Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Carbon Removal’s $100 Billion Conundrum

That’s how much the U.S. should be spending per year by 2050 to achieve net zero, according to a new Rhodium Group report.

Carbon removal.
Heatmap Illustration/Getty Images

Money seems to be pouring into the field of carbon removal from every direction. Every other week there’s an announcement about a new project. Multimillion dollar carbon removal procurement deals are on the rise. The Department of Energy is rolling out grants as part of its $3.5 billion “direct air capture” hubs program and also funding research and development. Some carbon removal companies can even start claiming a $130 tax credit for every ton of CO2 they suck up and store underground.

The federal government alone spends just under $1 billion per year on carbon removal research, development, and deployment. According to a new report from the Rhodium Group, however, the U.S. is going to have to spend a lot more — roughly $100 billion per year by 2050 — if carbon dioxide removal, or CDR, is ever going to become a viable climate solution.

“The current level of policy support is nowhere near what's needed for CDR to play the role that people say it needs to play in solving climate change,” Jonathan Larsen, one of the authors, told me. “We wanted to reset the policy conversation with that in mind.”

Carbon removal is what’s implied by the “net” in net-zero — a way to compensate for whatever polluting activities are going to take longer to replace with clean solutions. It will be impossible to achieve net-zero emissions by 2050, either at the national or global level, without removing carbon from the atmosphere. But how much carbon removal will we need, and how do we make sure we’re ready to deploy it?

These questions are, in a sense, unique to the field. When we talk about cutting carbon emissions from buildings or transportation, experts are relatively confident in the set of solutions and the scale of the task — they know how many buildings and cars there are and can make reasonable estimates of growth rates.

But carbon removal is a moving target. We know how much we’re removing today — roughly 5 million metric tons, mostly from nature-based solutions like planting trees. Based on current policies, Rhodium estimates we could scale that up to about 50 million metric tons by 2035. But figuring out how much we need depends entirely on how successful we are at decarbonizing everything else. Even if we know we need to electrify all our cars, for example, no one can say whether that will happen by 2050, or at least not with any meaningful degree of certainty.

The Rhodium Group report attempts to narrow the range of this uncertainty so that policymakers can better attack the problem. The authors looked at a handful of different decarbonization roadmaps for the U.S. and found that the minimum amount of carbon removal needed to compensate for residual emissions in 2050 is 1 gigaton, which is the same as one billion metric tons, or a 20x increase from where current policies will get us. It's also equal to about 20% of the carbon that the U.S. emitted last year. “There's a very likely scenario where we need a lot more than that,” said Larsen. “There's scenarios where we need less. But most of the studies out there say at least a gigaton.”

Even if it’s only a rough estimate, landing on a number is useful, he told me. Rhodium Group spends a lot of time answering questions about, for example, what some new policy means for achieving Biden’s goal of cutting emissions in half by 2030. “I don't know if we’d get those questions if there wasn't a 50% target to shoot for,” he said. “So I think this way, people can be like, what does this next wave of policy support for CDR do for getting the U.S. on track for a gigaton?”

The level of investment it will take to get there is also highly uncertain. The authors did a quick back-of-the-envelope calculation to land on $100 billion by 2050: We need to be removing a minimum of one billion tons by then, and the Department of Energy has a goal to bring the cost of carbon removal down to $100 per ton.

The meat of the new report focuses on how to bridge the gap between the roughly $1 billion we spend today and $100 billion, which starts, according to the authors, with treating carbon removal as a public service. It’s not like other climate solutions such as wind turbines or heat pumps, they write, which can rely on private markets to provide predictable demand or to stimulate innovation. “There are very few pathways one can envision where the private sector is going to both scale and deliver those tons,” Larsen told me. Voluntary carbon removal purchases by companies could play a role, he said, but it will not be big enough to get to a gigaton.

Rhodium recommends expanding and extending many of the federal policy programs that already exist — by, for example, providing more R&D funding, doing more government procurement, handing out more loan guarantees, and creating more “hubs” centered on other approaches besides direct air capture, like enhanced weathering or biomass burial. Right now, the tax credit for capturing carbon from the air and burying it underground can only be claimed for 12 years, and projects have to start construction by 2032. The authors call for extending the claim period and moving up the construction start deadline. They also recommend expanding the program to apply to a wider range of carbon removal methods.

A common criticism of government support for carbon removal is that policy makers will over-rely on it. If we aim to do 1 gigaton of carbon removal, does that mean we won’t cut emissions as much as we could have? What happens if, for whatever reason, we can’t achieve the 1 gigaton?

Larsen disagreed with that framing. For one, it’s easy to turn it around: If we don’t scale up the capacity to remove carbon, and we also don’t eliminate emissions by mid-century, we’re not even going to have the option to halt climate change at that point.

But also, decarbonization shouldn’t stop in 2050, he said. If we can achieve that 1 gigaton of annual removal and then keep cutting emissions from remaining sources, we could eventually get to net-negative emissions — even without more CDR. In other words, if we reach a point where we’re removing more than we’re emitting, we could start to reverse global warming, not just stop it.

“I know that's, like, sci-fi,” he told me. “But that's ultimately where we as a species have to go and that’s why setting a target here of at least a gigaton, to me, does not take away the need to reduce elsewhere.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

Oversize EVs Have Some Big Issues

Any EV is better for the planet than a gas-guzzler, but size still matters for energy use.

A very large Ford F-150 Lightning.
Heatmap Illustration/Ford, Tesla, Getty Images

A few Super Bowls ago, when General Motors used its ad spots to pitch Americans on the idea of the GMC Hummer EV, it tried to flip the script on the stereotypes that had always dogged the gas-guzzling SUV. Yes, it implied, you can drive a military-derived menace to society and still do your part for the planet, as long as it’s electric.

You don’t hear much about the Hummer anymore — it didn’t sell especially well, and the Tesla Cybertruck came along to fill the tank niche in the electric car market. But the reasoning behind its launch endures. Any EV, even a monstrous one, is a good EV if it convinces somebody, somewhere, to give up gasoline.

Keep reading...Show less
Climate

AM Briefing: Hottest Summer Ever

On new heat records, Trump’s sea level statements, and a super typhoon

We Just Lived Through the Hottest Summer Ever
Heatmap Illustration/Getty Images

Current conditions: Torrential rains flooded the streets of Milan, Italy • The U.K. recorded its coldest summer since 2015 • The temperature in Palm Springs, California, hit 121 degrees Fahrenheit yesterday.

THE TOP FIVE

1. Summer 2024 was hottest on record

Summer 2024 was officially the warmest on record in the Northern Hemisphere, according to new data from the EU’s Copernicus Climate Change Service. Between June and August, the average global temperature was 1.24 degrees Fahrenheit higher than the 1991-2020 average, beating out last summer’s record. August 2024 tied August 2023 for joint-hottest month ever recorded globally, with an average surface air temperature of 62.27 degrees Fahrenheit.

Keep reading...Show less
Yellow
Economy

How to Make a Ghost Town

The raw material of America’s energy transition is poised for another boom.

Superior, Arizona.
Heatmap Illustration/Jeva Lange, Library of Congress

In the town of Superior, Arizona, there is a hotel. In the hotel, there is a room. And in the room, there is a ghost.

Henry Muñoz’s father owned the building in the early 1980s, back when it was still a boarding house and the “Magma” in its name, Hotel Magma, referred to the copper mine up the hill. One night, a boarder from Nogales, Mexico, awoke to a phantom trying to pin her to the wall with the mattress; naturally, she demanded a new room. When Muñoz, then in his fearless early 20s, heard this story from his father, he became curious. Following his swing shift at the mine, Muñoz posted himself to the room with a case of beer and passed the hours until dawn drinking and waiting for the spirit to make itself known.

Keep reading...Show less
Green