You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Researchers at the Rhodium Group have 11 answers.
The year is 2030.
For much of the past decade, the United States has taken aggressive action to fight climate change. After passing the Inflation Reduction Act in 2022, the Biden administration regulated carbon pollution from power plants and cars and trucks. (Let’s also stipulate, for the sake of argument, that it kept the rules in place by winning re-election in 2024.) Progressive states such as California, New York, and Illinois responded by passing even tougher climate laws of their own. And now, at the end of the decade, America has a good shot of hitting its Paris Agreement goal of cutting emissions in half as compared to their all-time high.
Here’s the question: In this rosy scenario, where will America’s remaining greenhouse gas emissions come from? What should climate policy focus on next?
That’s the subject of a fascinating new report from the Rhodium Group, a nonpartisan research firm. The study, published today, offers a glimpse at what climate hawks might be focusing on next decade (if they’re lucky). It’s meant to begin a yearslong conversation over what the next climate law — the Inflation Reduction Act of 2032, in other words — might look like.
Perhaps surprisingly, it finds that a handful of economic activities will dominate the country’s emissions. Just 11 industries or types of polluting sources will generate more than 80% of the country’s greenhouse gas emissions in 2030, the study finds. And just three of these will emit nearly half of the country’s total pollution. If we can decarbonize those activities, then a net-zero U.S. economy will be in sight.
But those 11 activities will be tough to crack. They fall into a few categories:
By far the most important category of emissions are what you might think of as the “Big Three,” which together will account for nearly half of 2030 emissions. They are cars, trucks, and SUVs; furnaces and water heaters in buildings; and power plants, and they will dominate the country’s emissions in 2030 as much as they dominate them today.
The “Big Three” are also the focus of powerful climate policies already, and Rhodium’s analysts expect those policies to be effective. “We’re pushing on them a lot, and they’re coming down. But they remain the top three,” Hannah Kolus, a senior analyst at Rhodium and an author of the report, told me. Carbon pollution from light-duty vehicles, for instance, will fall 32% from its 2005 level by 2030, the report projects.
But cars, building furnaces, and power plants take so long to turn over that even supremely effective policy will take decades to zero out emissions. The average car on the road in America right now is 12 years old. Even if electrics made up 100% of all new car sales by 2030 — which, under Rhodium’s projection, they won’t — it might take 20 years for them to totally replace the vehicle fleet. In other words, climate hawks will be thinking about cars and trucks, building furnaces, and power plants for a long time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Almost half of developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
The solar energy industry has a big farm problem cropping up. And if it isn’t careful, it’ll be dealing with it for years to come.
Researchers at SI2, an independent research arm of the Solar Energy Industries Association, released a study of farm workers and solar developers this morning that said almost half of all developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
Unveiled in conjunction with RE+, the largest renewable energy conference in the U.S., the federally-funded research includes a warning sign that permitting is far and away the single largest impediment for solar developers trying to build projects on farmland. If this trend continues or metastasizes into a national movement, it could indefinitely lock developers out from some of the nation’s best land for generating carbon-free electricity.
“If a significant minority opposes and perhaps leads to additional moratoria, [developers] will lose a foot in the door for any future projects,” Shawn Rumery, SI2’s senior program director and the survey lead, told me. “They may not have access to that community any more because that moratoria is in place.”
SI2’s research comes on the heels of similar findings from Heatmap Pro. A poll conducted for the platform last month found 70% of respondents who had more than 50 acres of property — i.e. the kinds of large landowners sought after by energy developers — are concerned that renewable energy “takes up farmland,” by far the greatest objection among that cohort.
Good farmland is theoretically perfect for building solar farms. What could be better for powering homes than the same strong sunlight that helps grow fields of yummy corn, beans and vegetables? And there’s a clear financial incentive for farmers to get in on the solar industry, not just because of the potential cash in letting developers use their acres but also the longer-term risks climate change and extreme weather can pose to agriculture writ large.
But not all farmers are warming up to solar power, leading towns and counties across the country to enact moratoria restricting or banning solar and wind development on and near “prime farmland.” Meanwhile at the federal level, Republicans and Democrats alike are voicing concern about taking farmland for crop production to generate renewable energy.
Seeking to best understand this phenomena, SI2 put out a call out for ag industry representatives and solar developers to tell them how they feel about these two industries co-mingling. They received 355 responses of varying detail over roughly three months earlier this year, including 163 responses from agriculture workers, 170 from solar developers as well as almost two dozen individuals in the utility sector.
A key hurdle to development, per the survey, is local opposition in farm communities. SI2’s publicity announcement for the research focuses on a hopeful statistic: up to 70% of farmers surveyed said they were “open to large-scale solar.” But for many, that was only under certain conditions that allow for dual usage of the land or agrivoltaics. In other words, they’d want to be able to keep raising livestock, a practice known as solar grazing, or planting crops unimpeded by the solar panels.
The remaining percentage of farmers surveyed “consistently opposed large-scale solar under any condition,” the survey found.
“Some of the messages we got were over my dead body,” Rumery said.
Meanwhile a “non-trivial” number of solar developers reported being unwilling or disinterested in adopting the solar-ag overlap that farmers want due to the increased cost, Rumery said. While some companies expect large portions of their business to be on farmland in the future, and many who responded to the survey expect to use agrivoltaic designs, Rumery voiced concern at the percentage of companies unwilling to integrate simultaneous agrarian activities into their planning.
In fact, Rumery said some developers’ reticence is part of what drove him and his colleagues to release the survey while at RE+.
As we discussed last week, failing to address the concerns of local communities can lead to unintended consequences with industry-wide ramifications. Rumery said developers trying to build on farmland should consider adopting dual-use strategies and focus on community engagement and education to avoid triggering future moratoria.
“One of the open-ended responses that best encapsulated the problem was a developer who said until the cost of permitting is so high that it forces us to do this, we’re going to continue to develop projects as they are,” he said. “That’s a cold way to look at it.”
Meanwhile, who is driving opposition to solar and other projects on farmland? Are many small farm owners in rural communities really against renewables? Is the fossil fuel lobby colluding with Big Ag? Could building these projects on fertile soil really impede future prospects at crop yields?
These are big questions we’ll be tackling in far more depth in next week’s edition of The Fight. Trust me, the answers will surprise you.
Here are the most notable renewable energy conflicts over the past week.
1. Worcester County, Maryland –Ocean City is preparing to go to court “if necessary” to undo the Bureau of Ocean Energy Management’s approval last week of U.S. Wind’s Maryland Offshore Wind Project, town mayor Rick Meehan told me in a statement this week.
2. Magic Valley, Idaho – The Lava Ridge Wind Project would be Idaho’s biggest wind farm. But it’s facing public outcry over the impacts it could have on a historic site for remembering the impact of World War II on Japanese residents in the United States.
3. Kossuth County, Iowa – Iowa’s largest county – Kossuth – is in the process of approving a nine-month moratorium on large-scale solar development.
Here’s a few more hotspots I’m watching…
The most important renewable energy policies and decisions from the last few days.
Greenlink’s good day – The Interior Department has approved NV Energy’s Greenlink West power line in Nevada, a massive step forward for the Biden administration’s pursuit of more transmission.
States’ offshore muddle – We saw a lot of state-level offshore wind movement this past week… and it wasn’t entirely positive. All of this bodes poorly for odds of a kumbaya political moment to the industry’s benefit any time soon.
Chumash loophole – Offshore wind did notch one win in northern California by securing an industry exception in a large marine sanctuary, providing for farms to be built in a corridor of the coastline.
Here’s what else I’m watching …