Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

The Eclipse Was a 3-Hour Boon for Gas, Batteries, and Hydro

What happens to the grid when the sun goes away?

An eclipse and solar panels.
Heatmap Illustration/Getty Images

Early April is typically a kind of goldilocks moment for solar power. Days are getting longer but the weather is still mild, meaning that higher solar power generation isn’t entirely eaten up by increased demand due to air conditioning.

But that all depends on the sun actually shining.

Monday’s solar eclipse took a big chunk of power off the grid. Since 2017’s eclipse, solar power generation has increased substantially, both locally (think rooftops) and at utility scale (think massive fields of solar panels). In 2017, the U.S. had around 35 gigawatts of utility-scale solar capacity, a figure that had increased to an estimated 95 gigawatts by the end of 2023.

While total solar eclipses are rare (the next one to hit the lower 48 isn’t expected until 2044), the challenges they present to grid operators may be part of the new normal. With vastly expanded renewable energy generation comes a greater degree of unpredictability, as a growing a portion of the generation fleet can drop off the grid due to weather and climate conditions — like, say, clouds of smoke from a wildfire — that cannot be precisely predicted by 17th century science.

Grid operators were confident they’d be able to manage through the eclipse without any reliability issues, and what actually transpired mostly confirmed their forecasts. In Texas, solar power production shrunk from around 13.5 gigawatts at noon, making up 27% of the grid’s electricity supply, to a mere 0.8 gigawatts at 1:30 p.m. Things did not go as well for the Midcontinent Independent System Operator, however, which includes a swath of the middle of the country from Minnesota to Indiana to Louisiana. Solar output was estimated to drop from around 4 gigawatts at 1 p.m. Central time to 2 gigawatts an hour later, according to Grid Status. Instead, output dropped to around 300 megawatts, causing real-time prices for power on the grid to spike.

ERCOT energy mix chart.ERCOT’s fuel mix from Monday, April 8, including during the solar eclipse.ERCOT

Overall, the U.S. Energy Information Administration estimated that some 6,500 megawatts of solar generation capacity would be fully obscured during the eclipse, which would “partially block sunlight to facilities with a combined 84.8 GW of capacity in an even larger swath of the United States around peak solar generating time.” Some 40 gigawatts may have come off the grid, enough power for about 28 million homes, according to a release from Solcast, a solar forecasting company.

By comparison, during the 2017 eclipse, solar power loss at its peak was between 4 and 6.5 gigawatts and the total loss of power was around 11 gigawatts, according to the National Renewable Energy Laboratory.

In states like Texas, the main effect was on utility-scale production of solar, but in the Northeast and parts of the mid-Atlantic and Midwest, there was also a related problem: Behind-the-meter solar fell off, too, thus requiring the homes and businesses that generate power for themselves in the middle of the day to get more power from the grid, increasing demand on the grid at a time of low supply.

New England has seen immense growth in rooftop solar, and solar production was expected to fall by “thousands” of megawatts, according to ISO New England, while the New York Independent System Operators expected to lose 700 megawatts of behind the meter solar.

During the 2017 eclipse, the National Renewable Energy Laboratory found that “the burden of compensating for the lost energy from solar generators fell to the thermal fleet,” i.e. natural gas, along with some increases in coal and hydropower production.

Since then, the coal fleet has shrunk, thus putting more of the burden of responding to Monday’s eclipse onto gas and hydro, but the basic logic still applies. “Grid operators are expected to rely on natural gas to ensure stability and meet the household demand spike across national grids, as was done during the previous eclipse in 2023 in California and Texas,” according to Solcast. As the sun was dimming in Texas, natural gas generation rose from 18.7 gigawatts to 27.5 gigawatts.

Something else that’s changed since 2017: batteries. By the end of 2023, Texas had installed 5.6 gigawatts of grid storage, most of it providing so-called “ancillary services,” power sources that can respond quickly to immediate needs. ERCOT, the electricity market that covers most of Texas, said in a presentation back in February that it would rely on these ancillary tools to get through the eclipse, and once again, it was right. Power from batteries on the grid got up 1.4 gigawatts during the eclipse.

Editor’s note: This story has been updated to reflect the actual effects of the eclipse on U.S. power generation.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Podcast

Heatmap’s Annual Climate Insiders Survey Is Here

Rob takes Jesse through our battery of questions.

A person taking a survey.
Heatmap Illustration/Getty Images

Every year, Heatmap asks dozens of climate scientists, officials, and business leaders the same set of questions. It’s an act of temperature-taking we call our Insiders Survey — and our 2026 edition is live now.

In this week’s Shift Key episode, Rob puts Jesse through the survey wringer. What is the most exciting climate tech company? Are data centers slowing down decarbonization? And will a country attempt the global deployment of solar radiation management within the next decade? It’s a fun one! Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.

Keep reading...Show less
Green
The Insiders Survey

Climate Insiders Want to Stop Talking About ‘Climate Change’

They still want to decarbonize, but they’re over the jargon.

Climate protesters.
Heatmap Illustration/Getty Images

Where does the fight to decarbonize the global economy go from here? The past 12 months, after all, have been bleak. Donald Trump has pulled the United States out of the Paris Agreement (again) and is trying to leave a precursor United Nations climate treaty, as well. He ripped out half the Inflation Reduction Act, sidetracked the Environmental Protection Administration, and rechristened the Energy Department’s in-house bank in the name of “energy dominance.” Even nonpartisan weather research — like that conducted by the National Center for Atmospheric Research — is getting shut down by Trump’s ideologues. And in the days before we went to press, Trump invaded Venezuela with the explicit goal (he claims) of taking its oil.

Abroad, the picture hardly seems rosier. China’s new climate pledge struck many observers as underwhelming. Mark Carney, who once led the effort to decarbonize global finance, won Canada’s premiership after promising to lift parts of that country’s carbon tax — then struck a “grand bargain” with fossiliferous Alberta. Even Europe seems to dither between its climate goals, its economic security, and the need for faster growth.

Now would be a good time, we thought, for an industry-wide check-in. So we called up 55 of the most discerning and often disputatious voices in climate and clean energy — the scientists, researchers, innovators, and reformers who are already shaping our climate future. Some of them led the Biden administration’s climate policy from within the White House; others are harsh or heterodox critics of mainstream environmentalism. And a few more are on the front lines right now, tasked with responding to Trump’s policies from the halls of Congress — or the ivory minarets of academia.

We asked them all the same questions, including: Which key decarbonization technology is not ready for primetime? Who in the Trump administration has been the worst for decarbonization? And how hot is the planet set to get in 2100, really? (Among other queries.) Their answers — as summarized and tabulated by my colleagues — are available in these pages.

Keep reading...Show less
Green
The Insiders Survey

Will Data Centers Slow Decarbonization?

Plus, which is the best hyperscaler on climate — and which is the worst?

A data center and renewable energy.
Heatmap Illustration/Getty Images

The biggest story in energy right now is data centers.

After decades of slow load growth, forecasters are almost competing with each other to predict the most eye-popping figure for how much new electricity demand data centers will add to the grid. And with the existing electricity system with its backbone of natural gas, more data centers could mean higher emissions.

Keep reading...Show less