Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

It’s 2030. Where Will U.S. Carbon Emissions Come From?

Researchers at the Rhodium Group have 11 answers.

Traffic.
Heatmap Illustration/Getty Images

The year is 2030.

For much of the past decade, the United States has taken aggressive action to fight climate change. After passing the Inflation Reduction Act in 2022, the Biden administration regulated carbon pollution from power plants and cars and trucks. (Let’s also stipulate, for the sake of argument, that it kept the rules in place by winning re-election in 2024.) Progressive states such as California, New York, and Illinois responded by passing even tougher climate laws of their own. And now, at the end of the decade, America has a good shot of hitting its Paris Agreement goal of cutting emissions in half as compared to their all-time high.

Here’s the question: In this rosy scenario, where will America’s remaining greenhouse gas emissions come from? What should climate policy focus on next?

That’s the subject of a fascinating new report from the Rhodium Group, a nonpartisan research firm. The study, published today, offers a glimpse at what climate hawks might be focusing on next decade (if they’re lucky). It’s meant to begin a yearslong conversation over what the next climate law — the Inflation Reduction Act of 2032, in other words — might look like.

Perhaps surprisingly, it finds that a handful of economic activities will dominate the country’s emissions. Just 11 industries or types of polluting sources will generate more than 80% of the country’s greenhouse gas emissions in 2030, the study finds. And just three of these will emit nearly half of the country’s total pollution. If we can decarbonize those activities, then a net-zero U.S. economy will be in sight.

But those 11 activities will be tough to crack. They fall into a few categories:

  • About 19% of the remaining emissions will come from parts of the fossil-fuel economy directly involved in storing, moving, or transforming oil or natural gas into other products. Pipelines, refineries, and chemical plants all require the on-site combustion of fossil fuels, and while the Environmental Protection Act is cracking down on methane leaks from those facilities, carbon dioxide will keep flowing from them.

  • Another 12% of the remaining emissions will come from some of the tougher problems in transportation: heavy-duty freight trucking and aviation. The latter problem will be particularly tough. Rhodium projects that domestic aviation, which is responsible for about 2% of the country’s carbon pollution today, will rise to 4% of national emissions by the end of the decade. Americans fly more today than they did in 2005, and fuel-efficiency improvements are not keeping up with that increasing demand.

  • Farms will fill out another 10% of leftover emissions. About half of those emissions will come from fermentation of plant matter in the guts of plants and animals — the infamous cow burps. But the other half will arise from the interaction of soils, microbes, and fertilizer. When fertilizer is applied to soil, bacteria convert its nitrogen into nitrous oxide, a greenhouse gas nearly 300 times more potent than carbon dioxide on a 100-year time scale. This process will generate 6% of America’s greenhouse gas emissions by 2030, according to the study.

By far the most important category of emissions are what you might think of as the “Big Three,” which together will account for nearly half of 2030 emissions. They are cars, trucks, and SUVs; furnaces and water heaters in buildings; and power plants, and they will dominate the country’s emissions in 2030 as much as they dominate them today.

The “Big Three” are also the focus of powerful climate policies already, and Rhodium’s analysts expect those policies to be effective. “We’re pushing on them a lot, and they’re coming down. But they remain the top three,” Hannah Kolus, a senior analyst at Rhodium and an author of the report, told me. Carbon pollution from light-duty vehicles, for instance, will fall 32% from its 2005 level by 2030, the report projects.

But cars, building furnaces, and power plants take so long to turn over that even supremely effective policy will take decades to zero out emissions. The average car on the road in America right now is 12 years old. Even if electrics made up 100% of all new car sales by 2030 — which, under Rhodium’s projection, they won’t — it might take 20 years for them to totally replace the vehicle fleet. In other words, climate hawks will be thinking about cars and trucks, building furnaces, and power plants for a long time.

Red

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Mineral Mates

On LIHEAP saved, copper king, and Drax’s ‘betrayal’

JD Vance.
Heatmap Illustration/Getty Images

Current conditions: The snow squalls and cold air headed from the Ohio Valley to the Northeast are coming with winds of up to 55 miles per hour • A “western disturbance,” an extratropical storm that originates in the Mediterranean and travels eastward, is set to arrive in India and bring heavy snow to the Himalayas • Tropical Storm Basyang made landfall over the Philippines this morning, forcing Cebu City to cancel all in-person classes for public school students.

THE TOP FIVE

1. White House kicks off critical minerals summit

Vice President JD Vance delivered a 40-minute speech Wednesday appealing to 54 countries and the European Union to join a trading alliance led by the United States to establish a supply of critical minerals that could meaningfully rival China. The agreement would create a “preferential trade zone” meant to be “protected from disruptions through enforceable price floors.” The effort comes in response to years of export controls from Beijing that have sent the prices of key minerals over which China has near monopolies skyrocketing. “This morning, the Trump administration is proposing a concrete mechanism to return the global critical minerals market to a healthier, more competitive state,” Vance said at the State Department’s inaugural Critical Minerals Ministerial in Washington.

Keep reading...Show less
Blue
Energy

The Super Safe, Super Expensive Nuclear Fuel That’s Making a Comeback

Microreactor maker Antares Nuclear just struck a deal with BWX Technologies to produce TRISO.

TRISO fuel.
Heatmap Illustration/Getty Images, Department of Energy

Long before the infamous trio of accidents at Three Mile Island, Chernobyl, and Fukushima, nuclear scientists started working on a new type of fuel that would make a meltdown nearly impossible. The result was “tri-structural isotropic” fuel, better known as TRISO.

The fuel encased enriched uranium kernels in three layers of ceramic coating designed to absorb the super hot, highly radioactive waste byproducts that form during the atom-splitting process. In theory, these poppyseed-sized pellets could have negated the need for the giant concrete containment vessels that cordon off reactors from the outside world. But TRISO was expensive to produce, and by the 1960s, the cheaper low-enriched uranium had proved reliable enough to become the industry standard around the globe.

Keep reading...Show less
Climate Tech

Lunar Energy Raises $232 Million to Scale Virtual Power Plants

The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.

A Lunar Energy module.
Heatmap Illustration/Lunar Energy

The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.

Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.

Keep reading...Show less
Blue