You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Data is elusive — and expensive.

Today, if a company claims to run on “100% clean power,” that generally means it’s adding up its electricity use for the entire year, then offsetting any fossil fuel-generated electricity through the purchase of renewable energy certificates, a.k.a. RECs. So a New York-based firm using natural gas to power its data center at night can offset that dirty power by purchasing RECs generated by a California-based solar farm in the middle of the day, so long as energy production and procurement happen within the same year.
We call this system “annual matching,” and it may not be much longer for this world.
The U.S. Treasury Department announced in December that, to qualify for the most generous subsidies under the Inflation Reduction Act’s hydrogen production tax credit, clean hydrogen must be produced using a relatively new source of carbon-free electricity generated within the same hour it’s used and in roughly the same location. The hourly matching requirement, which will take effect in 2028, could compel utilities, grid operators, energy producers and consumers to adopt new systems for clean energy accounting, ultimately laying the groundwork for a 24/7 clean electricity market that extends far beyond the hydrogen sector.
Energy system experts generally hailed the move, and not just because without it, electricity-hungry hydrogen production could potentially do more harm to the climate than good. Annual matching, also, is no longer serving its original purpose of incentivizing the buildout of new renewables. When wind and solar were more expensive than fossil fuels, developers could make up the cost difference by selling annually-matched RECs. But today, wind and solar are often the cheapest energy options available.
That’s not to say everyone was in favor of hourly matching, however. Many of the companies that underpin the U.S.’s clean energy generation and accounting systems, some major hydrogen players, and even a number of Senate Democrats say that moving to hourly matching in the next four years could not only prove too logistically challenging, but also lead to infeasibly high costs for clean hydrogen that will hamper the growth of the emerging industry. More than a year of furious lobbying, public commenting, and punditry over the future of America’s nascent hydrogen industry hinges on this question: Can we pull off verifiable 24/7 clean energy?
There’s an emerging ecosystem of companies trying to help do just that. Granular Energy is a European startup creating software to help utilities and power suppliers move toward 24/7 energy matching by telling them where and when clean energy is most needed. “When you get down to the hourly level,” Natalie Valentin, Granular’s commercial lead for North America, told me, “it can help drive investment in the types of technologies — whether it’s battery storage, clean firm generation, or renewable generation.”
Utilities and power suppliers generally have hourly generation data on hand, Valentin said. It’s just that the energy attribution certificates they receive from tracking systems and registries for renewable energy credits don’t usually include this information. “This data is very readily available,” she told me. “What we’re helping to do is put it into a tool that creates transparency, it streamlines the operations, it has that audit trail that's preventing any double counting.”
Granular links the information from energy certificates with the utility or power provider’s internal metering data to provide an hour-by-hour snapshot of the supplier’s energy mix. That then gives energy suppliers the ability to offer hourly-matched green power programs to their customers.
All of this would be simpler if electricity customers had insight into their hourly electricity usage in the first place, or if the tracking systems provided suppliers with time-matched certificates upfront. But as it stands, most customers don’t have meters that provide this level of detail, making it difficult for them to understand where their energy is coming from. And out of the nation’s 10 renewable energy credit tracking systems and registries, seven don’t report hourly information.
The three that do include the nation’s largest grid operator, PJM, the nonprofit Midwest Renewable Energy Tracking System, and the North American Renewables Registry. Seattle-based LevelTen Energy will utilize the data from these three entities to create a new marketplace for buying, selling, and managing hourly-matched energy certificates, to be launched later this year in regions where hourly tracking exists. LevelTen is building this platform in partnership with the Intercontinental Exchange, a tech company that operates global financial exchanges. Other partners include Google and Microsoft, each of which has announced plans to move to hourly matching by 2030.
“We’re looking to provide an end-to-end experience so people can indicate, here's where we have demand,” explained Katie Soroye, a LevelTen executive. Crucially, the platform will also ensure that hourly matching certificates are retired once they’re purchased to prevent double-counting.
The hope is that the seven tracking systems that lack hourly matching capabilities will soon be either persuaded or mandated to develop them, leading to a country-wide granular certificate marketplace — something the clean hydrogen tax rules were designed to help expedite. Once the mandate is finalized, the Center for Resource Solutions found, most of the tracking systems could phase in hourly matching within two years.
That doesn’t mean they’re eager to make the change, with many citing cost, low demand, and in some cases lack of data availability and confusion over how to handle a more complex dataset as top concerns with hourly matching. Cost is also a major concern for the hydrogen industry overall.
“To the extent that 24/7 works, it has to increase hydrogen prices,” said Aaron Bergman, a fellow at the nonprofit research group Resources for the Future, although he acknowledged that hourly matching is also likely to reduce emissions. “Now, I think what’s challenging is, is that going to be enough to interfere with the ability to really start building out green hydrogen?”
The American Clean Power Association thinks so. Its members estimate “a 20-150% price premium for hourly matched hydrogen production” because electrolyzers, the devices used to make clean hydrogen, will only be able to operate when clean electricity is available. The trade group recommends waiting until 2032 to implement hourly matching, saying this will give the market more time to mature and lower prices through economies of scale.
The whole industry is hardly aligned on this question. Seven companies, including the world’s largest hydrogen producer, filed a joint letter with Treasury officials before the draft rules were released urging them to require 24/7 hourly matching by 2028. “Hourly matching will catalyze cutting-edge, flexible electrolyzer technologies and establish a flourishing and world-leading domestic U.S. advanced electrolyzer manufacturing base,” the letter said.
The rule-making process will continue with a public hearing scheduled for later this month. But assuming the hourly-matching requirement stays, it will certainly add momentum to what’s become a movement for 24/7 clean electricity. Even the U.S. federal government has committed to sourcing 100% of their facility’s electricity from carbon-free sources, half of which will be hourly matched by 2030.
“Time is ticking,” said Bergman. “It’s really standing up something that is relatively new in a relatively short period of time.” Some degree of delays and logistical roadblocks may prove inevitable. But, he said, “it certainly can be done.”
Editor’s note: This story has been updated to clarify that a new platform from LevelTen Energy is distinct from the Granular Certificate Trading Alliance.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: The Pacific Northwest’s second atmospheric river in a row is set to pour up to 8 inches of rain on Washington and Oregon • A snow storm is dumping up to 6 inches of snow from North Dakota to northern New York • Warm air is blowing northeastward into Central Asia, raising temperatures to nearly 80 degrees Fahrenheit at elevations nearly 2,000 feet above sea level.
Heatmap’s Jael Holzman had a big scoop last night: The three leading Senate Democrats on energy and permitting reform issues are a nay on passing the SPEED Act. In a joint statement shared exclusively with Jael, Senate Energy and Natural Resources ranking member Martin Heinrich, Environment and Public Works ranking member Sheldon Whitehouse, and Hawaii senator Brian Schatz pledged to vote against the bill to overhaul the National Environmental Policy Act unless the legislation is updated to include measures to boost renewable energy and transmission development. “We are committed to streamlining the permitting process — but only if it ensures we can build out transmission and cheap, clean energy. While the SPEED Act does not meet that standard, we will continue working to pass comprehensive permitting reform that takes real steps to bring down electricity costs,” the statement read. To get up to speed on the legislation, read this breakdown from Heatmap’s Emily Pontecorvo.

In June, Heatmap’s Matthew Zeitlin explained how New York State was attempting to overcome the biggest challenge to building a new nuclear plant — its deregulated electricity market — by tasking its state-owned utility with overseeing the project. It’s already begun staffing up for the nuclear project, as I reported in this newsletter. But it’s worth remembering that the New York Power Authority, the second-largest government-controlled utility in the U.S. after the federal Tennessee Valley Authority, gained a new mandate to invest in power plants directly again when the 2023 state budget passed with measures calling for public ownership of renewables. On Tuesday, NYPA’s board of trustees unanimously approved a list of projects in which the utility will take 51% ownership stakes in a bid to hasten construction of large-scale solar, wind, and battery facilities. The combined maximum output of all the projects comes to 5.5 gigawatts, nearly double the original target of 3 gigawatts set in January.
But that’s still about 25% below the 7 gigawatts NYPA outlined in its draft proposal in July. What changed? At a hearing Tuesday morning, NYPA officials described headwinds blowing from three directions: Trump’s phaseout of renewable tax credits, a new transmission study that identified which projects would cost too much to patch onto the grid, and a lack of power purchase agreements from offtakers. One or more of those variables ultimately led private developers to pull out at least 16 projects that NYPA would have co-owned.
Sign up to receive Heatmap AM in your inbox every morning:
During World War II, the Lionel toy train company started making components for warships, the Ford Motor Company produced bomber planes, and the Mattatuck Manufacturing Company known for its upholstery nails switched to churning out cartridge clips for Springfield rifles. In a sign of how severe the shortfall of equipment to generate gas-powered electricity has become, would-be supersonic jet startups are making turbines. While pushing to legalize flights of the supersonic jets his company wants to build, Blake Scholl, the chief executive of Boom Supersonic, said he “kept hearing about how AI companies couldn’t get enough electricity,” and how companies such as ChatGPT-maker OpenAI “were building their own power plants with large arrays of converted jet engines.” In a thread on X, he said that, “under real world conditions, four of our Superpower turbines could do the job of seven legacy units. Without the cooling water required by legacy turbines!”
The gas turbine crisis, as Matthew wrote in September, may be moving into a new phase as industrial giants race to meet the surging demand. In general, investors have rewarded the effort. “But,” as Matthew posed, “what happens when the pressure to build doesn’t come from customers but from competitors?” We may soon find out.
It is, quite literally, the stuff of science fiction, the kind of space-based solar power plant that Isaac Asimov imagined back in 1940. But as Heatmap’s Katie Brigham reported in an exclusive this morning, the space solar company Overview Energy has emerged from stealth, announcing its intention to make satellites that will transmit energy via lasers directly onto Earth’s power grids. The company has raised $20 million in a seed round led by Lowercarbon Capital, Prime Movers Lab, and Engine Ventures, and is now working toward raising a Series A. The way the technology would work is by beaming the solar power to existing utility-scale solar projects. As Katie explained: “The core thesis behind Overview is to allow solar farms to generate power when the sun isn’t shining, turning solar into a firm, 24/7 renewable resource. What’s more, the satellites could direct their energy anywhere in the world, depending on demand. California solar farms, for example, could receive energy in the early morning hours. Then, as the sun rises over the West Coast and sets in Europe, ‘we switch the beam over to Western Europe, Morocco, things in that area, power them through the evening peak,’” Marc Berte, the founder and CEO of Overview Energy, told her. He added: “It hits 10 p.m., 11 p.m., most people are starting to go to bed if it’s a weekday. Demand is going down. But it’s now 3 p.m. in California, so you switch the beam back.”
In bigger fundraising news with more immediate implications for our energy system, next-generation geothermal darling Fervo Energy has raised another $462 million in a Series E round to help push its first power plants over the finish line, as Matthew wrote about this morning.
When Sanae Takaichi became the first Japanese woman to serve as prime minister in October, I told you at the time how she wanted to put surging energy needs ahead of lingering fears from Fukushima by turning the country’s nuclear plants back on and building more reactors. Her focus isn’t just on fission. Japan is “repositioning fusion energy from a distant research objective to an industrial priority,” according to The Fusion Report. And Helical Fusion has emerged as its national champion. The Tokyo-based company has signed the first power purchase agreement in Japan for fusion, a deal with the regional supermarket chain Aoki Super Co. to power some of its 50 stores. The Takaichi administration has signaled plans to increase funding for fusion as the new government looks to hasten its development. While “Japan still trails the U.S. and China in total fusion investment,” the trade newsletter reported, “the policy architecture now exists to close that gap rapidly.”
Another day, another emerging energy or climate technology gets Google’s backing. This morning, the carbon removal startup Ebb inked a deal with Google to suck 3,500 tons of CO2 out of the atmosphere. Ebb’s technology converts carbon dioxide from the air into “safe, durable” bicarbonate in seawater and converting “what has historically been a waste stream into a climate solution,” Ben Tarbell, chief executive of Ebb, said in a statement. “The natural systems in the ocean represent the most powerful and rapidly scalable path to meaningful carbon removal … Our ability to remove CO2 at scale becomes the natural outcome of smart business decisions — a powerful financial incentive that will drive expansion of our technology.”
The Series E round will fund the enhanced geothermal company’s flagship Cape Station project.
The enhanced geothermal company Fervo is raising another $462 million, bringing on new investors in its Series E equity round.
The lead investor is a new one to the company’s books: venture capital firm B Capital, started by Facebook co-founder Eduardo Saverin. Fervo did not disclose a valuation, but Axios reported in March that it had been discussing an IPO in the next year or two at a $2 billion to $4 billion valuation.
Much of the capital will be devoted to further investments in its Cape Station facility in Utah, which is due to start generating 100 megawatts of grid power by the end of 2026. A smaller project in Nevada came online in 2023.
Fervo’s last equity round was early last year, when it raised $255 million led by oil and gas company Devon. It also raised another $206 million this past summer in debt and equity to finance the Cape Station project, specifically, and reported faster, deeper drilling numbers.
“I think putting pedal to the metal is a good way to put it. We are continuing to make progress at Cape station, which is our flagship project in Southwest Utah, and some of the funding will also be used for early stage development at other projects and locations to expand Fervo’s reach across the Western U.S.,” Sarah Jewett, Fervo’s senior vice president of strategy, told me
“Enhanced geothermal” refers to injecting fluid into hot, underground rocks using techniques borrowed from hydraulic fracturing for oil and gas. Along with the geothermal industry as a whole, Fervo has found itself in the sweet spot of energy politics. It can provide power for technology companies with sustainability mandates and states with decarbonization goals because it produces carbon-free electricity. And it can host Republican politicians at its facilities because the power is 24/7 and employs labor and equipment familiar to the oil and gas industry. While the Trump administration has been on a warpath against solar and (especially) wind, geothermal got a shoutout in the White House’s AI Action Report as an electricity source that should be nurtured.
“Being clean and operating around the clock is just a really strong value proposition to the market,” Jewett said. “Utilizing an oil and gas workforce is obviously a big part of that story; developing in rural America to serve grids across the West; producing clean, emissions-free energy. It's just a really nice, well-rounded value proposition that has managed to maintain really strong support across the aisle in Washington despite the administration shift.”
But bipartisan support on its own can’t lead to gigawatts of new, enhanced geothermal powering the American west. For that Fervo, like any venture-backed or startup energy developer, needs project finance, money raised for an individual energy project (like a solar farm or a power plant) that must be matched by predictable, steady cashflows. “That is, obviously the ultimate goal, is to bring the cost of capital down for these projects to what we call the ‘solar standard,’’’ Jewett said, referring to a minimum return to investors of below 10%, which solar projects can finance themselves at.
While solar power at this point is a mature technology using mass-manufactured, standardized parts having very good foreknowledge of where it will be most effective for generating electricity (it’s where the sun shines), enhanced geothermal is riskier, both in finding places to drill and in terms of drilling costs. Project finance investors tend to like what they can easily predict.
“We are well on our way to do it,” Jewett said of bringing down the perceived risk of enhanced geothermal. “This corporate equity helps us build the track record that we need to attract” project finance investors.
Whether enhanced geothermal is price competitive isn’t quite clear: Its levelized cost of energy is estimated to be around twice utility scale solar's, although that metric doesn’t give it credit for geothermal’s greater reliability and lack of dependence on the weather.
While Cape Station itself is currently covered in snow, Jewett said, construction is heating up. The facility has three power plants installed, a substation and transmission and distribution lines starting to be put up, putting the facility in line to start generating power next year, Jewett said.By the time it starts generating power for customers, Fervo hopes to have reduced costs even more.
“Cost reductions happen through learning by doing — doing it over and over and over again. We have now drilled over 30 wells at the Cape Station field and we’re learning over time what works best,” Jewett said.
Overview Energy has raised $20 million already and is targeting a Series A early next year.
When renowned sci-fi author Isaac Asimov first wrote about space-based solar power in the 1940s, it helped inspire engineers and the federal government alike to take the idea seriously. By the 1970s, a design had been patented and feasibility studies were underway. But those initial efforts didn’t get far — challenges with launch costs, constructing the necessary structures in space, and energy conversion efficiency proved too much for scientists to overcome.
Now the idea is edging ever closer to reality.
The space solar company Overview Energy emerged from stealth today, announcing its intention to make satellites that will transmit energy via lasers directly onto the Earth’s grid, targeting preexisting utility-scale solar installations. The startup has already raised $20 million in a seed round led by Lowercarbon Capital, Prime Movers Lab, and Engine Ventures, and is now working on raising a Series A.
The core thesis behind Overview is to allow solar farms to generate power when the sun isn’t shining, turning solar into a firm, 24/7 renewable resource. What’s more, the satellites could direct their energy anywhere in the world, depending on demand. California solar farms, for example, could receive energy in the early morning hours. Then, as the sun rises over the West Coast and sets in Europe, “we switch the beam over to Western Europe, Morocco, things in that area, power them through the evening peak,” Marc Berte, the founder and CEO of Overview Energy, explained. “It hits 10 p.m., 11 p.m., most people are starting to go to bed if it’s a weekday. Demand is going down. But it’s now 3 p.m. in California, so you switch the beam back.”
That so-called “geographic untethering” will be a key factor in making all of this economically feasible one day, Berte told me. The startup is targeting between $60 and $100 per megawatt-hour by 2035, when it aims to be putting gigawatts of commercial space solar on the grid. “It’s 5 o’clock somewhere,” Berte told me. “You’re profitable at $100 bucks a megawatt-hour somewhere, instantaneously, all the time.”
Making the math pencil out has also meant developing super-efficient lasers and eliminating all power electronics on its custom spacecraft. The type of light Overview beams to earth — called “near-infrared” and invisible to the naked eye — is also very efficiently converted into electricity on a solar cell. While pure sunlight is only converted at 20% efficient, near-infrared light is converted at 50% efficiency. Thus, Overview enables solar panels to operate even more efficiently during the night than during the day.
Today, the startup also announced the successful demonstration of its ability to transmit energy from a moving aircraft to a ground receiver three miles below — the first time anyone has beamed high power from a moving source. Although Overview’s satellites will eventually need to transmit light from much farther away — around 22,000 miles from Earth — the test proved that the fundamental technical components work together as planned.
“There’s no functional difference from what we just did from an airplane to what we’re going to do in 10 years at gigawatts from space,” Berte told me. “The same beacon, the same tracking, the same mirror, the same lasers, all the same stuff, just an airplane instead of space.”
Overview’s ultimate goal is ambitious to say the least: It’s aiming to design a system that can deliver the equivalent of 10% to 20% of all global electricity use by 2050. To get there, it’s aiming to put megawatts of power on the grid by 2030 and gigawatts by the mid-2030s. Its target customers include independent power producers, utilities, and data centers, and the company currently has a SpaceX launch booked for early 2028. At this point, Berte says Overview will likely be starting up its own prototype production line, which it will scale in the years to follow.
That certainly won’t be a simple undertaking. To produce a gigawatt of power, Overview will need to deploy 1,000 huge satellites, each measuring around 500 to 600 feet across and weighing about 8 to 10 tons. The largest satellites currently in space are about 100 to 150 feet across, and roughly 5 to 10 tons. “No one really mass-manufactures satellites in the kind of quantities required,” Berte explained, and nobody is producing the design and form factor that Overview requires. “So we are going to have to in-source a lot of the integration for that.”
But while the startup’s satellites will span the length of about two football fields, they fold up neatly into a package about the size of a shipping container, making it possible for them to fit on a SpaceX rocket, for example. When the satellites beam their power down to Earth, they’ll target a beacon — also shipping container-sized — that will be placed in the middle of the solar farm.
Initially, Berte told me, Overview will target deployment in places where logistical challenges make energy particularly expensive — think Alaska or island states and territories such as Guam, Hawaii, and Puerto Rico. But first, the company must demonstrate that its tech works from thousands of miles away. That’s what the funding from its forthcoming Series A, which Berte expects to close in spring of next year, is intended for.
“That is to take us to the next step, which is now do it in space. And after that, it’s now do it in space, but big,” he told me. “So it’s crawl, walk, run, but most importantly, the technology and how you do it doesn’t change.”