Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

The Eclipse Was a 3-Hour Boon for Gas, Batteries, and Hydro

What happens to the grid when the sun goes away?

An eclipse and solar panels.
Heatmap Illustration/Getty Images

Early April is typically a kind of goldilocks moment for solar power. Days are getting longer but the weather is still mild, meaning that higher solar power generation isn’t entirely eaten up by increased demand due to air conditioning.

But that all depends on the sun actually shining.

Monday’s solar eclipse took a big chunk of power off the grid. Since 2017’s eclipse, solar power generation has increased substantially, both locally (think rooftops) and at utility scale (think massive fields of solar panels). In 2017, the U.S. had around 35 gigawatts of utility-scale solar capacity, a figure that had increased to an estimated 95 gigawatts by the end of 2023.

While total solar eclipses are rare (the next one to hit the lower 48 isn’t expected until 2044), the challenges they present to grid operators may be part of the new normal. With vastly expanded renewable energy generation comes a greater degree of unpredictability, as a growing a portion of the generation fleet can drop off the grid due to weather and climate conditions — like, say, clouds of smoke from a wildfire — that cannot be precisely predicted by 17th century science.

Grid operators were confident they’d be able to manage through the eclipse without any reliability issues, and what actually transpired mostly confirmed their forecasts. In Texas, solar power production shrunk from around 13.5 gigawatts at noon, making up 27% of the grid’s electricity supply, to a mere 0.8 gigawatts at 1:30 p.m. Things did not go as well for the Midcontinent Independent System Operator, however, which includes a swath of the middle of the country from Minnesota to Indiana to Louisiana. Solar output was estimated to drop from around 4 gigawatts at 1 p.m. Central time to 2 gigawatts an hour later, according to Grid Status. Instead, output dropped to around 300 megawatts, causing real-time prices for power on the grid to spike.

ERCOT energy mix chart.ERCOT’s fuel mix from Monday, April 8, including during the solar eclipse.ERCOT

Overall, the U.S. Energy Information Administration estimated that some 6,500 megawatts of solar generation capacity would be fully obscured during the eclipse, which would “partially block sunlight to facilities with a combined 84.8 GW of capacity in an even larger swath of the United States around peak solar generating time.” Some 40 gigawatts may have come off the grid, enough power for about 28 million homes, according to a release from Solcast, a solar forecasting company.

By comparison, during the 2017 eclipse, solar power loss at its peak was between 4 and 6.5 gigawatts and the total loss of power was around 11 gigawatts, according to the National Renewable Energy Laboratory.

In states like Texas, the main effect was on utility-scale production of solar, but in the Northeast and parts of the mid-Atlantic and Midwest, there was also a related problem: Behind-the-meter solar fell off, too, thus requiring the homes and businesses that generate power for themselves in the middle of the day to get more power from the grid, increasing demand on the grid at a time of low supply.

New England has seen immense growth in rooftop solar, and solar production was expected to fall by “thousands” of megawatts, according to ISO New England, while the New York Independent System Operators expected to lose 700 megawatts of behind the meter solar.

During the 2017 eclipse, the National Renewable Energy Laboratory found that “the burden of compensating for the lost energy from solar generators fell to the thermal fleet,” i.e. natural gas, along with some increases in coal and hydropower production.

Since then, the coal fleet has shrunk, thus putting more of the burden of responding to Monday’s eclipse onto gas and hydro, but the basic logic still applies. “Grid operators are expected to rely on natural gas to ensure stability and meet the household demand spike across national grids, as was done during the previous eclipse in 2023 in California and Texas,” according to Solcast. As the sun was dimming in Texas, natural gas generation rose from 18.7 gigawatts to 27.5 gigawatts.

Something else that’s changed since 2017: batteries. By the end of 2023, Texas had installed 5.6 gigawatts of grid storage, most of it providing so-called “ancillary services,” power sources that can respond quickly to immediate needs. ERCOT, the electricity market that covers most of Texas, said in a presentation back in February that it would rely on these ancillary tools to get through the eclipse, and once again, it was right. Power from batteries on the grid got up 1.4 gigawatts during the eclipse.

Editor’s note: This story has been updated to reflect the actual effects of the eclipse on U.S. power generation.

Blue
Matthew Zeitlin profile image

Matthew Zeitlin

Matthew is a correspondent at Heatmap. Previously he was an economics reporter at Grid, where he covered macroeconomics and energy, and a business reporter at BuzzFeed News, where he covered finance. He has written for The New York Times, the Guardian, Barron's, and New York Magazine. Read More

Read More
Sparks

The Best Idea From Today’s Big Oil Hearing

Stealing a page from the Big Tobacco playbook.

The Capitol.
Heatmap Illustration/Getty Images

It was always a fantasy to think that the Senate Committee on the Budget’s hearing on oil disinformation would actually be about oil disinformation. It was still shocking, though, how far off the rails things ran.

The hearing concerned a report released Tuesday by the committee along with Democrats in the House documenting “the extensive efforts undertaken by fossil fuel companies to deceive the public and investors about their knowledge of the effects of their products on climate change and to undermine efforts to curb greenhouse gas emissions.” This builds on the already extensive literature documenting the fossil fuel industry’s deliberate dissemination of lies about climate change and its role in causing it, including the 2010 book Merchants of Doubt and a 2015 Pulitzer Prize-nominated series from Inside Climate News on Exxon’s climate denial PR machine. But more, of course, is more.

Keep reading...Show less
Throwing carbon in the trash.
Heatmap Illustration/Getty Images

Most climate solutions are getting smarter. Solar panels can track the sun. Electric vehicles are equipped with the equivalent of an iPad and may soon be able to drive themselves (according to some people). Startups are inventing stoves with batteries that charge when energy is cheap and heat pumps that learn how you use your home and adjust accordingly.

But when it comes to permanently removing carbon dioxide from the atmosphere, the market is pushing in a different direction. There, it seems, there’s growing excitement for the dumbest, most primitive solutions companies can come up with.

Keep reading...Show less
Green
Technology

AM Briefing: Biden’s Boost to Sustainable Jet Fuel

On the future of flying, efficient water heaters, and data centers

How Biden’s Sustainable Aviation Fuel Tax Credits Will Work
Heatmap Illustration/Getty Images

Current conditions: It will be 107 degrees Fahrenheit in Kolkata as Southeast Asia’s heat wave continues • Kansas and Oklahoma are on alert for tornadoes and large hail • The Eta Aquariids meteor shower peaks this week.

THE TOP FIVE

1. Biden administration outlines rules for sustainable aviation fuel subsidies

The Treasury Department and IRS yesterday released new details about the subsidy program for producers of sustainable aviation fuel (SAF), which the Biden administration hopes will help cut emissions from the aviation industry while also supporting farmers. What makes SAF “sustainable” is that it comes from biomass (stuff like corn grain, wood mill waste, even manure) instead of petroleum. Burning SAFs for fuel still produces carbon dioxide, but their lifecycle emissions are lower than those of fossil fuels, and they can be used in existing planes, so they are seen as a quick way to cut aviation emissions in the short term.

Keep reading...Show less
Yellow