You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
High winds down power lines. But high waters flood substations — and those are much harder to fix.

There’s a familiar script when it comes to hurricanes: The high winds snap tree branches and even tree trunks and whip around anything else that’s light enough or not bolted down — including power lines and distribution poles. While this type of damage can lead to large-scale outages, it’s also relatively straightforward to fix. In many cases the power comes back on relatively quickly, more like days rather than weeks or months.
But when it comes to flooding, especially in areas that do not regularly deal with big storms, the damage can be more severe, long-lasting, and difficult to repair. This is largely because what’s at risk in these scenarios is not power lines but substations. These messes of transmission and distribution lines that channel high voltage power to homes and businesses are vulnerable to rising water, and repairs can’t begin until the floodwaters recede. Often they have to be replaced entirely, which is expensive and can lead to further delays as there’s a nationwide shortage of transformers. Just one substation can support thousands of homes — a single point of failure that, when it floods, takes all its customers down with it.
Duke Energy, whose grid in the Carolinas was pummeled by Hurricane Helene, has said the damage to its system encompasses “submerged substations, thousands of downed utility poles, and downed transmission towers,” and noted that much of the affected area is “inaccessible due to mudslides, flooding and blocked roads, limiting the ability to assess and begin repairing damages.” In an update published Saturday, it stated that while more than 2 million customers had seen their power restored, about 250,000 customers across North and South Carolina remained without electricity more than a week after the storm.
Workers are “encountering more severe damage on a larger scale than we’ve ever experienced,” Duke Energy storm director Jason Hollifield said in a statement. (Duke didn’t respond to my request for comment.) One Duke employee told the local television station in Asheville, North Carolina, which saw more than three months’ worth of rain fall over three days, that a local substation would have to be completely rebuilt, a process that could take months. In Western North Carolina, the area’s Representative Chuck Edwards has estimated that 117,000 customers still lack electricity, and that while some of them will likely get it back by Sunday, others “whose properties are inaccessible or not able to receive power may be without electricity for an extended period of time as Duke Energy works to rebuild critical infrastructure.”
To prepare for the onrushing Hurricane Milton, Duke is staging thousands of “line technicians, vegetation workers, damage assessors and support personnel” in Florida, the company said. The same problem remains, however: Line technicians will not prevent substations from flooding.
While the exact effect of climate change on hurricanes and other storm categories is an area of intense debate among climate scientists and meteorologists, there’s a rough consensus that warming will cause the storms to be wetter. That means utilities will have to update their old disaster response playbooks, or else prolonged outages when an especially wet storm arrives over a flood plain.
In most hurricanes, utilities are able to pre-position workers to restore power quickly, working on knocked down poles and wires, explained Jordan Kern, an assistant professor engineering at North Carolina State University. “When trees fall on distribution lines, those are, in normal situations, easy to repair,” he told me. But, Kern said, “If the substations are flooded, you can’t do anything until the flood waters go down. They can be without power for a long time.”
Wetter hurricanes will likely mean more severe and less predictable flooding happening far away from the coasts, bringing with it risks that utilities and local governments may be less prepared to face, with costs that will ultimately be born by anyone who pays for electricity, as expensive repairs and hardening of electrical infrastructure will likely be born by ratepayers.
“Rates will necessarily rise” to deal with the higher costs of adaptation and repairing infrastructure more complex than a wooden pole, Tyler Norris, a PhD student at Duke University’s Nicholas School of the Environment, told me while driving towards Asheville to help out family impacted by the storm.
While Helene has been an especially damaging storm, the risks of wetter storms and inland flooding away from the coastal areas that are prepared for frequent hurricanes have become more apparent in recent years. While Hurricane Irene in 2011 made landfall on Long Island, its most devastating effects were felt inland due to heavy rains, especially in Vermont.
North Carolina in particular has seen a rash of nasty hurricanes in the past 10 years or so, giving Duke ample recent experience with big storms — and some indication of what a warming world could bring.
During 2018’s Hurricane Florence, which knocked out power for around a million Duke customers, “at least 10 substations required de-energization due to flooding or flood risk where heavy rainfall and resulting inland flooding,” according to a 2022 Duke climate resiliency report. The report was meant to look at the effects of climate change to the Duke system by 2050 under two emissions scenarios outlined by the Intergovernmental Panel on Climate Change, one assuming emissions start falling by 2040, the other assuming continued (some might say unrealistically) high emissions.
Under the extreme scenario, the “overall vulnerability priority of Duke Energy substations to climate-driven changes in precipitation and inland flooding is high,” the report said, while under the “middle of the road” projection, “transmission infrastructure faces a medium priority vulnerability.” In both cases, however, “without adaptation planning … substations are at the highest potential risk, with extreme heat and flooding being the greatest concerns for existing assets.”
Duke said at the time that it had “implemented permanent flood protection measures at new substations located in flood plains and substations with a prior history of flooding.” For its existing fleet, priority was being given to those substations considered particularly “at-risk,” however the flood protection plan had “not yet been universally implemented at all existing substations in the flood plain.”
“What they characterized there falls significantly short of what we just saw,” Norris said. While he noted that Duke had listed risk to substations from inland flooding as high (albeit only under the extreme scenario), it had listed the risk to the distribution of power, i.e. poles and wires, as “low” under both scenarios. “There’s been a dramatic misestimate of risk here,” Norris said.
For Duke customers, especially in the more isolated parts of Western North Carolina, they may simply have to wait for workers and parts to arrive. Repairs that could normally happen quickly will likely happen slowly as workers struggle to reach areas whose roads have been washed away. Duke said that it’s now focusing on restoring the “backbone” of the transmission and distribution system, and then is moving on to restoring fallen poles in less densely populated areas.
And it will likely happen again. Kern noted that inland flooding especially is notoriously hard to predict compared to coastal flooding from hurricanes. “Flooding is so idiosyncratic,” he said. “It’s hard for anyone to predict how flooding will affect a region. Let alone electric utilities.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: The Pacific Northwest’s second atmospheric river in a row is set to pour up to 8 inches of rain on Washington and Oregon • A snow storm is dumping up to 6 inches of snow from North Dakota to northern New York • Warm air is blowing northeastward into Central Asia, raising temperatures to nearly 80 degrees Fahrenheit at elevations nearly 2,000 feet above sea level.
Heatmap’s Jael Holzman had a big scoop last night: The three leading Senate Democrats on energy and permitting reform issues are a nay on passing the SPEED Act. In a joint statement shared exclusively with Jael, Senate Energy and Natural Resources ranking member Martin Heinrich, Environment and Public Works ranking member Sheldon Whitehouse, and Hawaii senator Brian Schatz pledged to vote against the bill to overhaul the National Environmental Policy Act unless the legislation is updated to include measures to boost renewable energy and transmission development. “We are committed to streamlining the permitting process — but only if it ensures we can build out transmission and cheap, clean energy. While the SPEED Act does not meet that standard, we will continue working to pass comprehensive permitting reform that takes real steps to bring down electricity costs,” the statement read. To get up to speed on the legislation, read this breakdown from Heatmap’s Emily Pontecorvo.

In June, Heatmap’s Matthew Zeitlin explained how New York State was attempting to overcome the biggest challenge to building a new nuclear plant — its deregulated electricity market — by tasking its state-owned utility with overseeing the project. It’s already begun staffing up for the nuclear project, as I reported in this newsletter. But it’s worth remembering that the New York Power Authority, the second-largest government-controlled utility in the U.S. after the federal Tennessee Valley Authority, gained a new mandate to invest in power plants directly again when the 2023 state budget passed with measures calling for public ownership of renewables. On Tuesday, NYPA’s board of trustees unanimously approved a list of projects in which the utility will take 51% ownership stakes in a bid to hasten construction of large-scale solar, wind, and battery facilities. The combined maximum output of all the projects comes to 5.5 gigawatts, nearly double the original target of 3 gigawatts set in January.
But that’s still about 25% below the 7 gigawatts NYPA outlined in its draft proposal in July. What changed? At a hearing Tuesday morning, NYPA officials described headwinds blowing from three directions: Trump’s phaseout of renewable tax credits, a new transmission study that identified which projects would cost too much to patch onto the grid, and a lack of power purchase agreements from offtakers. One or more of those variables ultimately led private developers to pull out at least 16 projects that NYPA would have co-owned.
Sign up to receive Heatmap AM in your inbox every morning:
During World War II, the Lionel toy train company started making components for warships, the Ford Motor Company produced bomber planes, and the Mattatuck Manufacturing Company known for its upholstery nails switched to churning out cartridge clips for Springfield rifles. In a sign of how severe the shortfall of equipment to generate gas-powered electricity has become, would-be supersonic jet startups are making turbines. While pushing to legalize flights of the supersonic jets his company wants to build, Blake Scholl, the chief executive of Boom Supersonic, said he “kept hearing about how AI companies couldn’t get enough electricity,” and how companies such as ChatGPT-maker OpenAI “were building their own power plants with large arrays of converted jet engines.” In a thread on X, he said that, “under real world conditions, four of our Superpower turbines could do the job of seven legacy units. Without the cooling water required by legacy turbines!”
The gas turbine crisis, as Matthew wrote in September, may be moving into a new phase as industrial giants race to meet the surging demand. In general, investors have rewarded the effort. “But,” as Matthew posed, “what happens when the pressure to build doesn’t come from customers but from competitors?” We may soon find out.
It is, quite literally, the stuff of science fiction, the kind of space-based solar power plant that Isaac Asimov imagined back in 1940. But as Heatmap’s Katie Brigham reported in an exclusive this morning, the space solar company Overview Energy has emerged from stealth, announcing its intention to make satellites that will transmit energy via lasers directly onto Earth’s power grids. The company has raised $20 million in a seed round led by Lowercarbon Capital, Prime Movers Lab, and Engine Ventures, and is now working toward raising a Series A. The way the technology would work is by beaming the solar power to existing utility-scale solar projects. As Katie explained: “The core thesis behind Overview is to allow solar farms to generate power when the sun isn’t shining, turning solar into a firm, 24/7 renewable resource. What’s more, the satellites could direct their energy anywhere in the world, depending on demand. California solar farms, for example, could receive energy in the early morning hours. Then, as the sun rises over the West Coast and sets in Europe, ‘we switch the beam over to Western Europe, Morocco, things in that area, power them through the evening peak,’” Marc Berte, the founder and CEO of Overview Energy, told her. He added: “It hits 10 p.m., 11 p.m., most people are starting to go to bed if it’s a weekday. Demand is going down. But it’s now 3 p.m. in California, so you switch the beam back.”
In bigger fundraising news with more immediate implications for our energy system, next-generation geothermal darling Fervo Energy has raised another $462 million in a Series E round to help push its first power plants over the finish line, as Matthew wrote about this morning.
When Sanae Takaichi became the first Japanese woman to serve as prime minister in October, I told you at the time how she wanted to put surging energy needs ahead of lingering fears from Fukushima by turning the country’s nuclear plants back on and building more reactors. Her focus isn’t just on fission. Japan is “repositioning fusion energy from a distant research objective to an industrial priority,” according to The Fusion Report. And Helical Fusion has emerged as its national champion. The Tokyo-based company has signed the first power purchase agreement in Japan for fusion, a deal with the regional supermarket chain Aoki Super Co. to power some of its 50 stores. The Takaichi administration has signaled plans to increase funding for fusion as the new government looks to hasten its development. While “Japan still trails the U.S. and China in total fusion investment,” the trade newsletter reported, “the policy architecture now exists to close that gap rapidly.”
Another day, another emerging energy or climate technology gets Google’s backing. This morning, the carbon removal startup Ebb inked a deal with Google to suck 3,500 tons of CO2 out of the atmosphere. Ebb’s technology converts carbon dioxide from the air into “safe, durable” bicarbonate in seawater and converting “what has historically been a waste stream into a climate solution,” Ben Tarbell, chief executive of Ebb, said in a statement. “The natural systems in the ocean represent the most powerful and rapidly scalable path to meaningful carbon removal … Our ability to remove CO2 at scale becomes the natural outcome of smart business decisions — a powerful financial incentive that will drive expansion of our technology.”
The Series E round will fund the enhanced geothermal company’s flagship Cape Station project.
The enhanced geothermal company Fervo is raising another $462 million, bringing on new investors in its Series E equity round.
The lead investor is a new one to the company’s books: venture capital firm B Capital, started by Facebook co-founder Eduardo Saverin. Fervo did not disclose a valuation, but Axios reported in March that it had been discussing an IPO in the next year or two at a $2 billion to $4 billion valuation.
Much of the capital will be devoted to further investments in its Cape Station facility in Utah, which is due to start generating 100 megawatts of grid power by the end of 2026. A smaller project in Nevada came online in 2023.
Fervo’s last equity round was early last year, when it raised $255 million led by oil and gas company Devon. It also raised another $206 million this past summer in debt and equity to finance the Cape Station project, specifically, and reported faster, deeper drilling numbers.
“I think putting pedal to the metal is a good way to put it. We are continuing to make progress at Cape station, which is our flagship project in Southwest Utah, and some of the funding will also be used for early stage development at other projects and locations to expand Fervo’s reach across the Western U.S.,” Sarah Jewett, Fervo’s senior vice president of strategy, told me
“Enhanced geothermal” refers to injecting fluid into hot, underground rocks using techniques borrowed from hydraulic fracturing for oil and gas. Along with the geothermal industry as a whole, Fervo has found itself in the sweet spot of energy politics. It can provide power for technology companies with sustainability mandates and states with decarbonization goals because it produces carbon-free electricity. And it can host Republican politicians at its facilities because the power is 24/7 and employs labor and equipment familiar to the oil and gas industry. While the Trump administration has been on a warpath against solar and (especially) wind, geothermal got a shoutout in the White House’s AI Action Report as an electricity source that should be nurtured.
“Being clean and operating around the clock is just a really strong value proposition to the market,” Jewett said. “Utilizing an oil and gas workforce is obviously a big part of that story; developing in rural America to serve grids across the West; producing clean, emissions-free energy. It's just a really nice, well-rounded value proposition that has managed to maintain really strong support across the aisle in Washington despite the administration shift.”
But bipartisan support on its own can’t lead to gigawatts of new, enhanced geothermal powering the American west. For that Fervo, like any venture-backed or startup energy developer, needs project finance, money raised for an individual energy project (like a solar farm or a power plant) that must be matched by predictable, steady cashflows. “That is, obviously the ultimate goal, is to bring the cost of capital down for these projects to what we call the ‘solar standard,’’’ Jewett said, referring to a minimum return to investors of below 10%, which solar projects can finance themselves at.
While solar power at this point is a mature technology using mass-manufactured, standardized parts having very good foreknowledge of where it will be most effective for generating electricity (it’s where the sun shines), enhanced geothermal is riskier, both in finding places to drill and in terms of drilling costs. Project finance investors tend to like what they can easily predict.
“We are well on our way to do it,” Jewett said of bringing down the perceived risk of enhanced geothermal. “This corporate equity helps us build the track record that we need to attract” project finance investors.
Whether enhanced geothermal is price competitive isn’t quite clear: Its levelized cost of energy is estimated to be around twice utility scale solar's, although that metric doesn’t give it credit for geothermal’s greater reliability and lack of dependence on the weather.
While Cape Station itself is currently covered in snow, Jewett said, construction is heating up. The facility has three power plants installed, a substation and transmission and distribution lines starting to be put up, putting the facility in line to start generating power next year, Jewett said.By the time it starts generating power for customers, Fervo hopes to have reduced costs even more.
“Cost reductions happen through learning by doing — doing it over and over and over again. We have now drilled over 30 wells at the Cape Station field and we’re learning over time what works best,” Jewett said.
Overview Energy has raised $20 million already and is targeting a Series A early next year.
When renowned sci-fi author Isaac Asimov first wrote about space-based solar power in the 1940s, it helped inspire engineers and the federal government alike to take the idea seriously. By the 1970s, a design had been patented and feasibility studies were underway. But those initial efforts didn’t get far — challenges with launch costs, constructing the necessary structures in space, and energy conversion efficiency proved too much for scientists to overcome.
Now the idea is edging ever closer to reality.
The space solar company Overview Energy emerged from stealth today, announcing its intention to make satellites that will transmit energy via lasers directly onto the Earth’s grid, targeting preexisting utility-scale solar installations. The startup has already raised $20 million in a seed round led by Lowercarbon Capital, Prime Movers Lab, and Engine Ventures, and is now working on raising a Series A.
The core thesis behind Overview is to allow solar farms to generate power when the sun isn’t shining, turning solar into a firm, 24/7 renewable resource. What’s more, the satellites could direct their energy anywhere in the world, depending on demand. California solar farms, for example, could receive energy in the early morning hours. Then, as the sun rises over the West Coast and sets in Europe, “we switch the beam over to Western Europe, Morocco, things in that area, power them through the evening peak,” Marc Berte, the founder and CEO of Overview Energy, explained. “It hits 10 p.m., 11 p.m., most people are starting to go to bed if it’s a weekday. Demand is going down. But it’s now 3 p.m. in California, so you switch the beam back.”
That so-called “geographic untethering” will be a key factor in making all of this economically feasible one day, Berte told me. The startup is targeting between $60 and $100 per megawatt-hour by 2035, when it aims to be putting gigawatts of commercial space solar on the grid. “It’s 5 o’clock somewhere,” Berte told me. “You’re profitable at $100 bucks a megawatt-hour somewhere, instantaneously, all the time.”
Making the math pencil out has also meant developing super-efficient lasers and eliminating all power electronics on its custom spacecraft. The type of light Overview beams to earth — called “near-infrared” and invisible to the naked eye — is also very efficiently converted into electricity on a solar cell. While pure sunlight is only converted at 20% efficient, near-infrared light is converted at 50% efficiency. Thus, Overview enables solar panels to operate even more efficiently during the night than during the day.
Today, the startup also announced the successful demonstration of its ability to transmit energy from a moving aircraft to a ground receiver three miles below — the first time anyone has beamed high power from a moving source. Although Overview’s satellites will eventually need to transmit light from much farther away — around 22,000 miles from Earth — the test proved that the fundamental technical components work together as planned.
“There’s no functional difference from what we just did from an airplane to what we’re going to do in 10 years at gigawatts from space,” Berte told me. “The same beacon, the same tracking, the same mirror, the same lasers, all the same stuff, just an airplane instead of space.”
Overview’s ultimate goal is ambitious to say the least: It’s aiming to design a system that can deliver the equivalent of 10% to 20% of all global electricity use by 2050. To get there, it’s aiming to put megawatts of power on the grid by 2030 and gigawatts by the mid-2030s. Its target customers include independent power producers, utilities, and data centers, and the company currently has a SpaceX launch booked for early 2028. At this point, Berte says Overview will likely be starting up its own prototype production line, which it will scale in the years to follow.
That certainly won’t be a simple undertaking. To produce a gigawatt of power, Overview will need to deploy 1,000 huge satellites, each measuring around 500 to 600 feet across and weighing about 8 to 10 tons. The largest satellites currently in space are about 100 to 150 feet across, and roughly 5 to 10 tons. “No one really mass-manufactures satellites in the kind of quantities required,” Berte explained, and nobody is producing the design and form factor that Overview requires. “So we are going to have to in-source a lot of the integration for that.”
But while the startup’s satellites will span the length of about two football fields, they fold up neatly into a package about the size of a shipping container, making it possible for them to fit on a SpaceX rocket, for example. When the satellites beam their power down to Earth, they’ll target a beacon — also shipping container-sized — that will be placed in the middle of the solar farm.
Initially, Berte told me, Overview will target deployment in places where logistical challenges make energy particularly expensive — think Alaska or island states and territories such as Guam, Hawaii, and Puerto Rico. But first, the company must demonstrate that its tech works from thousands of miles away. That’s what the funding from its forthcoming Series A, which Berte expects to close in spring of next year, is intended for.
“That is to take us to the next step, which is now do it in space. And after that, it’s now do it in space, but big,” he told me. “So it’s crawl, walk, run, but most importantly, the technology and how you do it doesn’t change.”