You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
That’s how much the U.S. should be spending per year by 2050 to achieve net zero, according to a new Rhodium Group report.
Money seems to be pouring into the field of carbon removal from every direction. Every other week there’s an announcement about a new project. Multimillion dollar carbon removal procurement deals are on the rise. The Department of Energy is rolling out grants as part of its $3.5 billion “direct air capture” hubs program and also funding research and development. Some carbon removal companies can even start claiming a $130 tax credit for every ton of CO2 they suck up and store underground.
The federal government alone spends just under $1 billion per year on carbon removal research, development, and deployment. According to a new report from the Rhodium Group, however, the U.S. is going to have to spend a lot more — roughly $100 billion per year by 2050 — if carbon dioxide removal, or CDR, is ever going to become a viable climate solution.
“The current level of policy support is nowhere near what's needed for CDR to play the role that people say it needs to play in solving climate change,” Jonathan Larsen, one of the authors, told me. “We wanted to reset the policy conversation with that in mind.”
Carbon removal is what’s implied by the “net” in net-zero — a way to compensate for whatever polluting activities are going to take longer to replace with clean solutions. It will be impossible to achieve net-zero emissions by 2050, either at the national or global level, without removing carbon from the atmosphere. But how much carbon removal will we need, and how do we make sure we’re ready to deploy it?
These questions are, in a sense, unique to the field. When we talk about cutting carbon emissions from buildings or transportation, experts are relatively confident in the set of solutions and the scale of the task — they know how many buildings and cars there are and can make reasonable estimates of growth rates.
But carbon removal is a moving target. We know how much we’re removing today — roughly 5 million metric tons, mostly from nature-based solutions like planting trees. Based on current policies, Rhodium estimates we could scale that up to about 50 million metric tons by 2035. But figuring out how much we need depends entirely on how successful we are at decarbonizing everything else. Even if we know we need to electrify all our cars, for example, no one can say whether that will happen by 2050, or at least not with any meaningful degree of certainty.
The Rhodium Group report attempts to narrow the range of this uncertainty so that policymakers can better attack the problem. The authors looked at a handful of different decarbonization roadmaps for the U.S. and found that the minimum amount of carbon removal needed to compensate for residual emissions in 2050 is 1 gigaton, which is the same as one billion metric tons, or a 20x increase from where current policies will get us. It's also equal to about 20% of the carbon that the U.S. emitted last year. “There's a very likely scenario where we need a lot more than that,” said Larsen. “There's scenarios where we need less. But most of the studies out there say at least a gigaton.”
Even if it’s only a rough estimate, landing on a number is useful, he told me. Rhodium Group spends a lot of time answering questions about, for example, what some new policy means for achieving Biden’s goal of cutting emissions in half by 2030. “I don't know if we’d get those questions if there wasn't a 50% target to shoot for,” he said. “So I think this way, people can be like, what does this next wave of policy support for CDR do for getting the U.S. on track for a gigaton?”
The level of investment it will take to get there is also highly uncertain. The authors did a quick back-of-the-envelope calculation to land on $100 billion by 2050: We need to be removing a minimum of one billion tons by then, and the Department of Energy has a goal to bring the cost of carbon removal down to $100 per ton.
The meat of the new report focuses on how to bridge the gap between the roughly $1 billion we spend today and $100 billion, which starts, according to the authors, with treating carbon removal as a public service. It’s not like other climate solutions such as wind turbines or heat pumps, they write, which can rely on private markets to provide predictable demand or to stimulate innovation. “There are very few pathways one can envision where the private sector is going to both scale and deliver those tons,” Larsen told me. Voluntary carbon removal purchases by companies could play a role, he said, but it will not be big enough to get to a gigaton.
Rhodium recommends expanding and extending many of the federal policy programs that already exist — by, for example, providing more R&D funding, doing more government procurement, handing out more loan guarantees, and creating more “hubs” centered on other approaches besides direct air capture, like enhanced weathering or biomass burial. Right now, the tax credit for capturing carbon from the air and burying it underground can only be claimed for 12 years, and projects have to start construction by 2032. The authors call for extending the claim period and moving up the construction start deadline. They also recommend expanding the program to apply to a wider range of carbon removal methods.
A common criticism of government support for carbon removal is that policy makers will over-rely on it. If we aim to do 1 gigaton of carbon removal, does that mean we won’t cut emissions as much as we could have? What happens if, for whatever reason, we can’t achieve the 1 gigaton?
Larsen disagreed with that framing. For one, it’s easy to turn it around: If we don’t scale up the capacity to remove carbon, and we also don’t eliminate emissions by mid-century, we’re not even going to have the option to halt climate change at that point.
But also, decarbonization shouldn’t stop in 2050, he said. If we can achieve that 1 gigaton of annual removal and then keep cutting emissions from remaining sources, we could eventually get to net-negative emissions — even without more CDR. In other words, if we reach a point where we’re removing more than we’re emitting, we could start to reverse global warming, not just stop it.
“I know that's, like, sci-fi,” he told me. “But that's ultimately where we as a species have to go and that’s why setting a target here of at least a gigaton, to me, does not take away the need to reduce elsewhere.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Republicans are taking over some of the most powerful institutions for crafting climate policy on Earth.
When Republicans flipped the Senate, they took the keys to three critical energy and climate-focused committees.
These are among the most powerful institutions for crafting climate policy on Earth. The Senate plays the role of gatekeeper for important legislation, as it requires a supermajority to overcome the filibuster. Hence, it’s both where many promising climate bills from the House go to die, as well as where key administrators such as the heads of the Department of Energy and the Environmental Protection Agency are vetted and confirmed.
We’ll have to wait a bit for the Senate’s new committee chairs to be officially confirmed. But Jeff Navin, co-founder at the climate change-focused government affairs firm Boundary Stone Partners, told me that since selections are usually based on seniority, in many cases it’s already clear which Republicans are poised to lead under Trump and which Democrats will assume second-in-command (known as the ranking member). Here’s what we know so far.
This committee has been famously led by Joe Manchin, the former Democrat, now Independent senator from West Virginia, who will retire at the end of this legislative session. Energy and Natural Resources has a history of bipartisan collaboration and was integral in developing many of the key provisions in the Inflation Reduction Act — and could thus play a key role in dismantling them. Overall, the committee oversees the DOE, the Department of the Interior, the U.S. Forest Service, and the Federal Energy Regulatory Commission, so it’s no small deal that its next chairman will likely be Mike Lee, the ultra-conservative Republican from Utah. That’s assuming that the committee's current ranking member, John Barrasso of Wyoming, wins his bid for Republican Senate whip, which seems very likely.
Lee opposes federal ownership of public lands, setting himself up to butt heads with Martin Heinrich, the Democrat from New Mexico and likely the committee’s next ranking member. Lee has also said that solving climate change is simply a matter of having more babies, as “problems of human imagination are not solved by more laws, they’re solved by more humans.” As Navin told me, “We've had this kind of safe space where so-called quiet climate policy could get done in the margins. And it’s not clear that that's going to continue to exist with the new leadership.”
This committee is currently chaired by Democrat Tom Carper of Delaware, who is retiring after this term. Poised to take over is the Republican’s current ranking member, Shelley Moore Capito of West Virginia. She’s been a strong advocate for continued reliance on coal and natural gas power plants, while also carving out areas of bipartisan consensus on issues such as nuclear energy, carbon capture, and infrastructure projects during her tenure on the committee. The job of the Environment and Public Works committee is in the name: It oversees the EPA, writes key pieces of environmental legislation such as the Clean Air Act and Clean Water Act, and supervises public infrastructure projects such as highways, bridges, and dams.
Navin told me that many believe the new Democratic ranking member will be Sheldon Whitehouse of Rhode Island, although to do so, he would have to step down from his perch at the Senate Budget Committee, where he is currently chair. A tireless advocate of the climate cause, Whitehouse has worked on the Environment and Public Works committee for over 15 years, and lately seems to have had a relatively productive working relationship with Capito.
This subcommittee falls under the broader Senate Appropriations Committee and is responsible for allocating funding for the DOE, various water development projects, and various other agencies such as the Nuclear Regulatory Commission.
California’s Dianne Feinstein used to chair this subcommittee until her death last year, when Democrat Patty Murray of Washington took over. Navin told me that the subcommittee’s next leader will depend on how the game of “musical chairs” in the larger Appropriations Committee shakes out. Depending on their subcommittee preferences, the chair could end up being John Kennedy of Louisiana, outgoing Senate Minority Leader Mitch McConnell of Kentucky, or Lisa Murkowski of Alaska. It’s likewise hard to say who the top Democrat will be.
Inside a wild race sparked by a solar farm in Knox County, Ohio.
The most important climate election you’ve never heard of? Your local county commissioner.
County commissioners are usually the most powerful governing individuals in a county government. As officials closer to community-level planning than, say a sitting senator, commissioners wind up on the frontlines of grassroots opposition to renewables. And increasingly, property owners that may be personally impacted by solar or wind farms in their backyards are gunning for county commissioner positions on explicitly anti-development platforms.
Take the case of newly-elected Ohio county commissioner – and Christian social media lifestyle influencer – Drenda Keesee.
In March, Keesee beat fellow Republican Thom Collier in a primary to become a GOP nominee for a commissioner seat in Knox County, Ohio. Knox, a ruby red area with very few Democratic voters, is one of the hottest battlegrounds in the war over solar energy on prime farmland and one of the riskiest counties in the country for developers, according to Heatmap Pro’s database. But Collier had expressed openness to allowing new solar to be built on a case-by-case basis, while Keesee ran on a platform focused almost exclusively on blocking solar development. Collier ultimately placed third in the primary, behind Keesee and another anti-solar candidate placing second.
Fighting solar is a personal issue for Keesee (pronounced keh-see, like “messy”). She has aggressively fought Frasier Solar – a 120 megawatt solar project in the country proposed by Open Road Renewables – getting involved in organizing against the project and regularly attending state regulator hearings. Filings she submitted to the Ohio Power Siting Board state she owns a property at least somewhat adjacent to the proposed solar farm. Based on the sheer volume of those filings this is clearly her passion project – alongside preaching and comparing gay people to Hitler.
Yesterday I spoke to Collier who told me the Frasier Solar project motivated Keesee’s candidacy. He remembered first encountering her at a community meeting – “she verbally accosted me” – and that she “decided she’d run against me because [the solar farm] was going to be next to her house.” In his view, he lost the race because excitement and money combined to produce high anti-solar turnout in a kind of local government primary that ordinarily has low campaign spending and is quite quiet. Some of that funding and activity has been well documented.
“She did it right: tons of ground troops, people from her church, people she’s close with went door-to-door, and they put out lots of propaganda. She got them stirred up that we were going to take all the farmland and turn it into solar,” he said.
Collier’s takeaway from the race was that local commissioner races are particularly vulnerable to the sorts of disinformation, campaign spending and political attacks we’re used to seeing more often in races for higher offices at the state and federal level.
“Unfortunately it has become this,” he bemoaned, “fueled by people who have little to no knowledge of what we do or how we do it. If you stir up enough stuff and you cry out loud enough and put up enough misinformation, people will start to believe it.”
Races like these are happening elsewhere in Ohio and in other states like Georgia, where opposition to a battery plant mobilized Republican primaries. As the climate world digests the federal election results and tries to work backwards from there, perhaps at least some attention will refocus on local campaigns like these.
And more of the week’s most important conflicts around renewable energy.
1. Madison County, Missouri – A giant battery material recycling plant owned by Critical Mineral Recovery exploded and became engulfed in flames last week, creating a potential Vineyard Wind-level PR headache for energy storage.
2. Benton County, Washington State – Governor Jay Inslee finally got state approvals finished for Scout Clean Energy’s massive Horse Heaven wind farm after a prolonged battle over project siting, cultural heritage management, and bird habitat.
3. Fulton County, Georgia – A large NextEra battery storage facility outside of Atlanta is facing a lawsuit that commingles usual conflicts over building these properties with environmental justice concerns, I’ve learned.
Here’s what else I’m watching…
In Colorado, Weld County commissioners approved part of one of the largest solar projects in the nation proposed by Balanced Rock Power.
In New Mexico, a large solar farm in Sandoval County proposed by a subsidiary of U.S. PCR Investments on land typically used for cattle is facing consternation.
In Pennsylvania, Schuylkill County commissioners are thinking about new solar zoning restrictions.
In Kentucky, Lost City Renewables is still wrestling with local concerns surrounding a 1,300-acre solar farm in rural Muhlenberg County.
In Minnesota, Ranger Power’s Gopher State solar project is starting to go through the public hearing process.
In Texas, Trina Solar – a company media reports have linked to China – announced it sold a large battery plant the day after the election. It was acquired by Norwegian company FREYR.