Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

300 Is the Magic Number for EVs

If you want to road trip, spring for the bigger battery.

An EV getting 300 miles on a charge.
Heatmap Illustration/Getty Images

The Ford Mustang Mach-E, the electrified version of the iconic brand, starts with an EPA estimated range of 230 miles. The cheapest Chevy Bolt EUV promises 247. The Tesla Model 3, Audi E-Tron, and Ford F-150 Lightning pickup truck say they’ll deliver 272, 226, and 230 respectively, in their least expensive versions.

Perhaps you’ve noticed a pattern. Most electric vehicles on the market in 2023 offer an entry-level version with a range in the 200s, with an upgrade to 300 miles or more available — if you’re willing to kick in several thousand dollars more for the big battery. Buyers may want to spend the money if they can, though. A battery range in the 300s may be the key to delivering the road trip experience Americans have come to expect from their gas-burning cars.

The ranges touted in TV commercials may not reflect how far electric cars will actually travel — especially on the highway — for a variety of reasons. Vehicles use up a lot more energy per mile to travel 75 miles per hour compared to 50, for one thing. (That’s why, if your battery starts to get dangerously low, your Tesla will warn you to slow down.) How an EV’s true range on the highway compares to its official EPA range can vary wildly depending on the brand, according to testing by InsideEVs, but most cars underperform.

For another, long-haul drivers aren’t filling up to 100%. Charging may be lightning fast when the battery is near empty, but it slows dramatically when it approaches full. For the sake of making good time, you’re better off getting only as much juice as you need to reach the next stop rather than trying to top off entirely. EV marketing tends to skirt this fact by advertising how quickly the car regains most of its charge, up to about 80% or so, neglecting the fact that charging only to 80% lops off a lot of possible miles (almost 50 in the case of the base Bolt EUV). Lastly, there just aren’t enough fast-chargers yet for electric drivers to simply pull off the freeway when the battery drops close to E. This limits your ability to drive as far as the battery charge will take you.

The confluence of all these facts can be dramatic. For example, when I bought the basic Standard Range Plus version of the Tesla Model 3 in 2019, it carried an advertised EPA range of 240 miles. That sounded pretty promising, as it was essentially enough miles to drive from our home in Los Angeles to Las Vegas in one full charge, or to make the drive to San Francisco with just a single pit stop in the middle, just like my wife used to do in her trusty Toyota Tacoma.

It didn’t work out that way. A few weeks ago, I completed the familiar journey down Interstate 5 by stopping after 116 miles, then another 60, then another 92. Charging three times between SF and LA has become the standard in my little EV, which, with about 50,000 miles under its belt, now reports a maximum range of about 211 miles. I could bring the journey down to two stops by taking the extra time at each for a full battery charge, but the car’s guidance system insists it’s actually less time-consuming to pull off, charge as long as it takes to get to the next pit stop, and carry on.

Now, an additional stop or even two on a six-hour journey is a mild annoyance, no different than driving with a kid who needs ample bathroom breaks. But picture trying to travel a great distance across America in an EV with a promised range only in the 200s. I have done this, driving electric halfway across the country and back. When you have to stop for juice every 100-150 real-world miles to account for limited charging stations and that 80% battery mark, the extra time drags out long-distance travel interminably.

As EV batteries are rated at 300 miles or more, however, the game changes. More national parks and other places located far from major highways, and their accompanying fast-charging stations, become accessible. Those who are simply zooming down the interstate from one city to another have to stop only every 200 to 250 actual miles — about as long as many people would even want to drive without a bathroom break or a coffee refill.

Luckily, batteries are changing fast. It wasn’t so long ago that the few EVs available in America, like the Volkswagen e-Golf and original Nissan Leaf, had stated ranges around 100 miles, adequate for most everyday drives, particularly around cities, but lousy for even a modest road trip. The 200-some-mile range of today’s electrics make it possible for them to go many places an internal-combustion engine could go (depending upon which state you live in), though requiring more stops along the way.

As ranges reach 300 miles or more, the experience starts to approach the freedom we know from decades of gasoline engines: just drive as many hours as you can, then pull over for a refill.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

The EPA’s Backdoor Move to Hobble the Carbon Capture Industry

Why killing a government climate database could essentially gut a tax credit

Lee Zeldin.
Heatmap Illustration/Getty Images

The Trump administration’s bid to end an Environmental Protection Agency program may essentially block any company — even an oil firm — from accessing federal subsidies for capturing carbon or producing hydrogen fuel.

On Friday, the Environmental Protection Agency proposed that it would stop collecting and publishing greenhouse gas emissions data from thousands of refineries, power plants, and factories across the country.

Keep reading...Show less
Blue
Adaptation

The ‘Buffer’ That Can Protect a Town from Wildfires

Paradise, California, is snatching up high-risk properties to create a defensive perimeter and prevent the town from burning again.

Homes as a wildfire buffer.
Heatmap Illustration/Getty Images

The 2018 Camp Fire was the deadliest wildfire in California’s history, wiping out 90% of the structures in the mountain town of Paradise and killing at least 85 people in a matter of hours. Investigations afterward found that Paradise’s town planners had ignored warnings of the fire risk to its residents and forgone common-sense preparations that would have saved lives. In the years since, the Camp Fire has consequently become a cautionary tale for similar communities in high-risk wildfire areas — places like Chinese Camp, a small historic landmark in the Sierra Nevada foothills that dramatically burned to the ground last week as part of the nearly 14,000-acre TCU September Lightning Complex.

More recently, Paradise has also become a model for how a town can rebuild wisely after a wildfire. At least some of that is due to the work of Dan Efseaff, the director of the Paradise Recreation and Park District, who has launched a program to identify and acquire some of the highest-risk, hardest-to-access properties in the Camp Fire burn scar. Though he has a limited total operating budget of around $5.5 million and relies heavily on the charity of local property owners (he’s currently in the process of applying for a $15 million grant with a $5 million match for the program) Efseaff has nevertheless managed to build the beginning of a defensible buffer of managed parkland around Paradise that could potentially buy the town time in the case of a future wildfire.

Keep reading...Show less
Spotlight

How the Tax Bill Is Empowering Anti-Renewables Activists

A war of attrition is now turning in opponents’ favor.

Massachusetts and solar panels.
Heatmap Illustration/Library of Congress, Getty Images

A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.

Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”

Keep reading...Show less
Yellow