You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Most climate solutions are getting smarter. Solar panels can track the sun. Electric vehicles are equipped with the equivalent of an iPad and may soon be able to drive themselves (according to some people). Startups are inventing stoves with batteries that charge when energy is cheap and heat pumps that learn how you use your home and adjust accordingly.
But when it comes to permanently removing carbon dioxide from the atmosphere, the market is pushing in a different direction. There, it seems, there’s growing excitement for the dumbest, most primitive solutions companies can come up with.
The case in point this week is a $58 million agreement between Frontier, a fund started by tech companies to help grow the carbon removal market, and Vaulted Deep, a startup that collects food waste, poop, and other wet, sludgy, organic material and stashes it away underground. It’s the biggest deal Frontier has made to date, followed closely by a $57 million contract it signed in December with Lithos Carbon, which crushes up rocks and sprinkles the dust on agricultural fields. The rock naturally reacts with carbon dioxide in the air to form bicarbonate, which can essentially lock it away permanently.
There are at least 850 startups around the world trying to figure out the most effective, scalable, low-cost approach to cleaning up the legacy carbon pollution that’s warming the planet. Some of the most promising solutions have involved building big, energy-intensive systems that extract tiny amounts of carbon dioxide from the ambient air. One company I recently wrote about is manufacturing millions of tennis ball-sized sponges that will be stacked in trays, absorb carbon from the air, and then transferred into an oven to bake off the carbon.
Is it possible the answer could be as easy as pulverizing rocks and burying waste?
I ran my observation about the growing enthusiasm for dumb ideas past Hannah Bebbington, a strategy lead at Frontier, and she agreed — “totally,” she said, though she preferred the phrase “low-tech.” Compared to some of the earlier stars of carbon removal, Vaulted Deep and Lithos don’t require as much upfront capital investment or years and years of research and development. “At the end of the day, we are really excited about getting to gigaton scale carbon removal, and it doesn’t have to be the sexiest technology.”
So far, it seems, these lower-tech companies have been able to scale quickly. Vaulted Deep, for instance, launched at the end of August last year and has already delivered more than 2,400 tons of carbon removal. By comparison, the only operating direct air capture facility in the United States is capable of removing 1,000 tons of CO2 per year.
Vaulted Deep’s first project is in Kansas, where it is intercepting “woody waste” like grass clippings and tree trimmings that was destined to be incinerated. Once upon a time, when the plants were alive, they sucked up carbon from the atmosphere. If the clipping had been burned, the carbon would have been released back into the air. By slurrifying the waste and injecting it into a deep well, hundreds of feet underground, Vaulted Deep disrupts the cycle, potentially for millennia.
One advantage of this approach is that the carbon capture work is done for free, courtesy of photosynthesis. (Trees, of course, do this too, but not permanently.) Another is that Vaulted Deep uses mature technology to turn the waste into a slurry that can be injected underground. The company was spun out of Advantek, a waste management business that pioneered slurry injection in the 1980s. Most of the substances we inject into the layers of rock underneath our feet are pure liquid or gas, Julia Reichelstein, the CEO of Vaulted Deep told me. Advantek’s technology enables the company to take solid waste and, with minimal processing and energy, get it injection-ready.
The company’s third advantage is being able to pump its waste into “class five” wells, a designation made by the Environmental Protection Agency. Class five is sort of a catch-all category, encompassing shallow wells used for stormwater drainage and septic systems, to deep wells used for geothermal power. Regulations vary by type and by state, but in general, these are much more common and easier to permit than the “class six” wells used for carbon dioxide sequestration. “There’s, you know, 20, 30 years of permit history now on best practices on how you permit a slurry injection well,” Omar Abou-Sayed, the company’s co-founder, told me. “We comply with or exceed all those regulations. So this isn’t a case of, like, move fast and break things.”
All of this allows Vaulted Deep to charge less for carbon removal than many of its peers — closer to $400 per ton, as opposed to upwards of $600. Bebbington, of Frontier, thinks there’s a promising path to bring costs down a lot further if the company can achieve economies of scale by buying the sludgy organic waste in bulk, or move its injection wells closer to where the material originates.
But any climate solution involving biomass raises a host of questions about where the material came from, and what might have been done with it otherwise. Reichelstein said the company’s internal research found that there was almost a billion tons of bio-sludge produced in the U.S. annually. If it could capture all of it, the company estimated, it could sequester more than 300 million tons of carbon away from the atmosphere each year, after taking into account the emissions involved in collecting, processing, and injecting all that waste.
And yet, “The definition of a ‘waste’ is highly contested,” Freya Chay, program lead at the nonprofit CarbonPlan, which analyzes the integrity of different carbon removal approaches, told me.
For example, some companies are eyeing the use of agricultural waste like corn stalks, which are often left to decompose in fields, but also add nutrients to the soil. If the corn waste is removed and processed and buried underground, will that increase the use of carbon-intensive fertilizer? What if the waste was going into a landfill? There, it would have broken down eventually, but much more slowly than if it had been burned.
These questions get more complicated as projects that utilize waste biomass scale up. Once there’s more of a market for the material, will those counterfactuals that support what Vaulted Deep is doing — like that the waste would have been incinerated — still hold? “It's really hard to govern system-level risks with project-level rules, but that is the situation we are in,” said Chay.
At a second project location, in Los Angeles, Vaulted Deep is collecting sewage from the city’s wastewater treatment facilities that otherwise would have been trucked hundreds of miles out of the city and spread on farmland to decompose, releasing CO2 both during the transport and as it decays. The city has actually been paying Advantek to dispose of some of its sewage since 2008. But now, because of the Frontier deal, the company will drop its fee, allowing the city to divert even more of the waste for slurry injection.
Chay didn’t have any immediate concerns about Vaulted Deep’s biomass sourcing. In fact, she highlighted the co-benefits the company would provide. Oftentimes biomass waste is contaminated with toxic chemicals, and Vaulted Deep is preventing it from getting dumped in communities. “We should celebrate that,” she said.
Editor’s note: This story has been updated to correct the type of waste diverted for the Kansas project.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Secretary of Energy announced the cuts and revisions on Thursday, though it’s unclear how many are new.
The Department of Energy announced on Thursday that it has eliminated nearly $30 billion in loans and conditional commitments for clean energy projects issued by the Biden administration. The agency is also in the process of “restructuring” or “revising” an additional $53 billion worth of loans projects, it said in a press release.
The agency did not include a list of affected projects and did not respond to an emailed request for clarification. However the announcement came in the context of a 2025 year-in-review, meaning these numbers likely include previously-announced cancellations, such as the $4.9 billion loan guarantee for the Grain Belt Express transmission line and the $3 billion partial loan guarantee to solar and storage developer Sunnova, which were terminated last year.
The only further detail included in the press release was that some $9.5 billion in funding for wind and solar projects had been eliminated and was being replaced with investments in natural gas and building up generating capacity in existing nuclear plants “that provide more affordable and reliable energy for the American people.”
A preliminary review of projects that may see their financial backing newly eliminated turned up four separate efforts to shore up Puerto Rico’s perennially battered grid with solar farms and battery storage by AES, Pattern Energy, Convergent Energy and Power, and Inifinigen. Those loan guarantees totalled about $2 billion. Another likely candidate is Sunwealth’s Project Polo, which closed a $289.7 million loan guarantee during the final days of Biden’s tenure to build solar and battery storage systems at commercial and industrial sites throughout the U.S. None of the companies responded to questions about whether their loans had been eliminated.
Moving forward, the Office of Energy Dominance Financing — previously known as the Loan Programs Office — says it has $259 billion in available loan authority, and that it plans to prioritize funding for nuclear, fossil fuel, critical mineral, geothermal energy, grid and transmission, and manufacturing and transportation projects.
Under Trump, the office has closed three loan guarantees totalling $4.1 billion to restart the Three Mile Island nuclear plant, upgrade 5,000 miles of transmission lines, and restart a coal plant in Indiana.
With a China-Canada import deal and Geely showing up at CES, these low-priced models are getting ever-closer to American roads.
Chinese EVs are at the gates.
Low-priced electric vehicles by the likes of Geely, BYD, and Zeekr have already sold enormous numbers in their home country and spearheaded EV growth around the world, from Southeast Asia to Latin America. Now they’re closing in on America’s borders. Canada just agreed to a new trade deal with Beijing that would kill the country’s 100% tariff on Chinese cars and, presumably, allow them to undercut the existing Canadian car market. In Mexico, EV sales surged by 29% in 2025 thanks to the arrival of Chinese models.
Though China’s EVs are still unavailable in the U.S., they feel ever-present already. Auto journalists (myself included) drive these vehicles abroad and rave about how capable they are, especially for the price. Social media influencer hype has fed an appetite for both entry-level and luxury Chinese models — and confused plenty of Americans wondering why they can’t buy them. Headlines speculate about how the Detroit auto giants could ever hope to compete once cheap BYD Dolphins start to populate American roads. Chinese giant Geely, which owns Volvo and Polestar, appeared at CES earlier this month, as if to signal that the arrival of Chinese electric vehicles is imminent.
But is it? The outlook remains rather murky.
The first thing to know is that Chinese cars are not outright banned from coming to America. Instead, it’s a constellation of economic and technological headaches that keeps Beijing at bay. A 100% tariff makes it difficult to compete on cost, even with America’s notoriously expensive EVs. America’s safety and emissions standards are difficult and expensive to meet. Because of national security concerns, connected cars (i.e. those that can hook into the internet) cannot use Chinese-made software, a ban that’s soon to expand to electronic hardware.
Those restrictions aren’t likely to change anytime soon. Sean Duffy, the U.S. transportation secretary, responded to Canada’s removal of its Chinese car tariff by saying our neighbor to the north would “surely regret it.” Members of Congress from both parties are largely opposed to allowing Chinese cars into America under the logic of protectionism for U.S. automakers.
Yet all that might not be enough to prevent the eventual arrival of Geelys and BYDs. The first variable is the unpredictability of President Trump, who has said before that he would like to see Chinese-made cars in America. I don’t expect the United States to eliminate its tariff entirely the way Canada has, but look, you just never know what the heck is going to happen these days.
In the meantime, Chinese automakers are strategizing how they might navigate the rules in place and sell cars here anyway. Crash safety, for example, isn’t the impediment it might appear to be. China’s carmakers have intentionally designed their models in such a way that they could be tweaked, rather than totally redesigned, to meet more stringent rules.
As for the rest, the global reach of these companies could help them get around rules that specifically target China. Geely, which has suggested it will reveal plans for an American invasion within two to three years, builds Volvos in South Carolina and could use those facilities to build Geely-branded EVs in the United States. Company representatives also hand-waved away the problem of Chinese-made software, arguing that as a global brand, it’s already accustomed to meeting the various data privacy regulations of different countries and regions.
In other words, Chinese car companies could skirt some American hurdles by making their cars a little less Chinese. The problem is that doing so might spoil their secret sauce. Part of the magic of Chinese EVs is their responsive, easy-to-understand touchscreen interface that’s obviously superior to what’s offered in otherwise-excellent electric vehicles by Chevy or Hyundai. There’s no guarantee Geely could easily secure a Western-made replacement of the same quality.
The key question, then, is: Will Americans want the versions of Chinese EVs that come to America? We’ve noted recently that drivers are finally showing signs that they are fed up with the cost of new cars spiraling out of control. The kind of cheap Chinese EVs now on sale around the world would be a godsend for money-stressed Americans who are dependent on the automobile. But tariffs and other aforementioned factors mean that the models we get likely won’t be $10,000 basic transportation machines that undercut the entire overpriced American car economy.
Instead, Geelys for America probably will be big, luxurious vehicles whose appeal is fundamentally about feeling techy, futuristic, and cool, much the way Tesla first won over U.S. drivers. To that end, the brand brought a couple of fancy plug-in hybrid SUVs to CES to show Americans what we’re missing. Five years hence, we might not be missing them at all.
Current conditions: The winter storm barreling from Texas to Delaware could drop up to 2 feet of snow on Appalachia • Severe floods in Mozambique’s province of Gaza have displaced nearly 330,000 people • Parts of northern Minnesota and North Dakota are facing wind chills of -55 degrees Fahrenheit.
President Donald Trump announced a “framework of a future deal” on Greenland on Wednesday and abandoned plans to slap new tariffs on key European Union allies. He offered sparse details of the agreement, though he hinted that at least one provision would allow for the establishment of a missile-defense system in Greenland akin to Israel’s Iron Dome, which Trump has called “The Golden Dome.” On the Arctic island in question, meanwhile, Greenlanders have been preparing for the worst. The newspaper Sermitsiaq reported that generators and water cans have sold out as panic buyers stocked up in anticipation of a possible American invasion.

Geothermal startups had a big day on Wednesday. Zanskar, a company that’s using artificial intelligence to find untapped conventional geothermal resources, raised $115 million in a Series C round. The Salt Lake City-based company — which experts in Heatmap's Insider Survey identified as one of the most promising climate tech startups operating today — is looking to build its first power plants. “With this funding, we have a six power plant execution plan ahead of us in the next three, four years,” Diego D’Sola, Zanskar’s head of finance, told Heatmap’s Katie Brigham. This, he estimates, will generate over $100 million of revenue by the end of the decade, and “unlock a multi-gigawatt pipeline behind that.”
Later on Tuesday, Sage Geosystems, a next-generation geothermal startup using fracking technology to harness the Earth’s heat for energy in places that don’t have conventional resources, announced it had raised $97 million in a Series B. The financing rounds highlight the growing excitement over geothermal energy. If you want a refresher on how it works, Heatmap’s Matthew Zeitlin has a sharp explainer here.
Stegra, the Swedish startup racing to build the world’s first large green steel mill near the Arctic Circle, has recently faced troubles as project costs and delays forced the company to raise over $1 billion in new financing. But last week, Stegra landed a major new customer, marking what Canary Media called “a step forward for the beleaguered project.” A subsidiary of the German industrial giant Thyssenkrupp agreed to buy a certain type of steel from Stegra’s plant, which is set to start operations next year. Thyssenkrupp Materials Services said it would buy tonnages in the “high-six-digit range” of “non-prime” steel, a version of the metal that doesn’t meet the high standards for certain uses but remains strong and durable enough for other industrial applications.
Sign up to receive Heatmap AM in your inbox every morning:
For years, Tesla’s mission statement has captured its focus on building electric vehicles, solar panels, and batteries: “Accelerating the world’s transition to sustainable energy.” Now, however, billionaire Elon Musk’s manufacturing giant has broadened its pitch. The company’s new mission statement, announced on X, reads: “Building a world of amazing abundance.” The change reflects a wider shift in the cultural discourse around the transition to new energy and transportation technologies. Even experts polled in our Insiders Survey want to ditch “climate change” as a term. The fatigue was striking coming from the very scientists, policymakers, and activists working to defend against the effects of human-caused temperature rise and decarbonize the global economy.That dynamic has fueled the push to refocus rhetoric on the promise of cheaper, more efficient, and more abundant technological luxuries — a concept Tesla appears to be tapping into now. It may be time for a change. As Matthew wrote in September, Tesla’s market share hit an all-time low last year.
In yesterday’s newsletter, I told you that the Tokyo Electric Power Company had delayed the restart of the Kashiwazaki Kariwa nuclear power station in western Japan over an alarm malfunction. It wasn’t immediately clear how quickly Japan’s state-owned utility would clear up the issue. It turns out, pretty quickly. The pause lasted just 24 hours before Tepco brought Unit 6 of the seven-reactor facility back online, NucNet reported.
Things are getting steamy in the frigid waters of Alaska’s Bristol Bay. New research from Florida Atlantic University’s Harbor Branch Oceanographic Institute found that a small population of beluga whales survive the long haul by mating with multiple partners over several years. It’s not just the males finding multiple female partners, as is the case with some other mammals. The study found that both males and females mated with multiple partners over several years. “What makes this study so thrilling is that it upends our long-standing assumptions about this Arctic species,” Greg O’Corry-Crowe, the research professor who authored the study, said in a press release. “It’s a striking reminder that female choice can be just as influential in shaping reproductive success as the often-highlighted battles of male-male competition. Such strategies highlight the subtle, yet powerful ways in which females exert control over the next generation, shaping the evolutionary trajectory of the species.”