You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
To manage the clean energy transition, it may have to get into the leveraged buyout game.
The United States produces more natural gas and crude oil than any other country ― it isn’t even a contest. But these “molecules of U.S. freedom” aren’t free: They’re extracted and transported through a network of rigs, drills, pumps, and pipes that are, increasingly, controlled and operated by myriad private equity companies. As a society, we have a strong interest in winding down these climate-polluting assets in a swift yet orderly fashion. But as businesses, their private equity owners don’t.
Over the past decade, pressure from shareholders and activists has succeeded in pushing many fossil fuel majors to consider how best to reduce their emissions. (Although that, too, has come at a cost.) But rather than winding down or cleaning up their most polluting and least profitable assets, many have instead simply divested. Coal companies in West Virginia have sold off their mines to undercapitalized vulture firms, which rely on continued coal sales to (in theory) pay for expensive environmental remediation costs. The same is happening in the oil and gas industry, where private equity firms have rolled up many of the drilling sites and pipelines, the capillaries and veins of the country’s energy infrastructure.
Shielded from the scrutiny of public markets, private equity funds have thus become some of the country’s top methane emitters by asset ownership in the natural gas sector. These opaque owners, capitalizing on other companies’ disinterest in holding high-emitting assets, are betting that fossil fuel infrastructure will keep paying out for quite some time; recent massive increases in expected energy demand have only juiced this trend toward industry consolidation.
Private equity firms and private debt funds, with their short-term profit horizons, concealed balance sheets, and seeming imperviousness to tighter financial regulation and shareholder activism, work well with fossil fuel assets, particularly those sold at fire-sale prices by publicly traded fossil fuel majors. Despite those assets’ long-term market value instability, their near-term cash flow prospects are what matter.
But what’s been good for fossil fuel majors’ balance sheets has been bad for the planet. Many of these buyout firms — well-capitalized private equity funds and scrappy vulture funds, alike — are not budgeting anywhere near enough for environmental remediation. One company, Diversified Energy Co, has been purchasing the rights to operate almost-depleted natural gas wellheads at scale, extending many of their lifespans by decades; far too few wellheads are closed each year to stem the methane spewing unimpeded into the atmosphere.
Rather than accept a situation where utilities and fossil fuel majors toss their liabilities to unaccountable vulture funds, sustainability-conscious investors and shareholder groups have begun screening transactions for responsible asset phaseout plans. But the lack of a binding set of transition standards has revealed a huge coordination problem: What counts as a responsible phaseout, particularly when private asset owners get to decide? The federal government has put down guidelines, but not its foot. A disorganized drawdown of assets under a patchy regulatory framework, without a doubt, leaves vulnerable communities on the hook for the financial, environmental, and health damages.
Progressive analysts have long argued that nationalizing fossil fuel assets and folding them into a state holding company is the best solution to sidestep this particular problem. The federal government is well staffed with energy and electricity experts who, operating under a public mandate to preserve grid reliability, can phase out fossil fuel assets on a unified, coherent timeline responsive to community needs while continuing to operate those assets as the “peaker” or “reserve” capacity required to ensure grid stability. A series of climate shocks has even convinced conservative leaders in Texas of the importance of public power for grid resilience, achieved through state ownership of “peaker” gas plants. This course of action is far worse than investments in, say, battery capacity ― California, for instance, is now reaping the benefits of massive battery deployment, which reduces the state’s need for gas ― but the logic behind building public reserve capacity is sound.
What advocates of a state holding company-type model do not often discuss is how exactly a government goes about acquiring all these soon-to-be-stranded fossil fuel assets. As just one example, a recent proposal from the Roosevelt Institute suggests that a state holding company should be “free to engage in debt financing, make equity investments, and acquire assets.” Sure, proposals like these are meant to buttress the case for why nationalization is a far better way to achieve a managed phaseout than surrendering that process to yield-seeking investors, not to detail the financial mechanics of a buyout. But still: this is vague!
Actually thinking through the specifics suggests that, interestingly enough, a comprehensive state-led buyout program could work a lot like an existing private equity transaction, for two key reasons.
Before we get there, we should separate private equity’s deserved reputation as an opaque asset owner from the way the industry works. Private equity’s calling card, the “leveraged buyout,” is little more than the act of raising debt to 1) purchase equity in and, therefore, ownership over an asset, and 2) refinance the asset’s liabilities. To do so, private equity funds work with banks or, more commonly these days, private debt or private credit funds, to raise debt that is generally backed by the combined assets of the purchaser firm and purchased asset.
But leveraged buyouts themselves are technically something that any financial institution could do. Take the federal government, the country’s most liquid debt issuer, whose debt anchors the global economy and backstops private financial institutions. It could raise debt (leverage) to finance a buyout of fossil fuel assets at interest rates far lower than private investors could. And because private credit funds, like other institutional investors, already buy loads of government bonds to match their liabilities and hedge their risks, this kind of nationwide leveraged buyout ― which would require substantial new debt issuance ― could actually help stabilize the financial system against potential shocks from within notoriously inscrutable private markets. The government can do exactly what private equity does, only a lot better, and with wider benefits.
The government has already planted the seeds of a leveraged buyout program across the country’s coal ash heaps. The Loan Programs Office, thanks to the Bipartisan Infrastructure Law and the Inflation Reduction Act, now offers far-below-market-rate loan guarantees to developers, including state governments and utility companies, seeking to repurpose fossil fuel assets through its Energy Infrastructure Reinvestment program. This program’s authority allows borrowers to use their financing for “refinancing outstanding indebtedness directly associated with eligible Energy Infrastructure.” All policymakers have to do now is scrap the program’s 2026 end date and, ideally, endow a federal institution with the power to borrow from this authority to purchase and refinance fossil fuel assets, rather than leave that task solely in the hands of state governments and utilities, with their varying capacities for and interest in coordinating a coherent phaseout plan. And now that interest rates are poised to fall, this refinancing becomes much cheaper.
That’s reason number one. Reason number two has to do with private equity funds’ ability to shield the assets in their portfolio from valuation volatility on publicly traded stock markets. Private equity funds need not publicize how much their portfolios are worth, except at infrequent intervals and when they sell assets. But thanks to private equity’s reputation as a high-return investment, fund investors pay a premium for the illiquidity of not always knowing the value of their assets. Purchase assets, juice returns, sell, and repeat ― this is the conventional private equity playbook.
But macroeconomic conditions today are such that private equity companies are now struggling to sell their portfolios. High interest rates have made leveraged buyouts of new assets and refinancing debts on unsold assets much more costly, and have tempered rapid asset value growth. As this once-frenetic industry slows down, funds are anxious to get assets off their books ― hence the recent wave of consolidation.
This is an opportune moment for the Feds to step in. It’s not just that the government’s capacity for undertaking leveraged buyouts is the greatest; more importantly, it never needs to sell. The valuation volatility that first prompts fossil fuel majors to divest from dying, dangerous assets yet incentivizes private equity funds to pump as much as they can out of them to resell them later at a profit is simply not something the federal government needs to worry about. A state holding company can siphon distressed assets off public markets and shut down the “merry-go-round” of asset sales and resales.
Objections to government intervention here are likely premised on the fact that, well, it’s the government. But the government would still be purchasing assets from private owners on financial markets, just like any market actor would. Today’s uncoordinated constellation of private fossil fuel firms and funds, on the other hand, cannot manage a coordinated phaseout, especially not under binding profitability constraints ― which the federal government does not share.
Local communities can’t finance phaseouts or cleanups themselves, and leaving hundreds of billions of dollars worth of stranded assets in the hands of under-regulated private firms will only accelerate climate catastrophe. The government must use the financial techniques that private equity funds have already pioneered to bring them to heel, in service of public goals.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The collateral damage from the Lava Ridge wind project might now include a proposed 285-mile transmission line initially approved by federal regulators in the 1990s.
The same movement that got Trump to kill the Lava Ridge wind farm Trump killed has appeared to derail a longstanding transmission project that’s supposed to connect sought-after areas for wind energy in Idaho to power-hungry places out West.
The Southwest Intertie Project-North, also known as SWIP-N, is a proposed 285-mile transmission line initially approved by federal regulators in the 1990s. If built, SWIP-N is supposed to feed power from the wind-swept plains of southern Idaho to the Southwest, while shooting electrons – at least some generated from solar power – back up north into Idaho from Nevada, Utah, and Arizona. In California, regulators have identified the line as crucial for getting cleaner wind energy into the state’s grid to meet climate goals.
But on Tuesday, SWIP-N suddenly faced a major setback: The three-person commission representing Jerome County, Idaho – directly in the path of the project – voted to revoke its special use permit, stating the company still lacked proper documentation to meet the terms and conditions of the approval. SWIP-N had the wind at its back as recently as last year, when LS Power expected it to connect to Lava Ridge and other wind farms that have been delayed by Trump’s federal permitting freeze on renewable energy. But now, the transmission line has stuttered along with this potential generation.
At a hearing Tuesday evening, county commissioners said Great Basin Transmission, a subsidiary of LS Power developing the line, would now suddenly need new input, including the blessing of the local highway district and potential feedback from the Federal Aviation Administration. Jerome County Commissioner Charles Howell explained to me Wednesday afternoon that there will still need to be formal steps remanding the permit, and the process will go back to local zoning officials. Great Basin Transmission will then at minimum need to get the sign-offs from local highway officials to satisfy his concerns, as well as those of the other commissioner who voted to rescind the permit, Ben Crouch.
The permit was many years old, and there are outstanding questions about what will happen next procedurally, including what Great Basin Transmission is actually able to do to fight this choice by the commissioners. At minimum, staff for the commission will write a formal decision explaining the reasoning and remand the permit. After that, it’ll be up to Great Basin Transmission to produce the documents that commissioners want. “Even our attorney and staff didn’t have those answers when we asked that after the vote,” Howell said, adding that he hopes the issues can be resolved. “I was on the county commission about when they decided where to site the towers, where to site the right-of-ways. That’s all been there a long time.”
This is the part where I bring up how Jerome County’s decision followed a months-long fight by aggrieved residents who opposed the SWIP-N line, including homeowners who say they didn’t know their properties were in the path of the project. There’s also a significant anti-wind undercurrent, as many who are fighting this transmission line previously fought LS Power’s Lava Ridge wind project, which was blocked by and executive order from President Donald Trump on his first day in office. Jerome County itself passed an ordinance in May requiring any renewable energy facility to get all federal, state, and local approvals before it would sign off on new projects.
Opposition to SWIP-N comes from a similar place as the “Stop Lava Ridge” campaign. Along with viewshed anxieties and property value impacts, SWIP-N, like Lava Ridge, would be within single-digit miles of the Minidoka National Historic Site, a former prison camp that held Japanese-Americans during World War II. In the eyes of its staunchest critics, constructing the wind farm would’ve completely damaged any impact of visiting the site by filling the surroundings of what is otherwise a serene, somber scene. Descendants of Minidoka detainees lobbied politicians at all levels to oppose Lava Ridge, a cause that was ultimately championed by Republican politicians in their fight against the project.
These same descendants of Japanese-American detainees have fought the transmission line, arguing that its construction would inevitably lead to new wind projects. “If approved, the SWIP-N line would enable LS Power and other renewable energy companies to build massive wind projects on federal land in and around Jerome County in future years,” wrote Dan Sakura, the son of a Minidoka prisoner, in a September 15 letter to the commission.
Sakura had been a leading voice in the fight against Lava Ridge. When I asked why he was weighing in on SWIP-N, he told me over text message, “The Lava Ridge wind project poisoned the well for renewable energy projects on federal land in Southern Idaho.”
LS Power did not respond to a request for comment.
It’s worth noting that efforts have already been made to avoid SWIP-N’s impacts to the Minidoka National Historic Site. In 2010, Congress required the Interior Secretary to re-do the review process for the transmission line, which at the time was proposed to go through the historic site. The route rejected by Jerome County would go around.
There is also no guarantee that wind energy will flock to southern Idaho any time soon. Yes, there’s a Trump permitting freeze, and federal wind energy tax credits are winding down. That’s almost certainly why the developers of small nuclear reactors have reportedly coveted the Lava Ridge site for future projects. But there’s also incredible hostility pent up against wind partially driven by the now-defunct LS Power project, for instance in Lincoln County, where officials now have an emergency moratorium banning wind energy while they develop a more permanent restrictive ordinance.
Howell made no bones about his own views on wind farms, telling me he prefers battery storage and nuclear power. “As I stand here in my backyard, if they put up windmills, that’s all I’m going to see for 40 miles,” he said
But Howell did confess to me that he thinks SWIP-N will ultimately be built – if the company is able to get these new sign-offs. What kind of energy flows through a transmission line cannot ultimately affect the decision on the special use permit because, he said, “there are rules.” On top of that, Idaho is going to ultimately need more power no matter what, and at the very least, the state will have to get electrons from elsewhere.
Howell’s “non-political” answer to the fate of SWIP-N, as he put it to me, is that “We live on power, so we gotta have more power.”
The week’s most important news around renewable project fights.
1. Western Nevada — The Esmeralda 7 solar mega-project may be no more.
2. Washoe County, Nevada – Elsewhere in Nevada, the Greenlink North transmission line has been delayed by at least another month.
3. Oconto County, Wisconsin – Solar farm town halls are now sometimes getting too scary for developers to show up at.
4. Apache County, Arizona – In brighter news, this county looks like it will give its first-ever conditional use permit for a large solar farm, EDF Renewables’ Juniper Spring project.
5. Putnam County, Indiana – After hearing about what happened here this week, I’m fearful for any solar developer trying to work in Indiana.
6. Tippecanoe County, Indiana – Two counties to the north of Putnam is a test case for the impacts a backlash on solar energy can have on data centers.
A conversation with Spencer Hanes of EnerVenue
Today’s conversation is with Spencer Hanes, vice president of international business development for long-duration battery firm EnerVenue and a veteran in clean energy infrastructure development. I reached out to Hanes for two reasons: One, I wanted to gab about solutions, for once, and also because he expressed an interest in discussing how data center companies are approaching the media-driven battery safety panic sweeping renewable energy development. EnerVenue doesn’t use lithium-ion batteries – it uses metal-hydrogen, which Hanes told me may have a much lower risk of thermal runaway (a.k.a. unstoppable fire).
I really appreciated our conversation because, well, it left me feeling like battery alternatives might become an easy way for folks to dodge the fire freakout permeating headlines and local government hearing rooms.
This conversation has been lightly edited for clarity.
From a developer’s perspective, if you’re working in utility-scale battery development, why ditch lithium-ion batteries?
My first battery project was at Duke Energy in 2010. It was a lead-acid battery project in Texas. It was the first time we’d incorporated batteries into a renewables project, and it was probably the biggest in the northern hemisphere. Now I don’t even think it is the biggest in Texas, but it was a big step forward.
What developers are finding is that lithium batteries don’t last as long as the developers would like them to. That means they’ve got a shelf life of 7,000 cycles, maybe 8,000 cycles, and it depends on how you use them – lithium ion batteries have to perform under the perfect environment or they can be damaged. Our batteries, on the other hand, are incredibly flexible, and we have a much more robust product that we think is safer and longer lasting than lithium – which has its place, but there are more and more safety issues around it. [There’s] virtually no risk of thermal runaway with our battery.
So I recently had a lithium-ion battery explode on me for the first time – it sparked up and fused to an electrical cable. It was very surprising, and as someone who writes about this stuff a lot, it still took me aback. As someone who is interacting with folks in data center development spaces, seeking battery storage for their operations, how are they digesting the anxieties around battery failures?
Well, the good news is that the data center developers are just trying to get electrons where they can find them. It's hard to find any sort of generation resource right now. Solar and batteries are just the easiest to find.
The safety piece is always going to be top of mind, though. They’re going to build redundancies into their battery projects, wall them off and containerize different batteries so if there’s a spark it doesn’t propagate.
Because data centers need electrons quickly right now, these companies are immune to the battery safety anxieties percolating in the public right now?
Yeah. They’ve been using them for a long time, they’re familiar with them. But the data centers and the big power users are sometimes stressing the lithium-ion batteries in ways they can no longer handle.
Do you feel like data center companies, big power users, do they get the inherent risks from a social license perspective and a siting perspective in using big lithium-ion batteries?
I think a lot of battery projects are being developed in containers because of fire issues, so if there is an issue it’s contained, and that’s a best practice right now.
What would be better is if there was a zero risk of thermal runaway. I think there’s a growing need for other technologies to come along that are safer and more utility-grade, able to serve multiple purposes. But the data center companies are very smart about how they’re developing, and they’re not going to do it in a way that creates problems for other parts of the data center.
Are there ways to avoid building out a lot of batteries? Maybe minimizing how many batteries are used on site, or how much infrastructure needs to be put on site to minimize fire risk?
I think unfortunately it's largely a case by case determination in where you are. I’m running across more and more engineering firms that aren’t comfortable with even the safest batteries being inside a building. Now, everyone wants them containerized because a thermal runaway event is a catastrophic risk no one wants to take.
EnerVenue has a product that fits that profile. There are many others that fit that profile, as well. We need many more options of technologies that can fit the bill. Lithium has a really important role in our society, doing well enough in phones and laptops, but we think we have a competitive offering for grid scale energy storage.
From your vantage point, do you see data center development as the growth area for storage in the U.S. right now?
A year ago I’d get a call once a quarter, and now I’m fielding calls every month. It's because there’s such a crunch on generation. If you put a battery with a data center … everybody wants to say the centers are operating 99.9% of the time, but they’re also not operating at 100% capacity all day, so if they can generate electricity and store it in a battery to use when rates are cheaper or when there’s a constraint on the grid, that’s a benefit to them.