cheaper and less computationally intensive to run than traditional models. All of this means, Kleist told me, that AI-based weather models are “going to be fundamentally foundational for what we do in the future, and will open up avenues to things we couldn't have imagined using our current physical-based modeling.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate

AM Briefing: A Forecasting Crisis

On climate chaos, DOE updates, and Walmart’s emissions

We’re Gonna Need a Better Weather Model
Heatmap Illustration/Getty Images

Current conditions: Bosnia’s capital of Sarajevo is blanketed in a layer of toxic smog • Temperatures in Perth, in Western Australia, could hit 106 degrees Fahrenheit this weekend • It is cloudy in Washington, D.C., where lawmakers are scrambling to prevent a government shutdown.

THE TOP FIVE

1. NOAA might have to change its weather models

The weather has gotten so weird that the U.S. National Oceanic and Atmospheric Administration is holding internal talks about how to adjust its models to produce more accurate forecasts, the Financial Timesreported. Current models are based on temperature swings observed over one part of the Pacific Ocean that have for years correlated consistently with specific weather phenomena across the globe, but climate change seems to be disrupting that cause and effect pattern, making it harder to predict things like La Niña and El Niño. Many forecasters had expected La Niña to appear by now and help cool things down, but that has yet to happen. “It’s concerning when this region we’ve studied and written all these papers on is not related to all the impacts you’d see with [La Niña],” NOAA’s Michelle L’Heureux told the FT. “That’s when you start going ‘uh-oh’ there may be an issue here we need to resolve.”

Keep reading...Show less
Yellow
Culture

2024 Was the Year the Climate Movie Grew Up

Whether you agree probably depends on how you define “climate movie” to begin with.

2024 movies.
Heatmap Illustration

Climate change is the greatest story of our time — but our time doesn’t seem to invent many great stories about climate change. Maybe it’s due to the enormity and urgency of the subject matter: Climate is “important,” and therefore conscripted to the humorless realms of journalism and documentary. Or maybe it’s because of a misunderstanding on the part of producers and storytellers, rooted in an outdated belief that climate change still needs to be explained to an audience, when in reality they don’t need convincing. Maybe there’s just not a great way to have a character mention climate change and not have it feel super cringe.

Whatever the reason, between 2016 and 2020, less than 3% of film and TV scripts used climate-related keywords during their runtime, according to an analysis by media researchers at the University of Southern California. (The situation isn’t as bad in literature, where cli-fi has been going strong since at least 2013.) At least on the surface, this on-screen avoidance of climate change continued in 2024. One of the biggest movies of the summer, Twisters, had an extreme weather angle sitting right there, but its director, Lee Isaac Chung, went out of his way to ensure the film didn’t have a climate change “message.”

Keep reading...Show less
Politics

Republicans Will Regret Killing Permitting Reform

They might not be worried now, but Democrats made the same mistake earlier this year.

Permitting reform's tombstone.
Heatmap Illustration/Getty Images

Permitting reform is dead in the 118th Congress.

It died earlier this week, although you could be forgiven for missing it. On Tuesday, bipartisan talks among lawmakers fell apart over a bid to rewrite parts of the National Environmental Policy Act. The changes — pushed for by Representative Bruce Westerman, chairman of the House Natural Resources Committee — would have made it harder for outside groups to sue to block energy projects under NEPA, a 1970 law that governs the country’s process for environmental decisionmaking.

Keep reading...Show less
Green