You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
New data provided exclusively to Heatmap shows just how complicated it is to get money where it needs to go.

By the numbers, a new federal program designed to give low-income communities access to renewable energy looks like a smashing success. According to data provided exclusively to Heatmap, in its first year, the Low-Income Communities Bonus Credit Program steered nearly 50,000 solar projects to low-income communities and tribal lands, which are together expected to produce more than $270 million in annual energy savings.
But those topline numbers don’t say anything about who will actually see the savings, or how much the projects will benefit households that have historically been left behind. In reality, the majority of the projects — about 98% — were allocated funding simply for being located in low-income communities, with no hard requirement to deliver energy or financial savings to low-income residents.
A closer look at the data reveals a more complicated success story. While the program did make some clear strides in bridging the solar inequality gap, other factors — including the language in the law that created it — are also holding it back.
The Low-Income Communities Bonus Credit Program came out of the Inflation Reduction Act in August 2022. Though the goal is to increase solar access for low-income households, it’s not actually a tax credit for low income households. It’s for small wind and solar developers — and beginning in 2025, developers of other types of clean energy — whose projects meet certain criteria.
The law caps the total amount of energy the program can support at 1.8 gigawatts per year, and developers have to apply and get their project approved in order to claim funds. To be eligible, a project must produce less than 5 megawatts of power and fall under one of four categories: It must be located in a low-income community, be built on Indian land, be part of an affordable housing development, or distribute at least half its power (and guaranteed bill savings) to low-income households. The first two categories qualify for a 10% credit; the second two, which stipulate that at least some financial benefits go to low-income residents, qualify for 20%. In both cases, the credit can be stacked on top of the baseline 30% tax credit for clean energy projects that meet labor standards, meaning it could slash the cost of building a small solar or wind farm in half.
Each of these provisions has the potential to address at least some of the barriers disadvantaged communities face in accessing clean energy. Low-income homeowners may not have the money for a down payment for rooftop solar or the credit to find financing, for instance. But by giving developers a tax credit for projects located in low-income communities, solar leasing programs, in which homeowners lease panels from a third party in exchange for energy bill savings, now have an incentive to expand into these neighborhoods, and potentially offer lower lease rates. The program helped fund nearly 48,000 residential solar projects in the first year.
Tribal lands, meanwhile, account for more than 5% of solar generation potential in the U.S., but are still a largely untapped resource, for reasons including lack of representation in utility regulatory processes, complex land ownership structures, and limited tribal staff capacity. The program gives outside developers additional incentive to work through the challenges, and it also earmarks funds for tribe-owned development. Crucially, the IRA also opened the door for tribes, as well as other tax-exempt entities, to utilize clean energy incentives and receive a direct payment equal to the tax credits. The program supported 96 solar projects on tribal lands in the first year.
The third category attempts to overcome the famous “split incentive” problem for low-income renters whose landlords have little reason to spend money on a solar project that primarily benefits tenants. The program helped finance 805 solar projects on low-income residential buildings, where the developers are required to distribute at least 50% of the energy savings equitably among tenants.
Lastly, while renters in some states can subscribe to community solar projects, which offer utility bill credits in exchange for a small subscription fee, the subscriptions can be scooped up by wealthier customers if there’s no low-income requirement. The program sponsored 319 community solar projects where at least half the capacity had to go to low-income residents and offer at least 20% off their bills.
U.S. Deputy Secretary of the Treasury Wally Adeyemo declared the program a success. “These investments are already lowering costs, protecting families from energy price spikes, and creating new opportunities in our clean energy future,” he said.
Despite overwhelming demand during the four-month application period, however, the program ended up with capacity to spare. Although applications totaled more than 7 gigawatts, ultimately, the Department approved just over 49,000 projects equal to about 1.4 gigawatts, or roughly enough to power 200,000 average households. All of it was solar.
The gap between applications and awarded projects has to do with the program’s design. The Treasury divided the 1.8 gigawatt cap between the four categories, setting maximum amounts that could be awarded for each one. Within the four categories, the awards were further divided, with half set aside for applicants that met additional ownership or geographic criteria, such as tribal-owned companies, tax-exempt entities, or projects sited in areas with especially high energy costs relative to incomes.
For example, 200 megawatts were earmarked for Indian lands, with half reserved for applicants meeting those additional criteria, but only 40 megawatts were awarded. The fourth category, meanwhile, which was designed to encourage community solar development, was oversubscribed.
Since tax data is confidential, the Treasury Department could not share much detail about these projects, including where, exactly, they were, who developed them, or who will benefit from them. A map overview shows a concentration of awards across the sunbelt, with Illinois, New York, Maine, Massachusetts, and Puerto Rico also seeing a lot of uptake.

I reached out to more than a dozen nonprofits, tribal organizations, and other groups who advocate for or develop clean energy projects benefiting low-income communities to find examples of what the program was actually funding. The first person I was connected with was Richard Best, the director of capital projects and planning for Seattle Public Schools, who got a 10% tax credit for solar arrays on two new schools under construction in low-income neighborhoods. While the school system already planned to put solar on these schools, Best said the tax credits helped offset increased construction costs due to supply chain interruptions, preventing them from having to make compromises on design elements like classroom size.
“It's not insignificant,” he told me. “The solar array at Rainier Beach High School is in excess of a million dollars — just the rooftop solar array. That's $400,000 [in tax credits]. So these are significant dollars that we're receiving, and we're very appreciative.”
Jody Lincoln, an affordable housing development officer for the nonprofit ACTION-Housing in Pittsburgh, Pennsylvania, got a 10% tax credit to add solar to a former YMCA that the group recently converted to a 74-unit apartment building. The single room occupancy rental units serve men who are coming out of homelessness or incarceration. Lincoln told me the building operates “in the gray,” and that any cost saving measures they can make, including the energy savings from the solar array, enable it to continue to operate as affordable housing. When I asked if they could have built the solar project without access to the IRA’s tax credits, she didn’t hesitate: “No.”
These two examples show the program has potential to deliver benefits to low-income communities, even in cases where the energy savings aren’t going directly to low-income residents.
I also spoke with Alexandra Wyatt, the managing policy director and counsel at the nonprofit solar company Grid Alternatives. She told me Grid partnered with for-profit solar developers, such as the national solar company SunRun, who were approved for the tax credit bonus for rooftop solar lease projects on low-income single-family homes. In these cases, Grid helped pull together other sources of funding like state incentives for projects in disadvantaged communities to pre-pay the leases so that the homeowners could more fully benefit from the energy bill savings.
It’s unlikely that all of the nearly 48,000 residential rooftop solar projects in low-income communities that were approved for the credit in the first year had such virtuous outcomes. It’s also possible that projects installed on wealthier homeowners’ roofs in gentrifying neighborhoods were subsidized. In an email to me, a Treasury spokesperson said the Department recognizes that “simply being in a low-income community does not mean low-income households are being served,” and that it was required by statute to include this category. It was still the agency’s decision, however, to allocate such a large portion of the awards, 700 megawatts, to this category — a decision that some public comments on the program disagreed with.
Wyatt applauded the Treasury and the Department of Energy, which oversees the application process, for doing “an admirable job on a tight timeframe with a challenging program design handed to them by Congress.” She’s especially frustrated by the 1.8 gigawatt cap, which none of the other renewable energy tax credits have, and which changes it into a competitive grant that’s more burdensome both for developers and for the agencies. It adds an element of uncertainty to project finance, she said, since developers have to wait to see if their application for the credit was approved.
Wendolyn Holland, the senior advisor for policy, tax and government relations at the Alliance for Tribal Clean Energy told me there was tons of interest among indigenous communities and tribal clean energy developers in taking advantage of the IRA programs, but it wasn’t really happening. Holland cited challenges for tribes reaching the stage of “commercial readiness” required to apply for federal funding. Tribal developers have also said they are limited by the lack of transmission on tribal lands. When I asked the Treasury about the paltry number of projects on Indian Lands, a spokesperson said it was not for lack of trying. The Department and other federal agencies have conducted webinars and other forms of outreach, they said, through which they’ve heard that many tribes are struggling to access capital for energy projects, and that development on Indian lands has “unique challenges due to the history of allotment of Indian lands and status of some land as federal trust land.”
Holland is optimistic that things will change — in December, Biden issued an executive order committing to making it easier for tribes to access federal funding. The Alliance also recently petitioned the Federal Energy Regulatory Commission to address barriers for tribal energy development in its new rules that are supposed to get more transmission built.
The unallocated capacity from 2023 was carried over to the next year’s round of funding, so it wasn’t lost. But a dashboard tracking the second year of the program looks like it's following a similar pattern. While the community solar-oriented category, which was increased to allow for 900 megawatts, is nearly filled up, the tribal Lands category, which kept its 200 megawatt cap, has received applications to develop less than a sixth of that.
Wyatt said that so far, she does think the bonus credit has been successful in spurring good projects that might not otherwise have happened. Still, it will probably take a few years before it will be possible to assess how well it’s working. The good news is, as long as it doesn’t get repealed, the program could run for up to eight more years, leaving plenty of time to improve things. It’s already set to change in one key way. Beginning in 2025, it becomes tech-neutral, meaning that developers of small hydroelectric, geothermal heating or power, or nuclear projects, will be able to apply. (When asked why no wind projects were approved to date, a spokesperson for the Treasury said taxpayer privacy rules meant it couldn’t comment on applications, but they added that wind projects tend to be larger than 5 megawatts and take longer to develop.)
One thing is for sure, despite the heavy administrative burden of screening tens of thousands of applications, the agencies involved are clearly committed to implementing the program.
“I’m definitely pleased that they managed to get the program up and running as quickly as they did,” Wyatt told me. “I mean, it's kind of lightning speed for the IRS.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
We knew the revived Chevrolet Bolt might have a limited run. Nobody knew it would be this limited.
General Motors began manufacturing the updated version of its small electric car late last year to begin deliveries this month. Already the news of its potential demise is here. GM says the Kansas factory that’s churning out Bolts will be repurposed to make combustion cars, including a Buick, of all things. Now, just as the arrival of the sub-$30,000 Bolt heralded a new age of more affordable electric cars, Chevy is dropping out of the race and putting its beloved little electric car on the backburner. Again.
The culprits in this case are clear. With the federal tax credit for buying EVs dead and gone, and with weakened emissions rules removing the incentive for car companies to pursue an aggressive electrification strategy, automakers are running back to the familiar embrace of fossil fuels. GM has already said it expects to lose billions as it adjusts its business strategy, curbing its EV push to meet the new reality under President Trump, where gas-burning cars remain much more profitable to build and sell.
The Bolt’s fate is the immediate fallout from that move. The Buick Envision, part of America’s army of indistinguishable gas-powered crossovers, had been built at a GM plant in China. Trump’s tariffs, however, incentivized the company to move production back to the U.S. The fact that GM repatriated the Envision at the expense of the Bolt tells you what you need to know about this moment in the U.S. auto market.
GM never promised that the Bolt would be back for good, and its return to limbo is par for the course when it comes to this plucky little car. The original Bolt EV had its problems, including a battery recall and glacial charging speeds by today’s standards. But the Bolt established GM’s place in the new EV age and found a flock of fans. At the time it was discontinued in 2023, it was the top-selling non-Tesla EV in America, selling more than 60,000 cars that year.
Fans clamored to get the car back. GM listened, and built a new version on the Ultium platform that forms the basis of its current generation of EVs. When I attended Chevy’s big reveal party for the new Bolt last year, it handed out merch reading “back by popular demand.” Yet GM always referred to the vehicle’s revival as a special run, as if not to get anyone’s hopes up that the Bolt would become a mainstay in the Chevy lineup.
Things could have been different, of course. GM has hinted at the possibility of expanding upon the Bolt with more models if the car succeeded in helping the company win the affordable EV race. Instead, the Kansas factory will turn back to combustion next year as Chevy builds some gas-powered Equinox SUVs there, moving production from Mexico after getting hammered by new tariffs. The Buick Envision, which GM has been making in China for nearly a decade, will begin Kansas production in 2028.
The Bolt’s second sudden death is a big blow to American EV lovers. Without a $7,500 tax break for buying an electric vehicle, Americans badly need more affordable options. Bolt, which starts around $29,000 in its most basic form, was set to lead a pack that would include other 2026 arrivals such as the customizable, Jeff Bezos-backed Slate truck and the reimagined third-generation Nissan Leaf. Now, you’d better act fast if you want to get behind the wheel of a Bolt.
Practically every week brings a flood of climate tech funding news and announcements — startups raising a new round, a venture capital firm closing a fresh fund, and big projects hitting (and missing) milestones. Going forward, I’ll close out each week with a roundup of some of the biggest stories that I didn’t get a chance to cover in full.
This week, we’ve got money for electric ships, next-gen geothermal, and residential electrification in Europe. Yay!
Many say battery-powered cargo ships will never make sense — that batteries are too heavy, too bulky, and would take up too much valuable space. FleetZero says it can make it work. Last Friday, the electric shipping startup raised a $43 million Series A round led by Obvious Ventures, with participation from other firms including Maersk Growth, the shipping giant’s corporate venture arm, and Breakthrough Energy Ventures. The funding will support production of the company’s hybrid and electric propulsion systems, as well as new manufacturing and R&D operations in Houston.
Ships’ bunker fuel is extremely polluting. It accounts for roughly 3% of global CO2 emissions and dirties the air with other pollutants such as sulfur and nitrogen oxides. Most players in the shipping decarbonization space want to shift to liquid fuels such as e-ammonia or e-methanol — a move that would require mulit-million-dollar engine overhauls and retrofits. FleetZero says that battery electrification will prove to be cheaper and simpler. The company is building batteries large enough to hybridize — and potentially one day fully electrify — large container ships.
As FleetZero’s CEO and co-founder Steven Henderson told my colleague Robinson Meyer on a 2024 episode of Heatmap’s Shift Key podcast, batteries are a relatively simple maritime decarbonization solution because “you can use existing infrastructure and build on it. You don’t need a new fundamental technology to do this.” And while the company has yet to provide any cost estimates for electrifying commercial shipping, as Henderson put it, “the numbers to do this are not outside the realm of possibility.”
The next-generation geothermal startup Sage Geosystems announced on Wednesday that it raised a $97 million Series B round, co-led by the renewable energy company Ormat Technologies and the growth equity firm Carbon Direct Capital. This came atop a hot week for geothermal overall. As I wrote already, the artificial intelligence-powered geothermal developer Zanskar announced a $115 million Series C round for its pursuit of AI-driven conventional geothermal, while Axios reported that the geothermal unicorn Fervo Energy has filed for an IPO.
Like Fervo, Sage uses drilling technology adapted from the oil and gas industry to create its own artificial reservoirs in hot, dry rock. The startup then pumps these fractures full of water, where it absorbs heat from the surrounding rocks before being brought to the surface as steam that’s used to generate electricity. Sage’s CEO, Cindy Taff — a former Shell executive — told Bloomberg that this latest investment will accelerate the company’s project timeline by a full year or two, allowing the company to put power on Nevada’s grid sometime in 2027.
This latest funding follows Sage’s strategic partnership with Ormat, announced last year, and could help the startup make good on its agreement with Meta to deliver up to 150 megawatts of clean electricity for the tech giant’s data centers starting in 2027.
Berlin-based startup Cloover — which helps Europeans finance home electrification upgrades — announced a $22 million Series A round on Wednesday, alongside a $1.2 billion debt facility from an unnamed “leading European bank” that it can draw on. The company, which describes itself as both the “operating system for energy independence” and the “Shopify of Energy,” aims to help homeowners ditch fossil fuels by facilitating loans to cover the upfront cost of, say, buying and installing heat pumps, rooftop solar, or home batteries — something traditional banks struggle to finance.
Cloover’s a fintech platform allows home energy installers to manage complex projects while offering loans for green upgrades to customers at the point of sale. The software’s AI-driven credit underwriting evaluates not just a customer’s credit score, but also the projected energy savings and performance of the upgrade itself, helping align the price and terms of borrowing with the anticipated economic value of the asset.
Forbes reports that Cloover has already financed roughly 2,500 home energy installations. The company says it’s profitable, generating nearly $100 million in sales last year. With this new funding, the startup plans to expand across Europe and is projecting $500 million in sales this year, anticipating an explosion in demand for distributed energy resources.
One of the oldest players in the race to commercialize fusion energy, General Fusion, has been candid about its recent funding struggles, laying off 25% of its staff last spring while publicly pleading for more cash. This Thursday, it announced a lifeline: a SPAC merger that will provide the company with up to $335 million, if all goes according to plan. Read more about the deal in our Heatmap AM newsletter.
Current conditions: The monster snow storm headed eastward could dump more than a foot of snow on New York City this weekend • An extreme heat wave in Australia is driving temperatures past 104 degrees Fahrenheit • In northwest India, Jammu and Kashmir are bracing for up to 8 inches of snow.
Last month, Fervo Energy raised another $462 million in a Series E round to finance construction of the next-generation geothermal startup’s first major power plant. Pretty soon, retail investors will be able to get in on the hype. On Thursday, Axios reported that the company had filed confidential papers with the Securities and Exchange Commission in preparation for an initial public offering. Fervo’s IPO will be a milestone for the geothermal industry. For years, the business of tapping the Earth’s molten heat for energy has remained relatively small, geographically isolated, and dominated by incumbent players such as Ormat Technologies. But Fervo set off a startup boom when it demonstrated that it could use fracking technology to access hot rocks in places that don’t have the underground reservoirs that conventional geothermal companies rely upon. In yesterday’s newsletter, I told you about how Zanskar, a startup using artificial intelligence to find more conventional resources, and Sage Geosystems, a rival next-generation company to Fervo, had raised a combined $212 million. But as my colleague Matthew Zeitlin wrote in December when Fervo raised its most recent financing round, it’s not yet clear whether the company’s “enhanced” geothermal approach is price competitive. With how quickly things are progressing, we will soon find out.
Fervo isn’t the only big IPO news. General Fusion, the Canadian fusion energy startup TechCrunch describes as “struggling,” announced plans for a $1 billion reverse merger deal to go public on the Nasdaq. The move comes almost exactly a month after President Donald Trump’s social media company, the parent firm of Truth Social, inked a deal to merge with the fusion startup TAE Technologies and create the first publicly-traded fusion company in the U.S. Analysts I spoke to about the deal called it “flabberghasting,” and warned that TAE’s technology represented a more complex and dubious approach to commercializing fusion than that taken by rival companies such as Commonwealth Fusion Systems. Still, the IPO deals highlight the growing excitement over progress on generating power from a technology long mocked as the energy source of tomorrow that always will be. As Heatmap’s Katie Brigham artfully put it in 2024, “it is finally, possibly, almost time for fusion.”
General Motors plans to move manufacturing of the next generation of its Buick Envision SUV from China to the U.S. in two years and end production of the all-electric Chevrolet Bolt. The Detroit auto giant makes just one of its four SUV models in the U.S., leaving the cars vulnerable to Trump’s tariffs. The worst hit was the Envision, which is currently built in China. Starting in 2028, the latest version of the Envision will be produced in Kansas, taking over the assembly line that is currently churning out the Bolt.
It's a blow to GM's electric vehicle line. Chevy just brought back the Bolt in response to high demand after initially canceling production in 2023, because as Andrew Moseman put it in Heatmap, it's “the cheap EV we've needed all along.” While Chevy had always framed the return as a limited run, it was not previously clear how limited that would be.
Get Heatmap AM directly in your inbox every morning:
The Department of Energy said Thursday its newly rebranded Office of Energy Dominance Finance, formerly the Loan Programs Office, is “restructuring, revising, or eliminating more than $83 billion in Green New Scam loans and conditional commitments.” The move comes after “an exhaustive first-year review” of the $104 billion in principal loan obligations the Biden administration shelled out, including $85 billion the Trump administration accused of being “rushed out the door in the final months after Election Day.” In a statement, Secretary of Energy Chris Wright said the changes are meant to “ensure the responsible investment of taxpayer dollars.” While it’s not yet clear which projects are affected, the agency said the EDF eliminated about $9.5 billion in support for wind and solar projects and redirected that funding to natural gas and nuclear energy. But as Heatmap’s Emily Pontecorvo noted last night, the Energy Department hasn’t yet said which loans are set to be canceled as part of the latest cuts. The announcement may include loans that have already been canceled or restructured.
Sign up to receive Heatmap AM in your inbox every morning:
If you know anything about surging electricity demand, you’re likely to finger a single culprit: data centers. But worldwide, air conditioning dwarfs data centers as a demand driver. And in California, electric vehicles are on pace to edge out data centers as a bigger driver of peak demand on the grid. That’s according to a new report from the California Energy Commission. Just look at this chart:

As the Golden State tries to get a grip on its electricity system, Representative Ro Khanna, the progressive Silicon Valley congressman often discussed as a potential 2028 presidential candidate, has doubled down on his calls to break up the state’s largest utility. On Thursday, Khanna posted on X that PG&E “should be broken up and owned by customers, not shareholders. They are ripping off Californians by buying off politicians in Sacramento.” The Democrat has been calling for PG&E’s demise since at least 2019, when the utility was on the hook for billions of dollars in damages from a wildfire sparked by its equipment. But the idea hasn’t exactly caught on.
New energy technologies such as batteries, solar panels, and wind turbines are driving demand for minerals and spurring a controversial push for new mines on virgin lands. But a new study by researchers at the University of Queensland’s Sustainable Minerals Institute found that a production boom is already underway at existing mines. The peer-reviewed paper, which is the first comprehensive global analysis of brownfield mining expansion, found that existing mines are growing in size and scale. Just because the mines are already there doesn’t mean the new production doesn’t come with some social cost. Nearly 78% of the 366 mines analyzed in the study “are located in areas facing multiple high-risk socioeconomic conditions, including weak governance, poor corruption control, and limited press freedom,” the study found.
The Department of the Interior has a new coal mascot. On Thursday, the agency posted an animated picture of a cartoonish, rosy-cheeked, chicken nugget-shaped lump of coal clad in a yellow hardhat and construction gear. His name? Coalie. The idea isn’t original. Australia’s coal-mining trade group rolled out an almost identical mascot a few years ago — same anthropomorphic lump of coal, same yellow attire. The only difference? His name was Hector, and he wore glasses.