Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

There’s a New Color for Hydrogen: Orange

The startup Vema just signed a new offtake agreement to provide 36,000 tons of orange hydrogen per year for data centers.

Hydrogen and rocks.
Heatmap Illustration/Getty Images

Love it or hate it, it’s looking like there may be a good reason to add yet another color to the hydrogen rainbow. In 2022, Florian Osselin, co-founder and CSO of the startup Vema Hydrogen, published a paper in Nature called “Orange hydrogen is the new green,” in which he outlines how to expedite the natural process of hydrogen formation in certain underground geologies, laying the foundation for what the company now calls Engineered Mineral Hydrogen.

Osselin’s startup, Vema, is now announcing a 10-year conditional offtake agreement with the off-grid data center power startup Verne to supply over 36,000 metric tons per year of so-called “orange” hydrogen for data centers. The announcement comes on the heels of Vema’s $13 million seed round earlier this year, which supports the company’s efforts to take its engineered hydrogen experiments out of the lab and into the field.

Vema’s ultimate goal is to produce low-carbon hydrogen at less than $1 per kilogram, making it cost competitive with petroleum-derived hydrogen and magnitudes cheaper than clean hydrogen produced via electrolysis.

“The Earth is generating hydrogen all the time,” Colin McCulley, the startup’s senior vice president of operations, told me. “So those reactions, when they’re close to the surface, are very, very slow and not fast enough to create enough hydrogen to capture.” To expedite natural hydrogen production — which occurs when water interacts with iron-rich rocks underground — Vema will inject water and its proprietary catalyst into suitable formations. The catalyst is designed to increase both the speed and the scale of the reaction, rapidly forming large, commercially relevant quantities of hydrogen.

The company has done extensive exploration and testing, McCulley told me, with the team running over 100 experiments per week for over a year. But though the lab results have been promising, scaling up will be the true test. If the tech is a success, the plan is to begin selling hydrogen in 2028.

“We’re going to start small, in which case we will likely sell truckloads of hydrogen — think 10 tons a day-type scale,” McCulley told me. “The eventual goal is to have on-site — or basically next door — consumption of the hydrogen.” This would eliminate the need to build expensive hydrogen pipelines or transport the fuel via truck. That’s a valuable cost-cutting proposition for producers of clean fuels such as methanol and ammonia, which face steep green premiums and use hydrogen as a feedstock. McCulley also envisions co-locating with data centers.

Right now, the company is starting a pilot project in Canada, and planning for others atr undisclosed locations, where McCulley says there are well-studied deposits of iron-rich rocks that sit relatively close to the surface, ripe for producing engineered hydrogen. West Coast states including Oregon, Washington, California, and Alaska have particularly well-suited subsurface geologies that lie decently close to major metropolitan areas, he explained.

Low exploration risk is a key reason why Vema thinks it’s a better bet than geologic hydrogen companies such as Koloma, which focus on locating and extracting naturally occurring underground hydrogen deposits — no additional stimulation required. But these natural formations typically lie far deeper than Vema is targeting and there’s much less certainty about where they’re located, Vema’s CEO Pierre Levin told me in an email.

“Natural geologic hydrogen depends on complex underground systems with multiple interdependent variables,” Levin, who previously served as CEO of the geologic hydrogen company Hethos, wrote. “With natural hydrogen, you’re at nature’s mercy. [Engineered Mineral Hydrogen] changes the game because we control the subsurface production process, which means predictable, manageable flow rates.”

At the moment, however, investors appear to be lining up behind the geologic hydrogen approach. Koloma alone has raised over $350 million since its founding in 2021 — though it also has yet to produce commercial hydrogen.

McCulley estimates that its hydrogen won’t be cost competitive with fossil fuels until Vema has already completed several large-scale projects, which isn’t likely to happen until 2035 or 2040. “So we need to be able to get through some of these first projects where we’re going to have to sell at a premium price,” he told me. It’s never a guarantee that emerging technologies like this will find patient backers willing to bet on the promise that economies of scale are just over the horizon. The startup is currently raising its Series A, though, and McCulley said he’s seen strong interest from the tech industry in supporting Vema at the price point it’s targeting

The company wouldn’t reveal what price this is, though, and the numbers for its contract with Verne are also under wraps. That deal depends on both Vema and Verne advancing their tech to the point where it’s well-proven and bankable. For Verne, that means demonstrating the viability of its next-generation data center power systems, which include more efficient, off-grid generators capable of running on clean hydrogen. For Vema, it requires completing pilot testing and building a successful demo project. Both sides also have to secure additional funding.

If Vema can pull that together, the payoff looks huge. “If you start producing this stuff at less than $1 per kilogram, the sky’s the limit,” McCulley told me. “The current industrial [hydrogen] gas plants, the biggest ones are, say, around 200 tons per day,” he explained. “We can be five times that from one location.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

The Wackiest Climate Tech Bets of 2025

Because you never know what’s going to take off.

Science fiction.
Heatmap Illustration/Getty Images

Not even 12 months of unceasingly bleak climate news could keep climate tech founders and funders from getting involved in some seriously sci-fi sounding ideas. While the first half of the year may have been defined by a general retrenchment, the great thing about about early-stage venture capital is that it very much still allows for — nay, encourages — the consideration of technologies so far beyond the mainstream that their viability is almost entirely untethered from current political sentiment.

Below are seven of the most fantastical technologies investors took a bet on this year, with almost all announced in just the past quarter alone. In an undeniably rough year for the sector, perhaps VCs are now ready to let their imaginations — and pocketbooks — run just a little bit wilder.

Keep reading...Show less
Yellow
Carbon removal and pollution.
Heatmap Illustration/Getty Images

It’s been a quiet year for carbon dioxide removal, the nascent industry trying to lower the concentration of carbon already trapped in the atmosphere.

After a stretch as the hottest thing in climate tech, the CDR hype cycle has died down. 2025 saw fewer investments and fewer big projects or new companies announced.

Keep reading...Show less
Blue
Drilling into money.
Heatmap Illustration/Getty Images

America runs on natural gas.

That’s not an exaggeration. Almost half of home heating is done with natural gas, and around 40% — the plurality — of our electricity is generated with natural gas. Data center developers are pouring billions into natural gas power plants built on-site to feed their need for computational power. In its -260 degree Fahrenheit liquid form, the gas has attracted tens of billions of dollars in investments to export it abroad.

Keep reading...Show less
Green