Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

There’s a New Color for Hydrogen: Orange

The startup Vema just signed a new offtake agreement to provide 36,000 tons of orange hydrogen per year for data centers.

Hydrogen and rocks.
Heatmap Illustration/Getty Images

Love it or hate it, it’s looking like there may be a good reason to add yet another color to the hydrogen rainbow. In 2022, Florian Osselin, co-founder and CSO of the startup Vema Hydrogen, published a paper in Nature called “Orange hydrogen is the new green,” in which he outlines how to expedite the natural process of hydrogen formation in certain underground geologies, laying the foundation for what the company now calls Engineered Mineral Hydrogen.

Osselin’s startup, Vema, is now announcing a 10-year conditional offtake agreement with the off-grid data center power startup Verne to supply over 36,000 metric tons per year of so-called “orange” hydrogen for data centers. The announcement comes on the heels of Vema’s $13 million seed round earlier this year, which supports the company’s efforts to take its engineered hydrogen experiments out of the lab and into the field.

Vema’s ultimate goal is to produce low-carbon hydrogen at less than $1 per kilogram, making it cost competitive with petroleum-derived hydrogen and magnitudes cheaper than clean hydrogen produced via electrolysis.

“The Earth is generating hydrogen all the time,” Colin McCulley, the startup’s senior vice president of operations, told me. “So those reactions, when they’re close to the surface, are very, very slow and not fast enough to create enough hydrogen to capture.” To expedite natural hydrogen production — which occurs when water interacts with iron-rich rocks underground — Vema will inject water and its proprietary catalyst into suitable formations. The catalyst is designed to increase both the speed and the scale of the reaction, rapidly forming large, commercially relevant quantities of hydrogen.

The company has done extensive exploration and testing, McCulley told me, with the team running over 100 experiments per week for over a year. But though the lab results have been promising, scaling up will be the true test. If the tech is a success, the plan is to begin selling hydrogen in 2028.

“We’re going to start small, in which case we will likely sell truckloads of hydrogen — think 10 tons a day-type scale,” McCulley told me. “The eventual goal is to have on-site — or basically next door — consumption of the hydrogen.” This would eliminate the need to build expensive hydrogen pipelines or transport the fuel via truck. That’s a valuable cost-cutting proposition for producers of clean fuels such as methanol and ammonia, which face steep green premiums and use hydrogen as a feedstock. McCulley also envisions co-locating with data centers.

Right now, the company is starting a pilot project in Canada, and planning for others atr undisclosed locations, where McCulley says there are well-studied deposits of iron-rich rocks that sit relatively close to the surface, ripe for producing engineered hydrogen. West Coast states including Oregon, Washington, California, and Alaska have particularly well-suited subsurface geologies that lie decently close to major metropolitan areas, he explained.

Low exploration risk is a key reason why Vema thinks it’s a better bet than geologic hydrogen companies such as Koloma, which focus on locating and extracting naturally occurring underground hydrogen deposits — no additional stimulation required. But these natural formations typically lie far deeper than Vema is targeting and there’s much less certainty about where they’re located, Vema’s CEO Pierre Levin told me in an email.

“Natural geologic hydrogen depends on complex underground systems with multiple interdependent variables,” Levin, who previously served as CEO of the geologic hydrogen company Hethos, wrote. “With natural hydrogen, you’re at nature’s mercy. [Engineered Mineral Hydrogen] changes the game because we control the subsurface production process, which means predictable, manageable flow rates.”

At the moment, however, investors appear to be lining up behind the geologic hydrogen approach. Koloma alone has raised over $350 million since its founding in 2021 — though it also has yet to produce commercial hydrogen.

McCulley estimates that its hydrogen won’t be cost competitive with fossil fuels until Vema has already completed several large-scale projects, which isn’t likely to happen until 2035 or 2040. “So we need to be able to get through some of these first projects where we’re going to have to sell at a premium price,” he told me. It’s never a guarantee that emerging technologies like this will find patient backers willing to bet on the promise that economies of scale are just over the horizon. The startup is currently raising its Series A, though, and McCulley said he’s seen strong interest from the tech industry in supporting Vema at the price point it’s targeting

The company wouldn’t reveal what price this is, though, and the numbers for its contract with Verne are also under wraps. That deal depends on both Vema and Verne advancing their tech to the point where it’s well-proven and bankable. For Verne, that means demonstrating the viability of its next-generation data center power systems, which include more efficient, off-grid generators capable of running on clean hydrogen. For Vema, it requires completing pilot testing and building a successful demo project. Both sides also have to secure additional funding.

If Vema can pull that together, the payoff looks huge. “If you start producing this stuff at less than $1 per kilogram, the sky’s the limit,” McCulley told me. “The current industrial [hydrogen] gas plants, the biggest ones are, say, around 200 tons per day,” he explained. “We can be five times that from one location.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
A Chevy Bolt in a coffin.
Heatmap Illustration/Getty Images, Chevrolet

We knew the revived Chevrolet Bolt might have a limited run. Nobody knew it would be this limited.

General Motors began manufacturing the updated version of its small electric car late last year to begin deliveries this month. Already the news of its potential demise is here. GM says the Kansas factory that’s churning out Bolts will be repurposed to make combustion cars, including a Buick, of all things. Now, just as the arrival of the sub-$30,000 Bolt heralded a new age of more affordable electric cars, Chevy is dropping out of the race and putting its beloved little electric car on the backburner. Again.

Keep reading...Show less
Green
A Fleetzero boat.
Heatmap Illustration/Getty Images, Fleetzero

Practically every week brings a flood of climate tech funding news and announcements — startups raising a new round, a venture capital firm closing a fresh fund, and big projects hitting (and missing) milestones. Going forward, I’ll close out each week with a roundup of some of the biggest stories that I didn’t get a chance to cover in full.

This week, we’ve got money for electric ships, next-gen geothermal, and residential electrification in Europe. Yay!

Keep reading...Show less
Green
AM Briefing

Hot Stocks

On Trump’s clawed-back loans, California’s power surge, and ‘Coalie’

A Fervo facility.
Heatmap Illustration/Fervo Energy, Getty Images

Current conditions: The monster snow storm headed eastward could dump more than a foot of snow on New York City this weekend • An extreme heat wave in Australia is driving temperatures past 104 degrees Fahrenheit • In northwest India, Jammu and Kashmir are bracing for up to 8 inches of snow.

THE TOP FIVE

1. Fervo and General Fusion are going public

Last month, Fervo Energy raised another $462 million in a Series E round to finance construction of the next-generation geothermal startup’s first major power plant. Pretty soon, retail investors will be able to get in on the hype. On Thursday, Axios reported that the company had filed confidential papers with the Securities and Exchange Commission in preparation for an initial public offering. Fervo’s IPO will be a milestone for the geothermal industry. For years, the business of tapping the Earth’s molten heat for energy has remained relatively small, geographically isolated, and dominated by incumbent players such as Ormat Technologies. But Fervo set off a startup boom when it demonstrated that it could use fracking technology to access hot rocks in places that don’t have the underground reservoirs that conventional geothermal companies rely upon. In yesterday’s newsletter, I told you about how Zanskar, a startup using artificial intelligence to find more conventional resources, and Sage Geosystems, a rival next-generation company to Fervo, had raised a combined $212 million. But as my colleague Matthew Zeitlin wrote in December when Fervo raised its most recent financing round, it’s not yet clear whether the company’s “enhanced” geothermal approach is price competitive. With how quickly things are progressing, we will soon find out.

Keep reading...Show less
Green