You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
High winds down power lines. But high waters flood substations — and those are much harder to fix.
There’s a familiar script when it comes to hurricanes: The high winds snap tree branches and even tree trunks and whip around anything else that’s light enough or not bolted down — including power lines and distribution poles. While this type of damage can lead to large-scale outages, it’s also relatively straightforward to fix. In many cases the power comes back on relatively quickly, more like days rather than weeks or months.
But when it comes to flooding, especially in areas that do not regularly deal with big storms, the damage can be more severe, long-lasting, and difficult to repair. This is largely because what’s at risk in these scenarios is not power lines but substations. These messes of transmission and distribution lines that channel high voltage power to homes and businesses are vulnerable to rising water, and repairs can’t begin until the floodwaters recede. Often they have to be replaced entirely, which is expensive and can lead to further delays as there’s a nationwide shortage of transformers. Just one substation can support thousands of homes — a single point of failure that, when it floods, takes all its customers down with it.
Duke Energy, whose grid in the Carolinas was pummeled by Hurricane Helene, has said the damage to its system encompasses “submerged substations, thousands of downed utility poles, and downed transmission towers,” and noted that much of the affected area is “inaccessible due to mudslides, flooding and blocked roads, limiting the ability to assess and begin repairing damages.” In an update published Saturday, it stated that while more than 2 million customers had seen their power restored, about 250,000 customers across North and South Carolina remained without electricity more than a week after the storm.
Workers are “encountering more severe damage on a larger scale than we’ve ever experienced,” Duke Energy storm director Jason Hollifield said in a statement. (Duke didn’t respond to my request for comment.) One Duke employee told the local television station in Asheville, North Carolina, which saw more than three months’ worth of rain fall over three days, that a local substation would have to be completely rebuilt, a process that could take months. In Western North Carolina, the area’s Representative Chuck Edwards has estimated that 117,000 customers still lack electricity, and that while some of them will likely get it back by Sunday, others “whose properties are inaccessible or not able to receive power may be without electricity for an extended period of time as Duke Energy works to rebuild critical infrastructure.”
To prepare for the onrushing Hurricane Milton, Duke is staging thousands of “line technicians, vegetation workers, damage assessors and support personnel” in Florida, the company said. The same problem remains, however: Line technicians will not prevent substations from flooding.
While the exact effect of climate change on hurricanes and other storm categories is an area of intense debate among climate scientists and meteorologists, there’s a rough consensus that warming will cause the storms to be wetter. That means utilities will have to update their old disaster response playbooks, or else prolonged outages when an especially wet storm arrives over a flood plain.
In most hurricanes, utilities are able to pre-position workers to restore power quickly, working on knocked down poles and wires, explained Jordan Kern, an assistant professor engineering at North Carolina State University. “When trees fall on distribution lines, those are, in normal situations, easy to repair,” he told me. But, Kern said, “If the substations are flooded, you can’t do anything until the flood waters go down. They can be without power for a long time.”
Wetter hurricanes will likely mean more severe and less predictable flooding happening far away from the coasts, bringing with it risks that utilities and local governments may be less prepared to face, with costs that will ultimately be born by anyone who pays for electricity, as expensive repairs and hardening of electrical infrastructure will likely be born by ratepayers.
“Rates will necessarily rise” to deal with the higher costs of adaptation and repairing infrastructure more complex than a wooden pole, Tyler Norris, a PhD student at Duke University’s Nicholas School of the Environment, told me while driving towards Asheville to help out family impacted by the storm.
While Helene has been an especially damaging storm, the risks of wetter storms and inland flooding away from the coastal areas that are prepared for frequent hurricanes have become more apparent in recent years. While Hurricane Irene in 2011 made landfall on Long Island, its most devastating effects were felt inland due to heavy rains, especially in Vermont.
North Carolina in particular has seen a rash of nasty hurricanes in the past 10 years or so, giving Duke ample recent experience with big storms — and some indication of what a warming world could bring.
During 2018’s Hurricane Florence, which knocked out power for around a million Duke customers, “at least 10 substations required de-energization due to flooding or flood risk where heavy rainfall and resulting inland flooding,” according to a 2022 Duke climate resiliency report. The report was meant to look at the effects of climate change to the Duke system by 2050 under two emissions scenarios outlined by the Intergovernmental Panel on Climate Change, one assuming emissions start falling by 2040, the other assuming continued (some might say unrealistically) high emissions.
Under the extreme scenario, the “overall vulnerability priority of Duke Energy substations to climate-driven changes in precipitation and inland flooding is high,” the report said, while under the “middle of the road” projection, “transmission infrastructure faces a medium priority vulnerability.” In both cases, however, “without adaptation planning … substations are at the highest potential risk, with extreme heat and flooding being the greatest concerns for existing assets.”
Duke said at the time that it had “implemented permanent flood protection measures at new substations located in flood plains and substations with a prior history of flooding.” For its existing fleet, priority was being given to those substations considered particularly “at-risk,” however the flood protection plan had “not yet been universally implemented at all existing substations in the flood plain.”
“What they characterized there falls significantly short of what we just saw,” Norris said. While he noted that Duke had listed risk to substations from inland flooding as high (albeit only under the extreme scenario), it had listed the risk to the distribution of power, i.e. poles and wires, as “low” under both scenarios. “There’s been a dramatic misestimate of risk here,” Norris said.
For Duke customers, especially in the more isolated parts of Western North Carolina, they may simply have to wait for workers and parts to arrive. Repairs that could normally happen quickly will likely happen slowly as workers struggle to reach areas whose roads have been washed away. Duke said that it’s now focusing on restoring the “backbone” of the transmission and distribution system, and then is moving on to restoring fallen poles in less densely populated areas.
And it will likely happen again. Kern noted that inland flooding especially is notoriously hard to predict compared to coastal flooding from hurricanes. “Flooding is so idiosyncratic,” he said. “It’s hard for anyone to predict how flooding will affect a region. Let alone electric utilities.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s already conquered solar, batteries, and EVs. With a $2 billion new turbine factory in Scotland, it may have set its next target.
Batteries, solar panels, electric vehicles. The story of renewable energy deployment globally is increasingly one of China’s fiercely competitive domestic industries and deep supply chains exporting their immense capacity globally. Now, it may be wind’s turn.
The Chinese turbine manufacturer Ming Yang announced last week that it plans to invest $2 billion in a factory in Scotland. The facility is scheduled to start production in late 2028, churning out offshore wind equipment for use in the United Kingdom, which has over 15 gigawatts of offshore wind capacity, as well as for export, likely in Europe.
The deal comes as China finds itself at a kind of domestic clean energy crossroads, in terms of both supply and demand. On the former, the country has launched a campaign aimed at softening the cutthroat domestic competition, overproduction, and price wars that have defined many of its green industries, especially electric vehicles.
At the same time, China is setting out to alter its electricity markets to put renewable energy on a more market-based footing, while also paying coal-fired power plants to stay on the grid, as University of California, San Diego researcher Michael Davidson explained on a recent episode of Shift Key. These changes in electricity markets will reduce payments to solar and wind producers, making foreign markets potentially more attractive.
“We anticipate Chinese original equipment manufacturers will intensify their push toward international expansion, with Mingyang’s planned investment a signal of this trend,” Morningstar analyst Tancrede Fulop wrote in a note to clients. “This poses a challenge for Western incumbents, as Chinese players can capitalize on their cost advantages in a market driven by price.”
Ironically, Fulop said, the market changes will make the Chinese market more like Europe’s, which has become more price conscious as the market has matured and reductions in cost have slowed or outright stopped. “The transition is expected to make renewable developers increasingly price-sensitive as they seek to preserve project returns, ultimately weighing on wind turbine manufacturers’ profitability,” he wrote.
There’s a “cliff” coming in Chinese renewable energy deployment, Kyle Chan, a postdoctoral researcher at Princeton University, told me. “Overall, the net effect is expected to be a pretty sharp drop, and we’re already starting to see some of the effects of that.”
And turbine manufacturers would not be the first Chinese renewable industry to show up in Europe.
“There’s already an existing model” for Chinese manufacturers to set up shop in Western countries, Chan said. Chinese companies are already planning to manufacture solar modules in France, while Chinese EV maker BYD’s is planning factories in Hungary, Turkey, and potentially Spain.
China as a whole is responsible for over half of all new offshore wind capacity added in 2024, according to Global Energy Monitor, and has been growing at a 41% annual rate for the past five years. The energy intelligence firm Rystad estimates that China will make up 45% of all offshore wind capacity by 2030. Ming Yang itself claims to be behind almost a third of new offshore wind capacity built last year.
Meanwhile, offshore wind projects in the West — especially the United States — have faced the omnicrisis of high interest rates, backed-up supply chains, and Donald Trump. News of Ming Yang’s Scotland factory sent yet another shock through the ailing Western offshore wind market, with shares in the Danish company Vestas down 4% when the market opened Monday.
But with Chinese products and Chinese investment comes controversy and nerves among European political leaders. “There’re questions about tech transfer and job creation,” Chan said. “They also face some security issues and potential political backlash.”
In August, the German asset manager Luxcara announced that it would use Siemens Gamesa turbines for a planned offshore wind project instead of Ming Yang ones after backlash from German defense officials. “We see this as further evidence that a Chinese entry into the European wind market remains challenging,” analysts at Jefferies wrote to clients in August.
They were right to be skeptical — Chinese turbines’ entry into the European market has been long predicted and yet remains unrealized. “China’s increasingly cheap wind turbines could open new markets,” S&P Global Insights wrote in 2022, citing the same cost advantages as Morningstar did in reference to the Ming Yang factory announcement.
“China was already trying to angle into the European market,” Chan told me, seeing it as comparable to the U.S. in size and potentially more open to Chinese investment. “If they were kind of thinking about it before, now it’s gotten a greater sense of commercial urgency because I think the expectation is that their profit margins are really going to get squeezed.”
While China leads the world in building out renewable energy capacity domestically and exporting technology abroad, it has “decided not to decide” on pursuing a rapid, near-term decarbonization, Johns Hopkins University China scholar Jeremy Wallace recently argued in Heatmap.
While that means that the Paris Agreement goals are even farther out of reach, it may be fine for Chinese industries, including wind, as they look to sell abroad.
“Chinese firms have lots of reasons to want to build things abroad: Diversification away from the Chinese market, the zero or negative profits from selling domestically, and geopolitical balancing,” Wallace told me.
“If Brits want to have their citizens making the turbines that will power the country,” Wallace said, “this seems like a reasonable opportunity.”
Current conditions: A major Pacific storm is drenching California and bringing several inches of snow to Montana, Idaho, and Wyoming • A tropical storm in the Atlantic dumped nearly a foot of water on South Carolina over three days • Algeria is roasting in temperatures of more than 105 degrees Fahrenheit.
The Department of Energy notified workers in multiple offices Friday that they were likely to be fired or reassigned to another part of the agency, E&E News reported Tuesday. Staffers at the Office of Clean Energy Demonstrations and the Office of State and Community Energy Programs received notices stating that the offices would “be undergoing a major reorganization and your position may be reassigned to another organization, transferred to another function or abolished.” Still, the notice said “no determination has been made concerning your specific position” just yet.
At least five offices received “general reduction in force notices,” as opposed to official notification of a reduction in force, according to a Latitude Media report. These included the Office of Clean Energy Demonstrations, the Office of Energy Efficiency and Renewable Energy, the Office of State and Community Energy Plans, and the Office of Fossil Energy. Nearly 200 Energy Department employees received direct layoff notices.
Catastrophic floods brought on by the remnants of a typhoon devastated the Alaska Native village of Kipnuk on Sunday. Five months ago, the Trump administration canceled a $20 million grant intended to protect the community against exactly this kind of extreme flooding, The New York Times reported Tuesday. The grant from the Environmental Protection Agency was meant to stabilize the riverbank on which Kipnuk is built. But in May, the agency yanked back the Biden-era grant, which EPA Administrator Lee Zeldin said was “no longer consistent” with the government’s priorities. In a post on X, Zeldin said the award was part of "wasteful DEI and Environmental Justice grants,” suggesting the funding was part of an ideological push for diversity, equity, and inclusion rather than a practical infrastructure boost to an Indigenous community facing serious challenges.
Zealan Hoover, a Biden-era senior adviser at the EPA, accused Zeldin of using “inflammatory rhetoric” that misrepresented the efforts in places like Kipnuk. “For decades, E.P.A. has been a partner to local communities,” Hoover said. “For the first time under this administration, E.P.A. has taken an aggressively adversarial posture toward the very people and communities that it is intended to protect.”
Get Heatmap AM directly in your inbox every morning:
Late last Thursday, Heatmap’s Jael Holzman observed that the status of the 6.2-gigawatt Esmeralda 7, the nation’s largest solar project, had changed on the Bureau of Land Management’s website to “canceled.” The news sent shockwaves nationwide and drew blowback even from Republicans, including Utah Governor Spencer Cox, as I reported in this newsletter. Now, however, the bureau’s parent agency is denying that it made the call to cancel the project. “During routine discussions prior to the lapse in appropriations, the proponents and BLM agreed to change their approach for the Esmeralda 7 Solar Project in Nevada,” a spokesperson for the Department of the Interior told Utility Dive. “Instead of pursuing a programmatic level environmental analysis, the applicants will now have the option to submit individual project proposals to the BLM to more effectively analyze potential impacts.”
That means the project could still move forward with a piecemeal approach to permitting rather than one overarching approval, which aligns with what one of the developers involved told Jael last week. A representative for NextEra said that it is “in the early stage of development” with its portion of the Esmeralda 7 mega-project, and that the company is “committed to pursuing our project’s comprehensive environmental analysis by working closely with the Bureau of Land Management.” Still, the move represents a devastating setback for the solar installation, which may never fully materialize.
Ethane exports are rising as export capacity soars.EIA
U.S. exports of ethane, a key petrochemical feedstock extracted from raw natural gas during processing, are on track for “significant growth” through 2026, according to new analysis from the Energy Information Administration. Overseas sales are projected to grow 14% this year compared to the previous year, and another 16% next year. Ethane is mostly used as a feedstock for ethylene, a key ingredient in plastics, resins, and synthetic rubber. China has been the fastest growing source of demand for American ethane in recent years, rising to the largest single destination with 47% of exports last year.
Spain’s electricity-grid operator shrugged off concerns of another major blackout after detecting two sharp voltage variations in recent weeks. Red Electrica, which operates Spain’s grid, said that what The Wall Street Journal described as “recent voltage swings” didn’t threaten to knock out the grid because they stayed within acceptable limits. But the operator warned that variations could jeopardize the electricity supply if the grid didn’t overhaul its approach to managing a system that increasingly relies on intermittent, inverter-based generating sources such as solar panels. Red, which is 20% owned by the Spanish government, acknowledged that the high penetration of renewables was responsible for the recent fluctuations. Among the changes needed to improve the grid: real-time monitoring, which Heatmap’s Matthew Zeitlin noted in April “is necessary because traditionally, grid inertia is just thought of as an inherent quality of the system, not something that has to be actively ensured and bolstered.”
It’s not just Spain facing blackouts. New York City will have a power deficiency equivalent to the energy needed to power between 410,000 and 650,000 homes next summer — and that number could double by 2050, the state’s grid operator warned this week in its latest five-year report. “The grid is at a significant inflection point,” Zach Smith, senior vice president of system and resource planning for NYISO, said in a statement to Gothamist. “Depending on future demand growth and generator retirements, the system may need several thousand megawatts of new dispatchable generation within the next 10 years.”
Sodium-ion batteries are all the rage, as Heatmap’s Katie Brigham reported yesterday about the commercial breakthrough by the startup Alsym. But a major challenge facing sodium-ion batteries compared to lithium-ion rivals is the stability of the cathode material in air and water, which can degrade the battery’s performance and lifespan. A new study by researchers at Tokyo University of Science found that one ingredient can solve the problem: Calcium. By discovering the protective effects of calcium doping in the batteries, “this study could pave the way for the widespread adoption” of sodium-ion batteries.
Rob talks with the author and activist about his new book, We Survived the Night.
Julian Brave NoiseCat is a writer, Oscar-nominated filmmaker, champion powwow dancer, and student of Salish art and history. His first book, We Survived the Night, was released this week — it uses memoir, reporting, and literary anthology to tell the story of Native families across North America, including his own.
NoiseCat was previously an environmental and climate activist at groups including 350.org and Data for Progress. On this week’s episode of Shift Key, Rob talks with Julian about Native American nations and politics, the complexity and reality of Native life in 2025, and the “trickster” as a recurring political archetype.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: What were lessons that you took away from the writing of the book, or from the reporting of the book, that changed how you thought about climate or the environment in some way that maybe wasn’t the case when you were working on these issues full time?
Julian Brave NoiseCat: I would say that while I was working on climate issues, I was actually, myself, really changing a lot in terms of my thoughts on how politics worked and did not work. I think I came into my period of my life as a climate activist really believing in the power of direct action, and protest, and, you know, if you get enough people in the streets and you get enough politicians on your side, you eventually can change the laws. And I think that there is some truth to that view.
But I think being in DC for four years, being really involved in this movement, conversation — however you want to put that — around the Green New Deal, around eventually a Biden administration and how that would be shaped around how they might go about actually taking on climate change for the first time in U.S. history in a significant way, really transformed my understanding of how change happens. I got a greater appreciation, for example, for the importance of persuading people to your view, particularly elites in decision-making positions. And I also started to understand a little bit more of the true gamesmanship of politics — that there is a bit of tricks and trickery, and all kinds of other things that are going on in our political system that are really fundamental to how it all works.
And I bring that last piece up because while I was writing the book, I was also thinking really purposefully about my own people’s narrative traditions, and how they get at transformations and how they happen in the world. And it just so happens that probably the most significant oral historical tradition of my own people is a story called a coyote story, which is about a trickster figure who makes change in the world through cunning and subterfuge and tricks, and also who gets tricked himself a fair amount.
And I think that in that worldview, I actually found a lot of resonance with my own observations on how political change happened when I was in Washington, D.C., and so that insight did really deeply shape the book.
Mentioned:
We Survived the Night, by Julian Brave NoiseCat
How Deb Haaland Became the First Native American Cabinet Secretary
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
A warmer world is here. Now what? Listen to Shocked, from the University of Chicago’s Institute for Climate and Sustainable Growth, and hear journalist Amy Harder and economist Michael Greenstone share new ways of thinking about climate change and cutting-edge solutions. Find it here.
Music for Shift Key is by Adam Kromelow.