You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fossil fuel plant retirements are slowing down, and projected load growth is to blame.
To fully decarbonize the electricity system will require more than just the rapid deployment of non-carbon-emitting generation capacity, plus the transmission necessary to get that electricity to where it needs to go. It will also require that our existing stock of electricity generation — which is largely natural gas- and coal-powered — get mostly mothballed. So far, this process has been proceeding briskly. Renewable deployment is on the way up and is projected to accelerate, and older electricity generation was sliding quickly but gracefully into retirement — until recently.
Retirements of existing generation have slowed down dramatically in the first half of this year, which is on pace to be the slowest for existing generation retirements since 2011, according to new data from the Energy Information Administration.
In the first half of the year, some 5.1 gigawatts of generating capacity have been retired, and another 2.4 gigawatts are scheduled to be retired by year’s end, for a projected total of 7.5 retired gigawatts. From 2004 to 2023, by contrast, just over 12 gigawatts of capacity were retired each year on average, with almost 15 gigawatts retired per year this decade. Since 2022, according to EIA data, over 90% of retired capacity has been coal or natural gas.
What’s behind the slowdown? “Reliability is threatened because the grid conditions are tightening,” Douglas Giuffre, executive director of gas, power and renewables analysis at S&P Global Commodity Insights, explained in an email. “This is partly due to the recent pace of coal and natural gas retirements in the U.S., which worked off some of the excess capacity in power markets. Now we are seeing tighter reserve margins, and a relatively thin pipeline of new gas-fired projects that can come online quickly.” That’s especially concerning for utilities at a time when projected electricity demand is way, way up.
The wave of retirements was a national phenomenon, often having nothing to do with state-level plans to decarbonize. Coal and gas were being retired so steadily over the past 20 years not just because plants were aging, but also because power use was essentially flat from the early 2000s through, essentially, yesterday. This meant that older plants — especially dirty coal plants — became uneconomic to run, especially as natural gas prices began to fall.
Now, we are in a completely different world. Electricity use is forecast to start growing again, thanks to a buildout of new data centers and manufacturing, plus the ongoing electrification of automobiles and home heating and cooling.
The Southeast offers an example of how these trends have played out on the ground. In December 2020, the Mississippi Public Service Commission determined that the state had “excess reserves … largely due to decreases in projected load” and ordered a 950 megawatt reduction in generating capacity by Mississippi Power by 2027. A consulting firm hired by the commission determined that Plant Daniel, a coal plant, was “relatively inefficient compared to other available resources;” a few months later, the utility said it would decommission Plant Daniel by 2027.
Then Georgia Power, the utility that covers most of the state (and, like Mississippi Power, a subsidiary of Southern Company), rushed out a new three-year plan for its future power usage less than a year after finalizing its old one. Its demand forecast through the end of the decade had jumped from 400 megawatts to 6,600 megawatts, the result of a projected boom in data center construction.
“They came in with a preselected list of ways it wanted to meet that power need,” including buying power from Plant Daniel and new gas, Bob Sherrier, a staff attorney at the Southern Environmental Law Center, told me. Georgia Power told the state’s utility commission that to respond to growing demand it would need to extend contracts with its sister utility in Mississippi — which meant not only that Daniel would remain open for at least another year — and build new new plants that could run on gas or diesel, plans for which regulators approved on Tuesday. The utility also hinted that its existing plans to euthanize, for the most part, its coal-fired generation fleet by the end of 2028 were likely to be revised.
“To meet that projected need, the utilities are reverting to what they know, which is fossil fuels,” Sherrier said.
In vertically integrated markets, where utilities own generating assets and sell power to customers, environmentalists have seen delayed retirements and the building of new fossil plants as examples of utilities slipping into their comfort zone, building and operating expensive projects instead of developing or procuring renewables to handle rising demand.
But it's not just in vertically integrated markets where fossil retirements are being delayed. In Maryland, for instance, Brandon Shores, a coal-fired power plant that was scheduled to close in 2025, is staying open because PJM Interconnection, the regional electricity market, determined that a plan to replace it with battery storage was not a “realistic option at present” nor “technically viable to resolve the reliability violations or avoid the need for an RMR agreement at this time,” PJM president Manu Asthana said in a letter to Paul Pinsky, the director of the Maryland Energy Administration. The transmission investments required to make up the difference, meanwhile, would take several years.
Along with the neighboring Wagner plant, which burns a mix of coal, oil, and natural gas, Brandon Shores will likely stay open more than three years past its planned retirement date thanks to what’s known as a “reliability must run” contract, which “would put Maryland ratepayers on the hook for over $600 million dollars in out-of-market payments,” according to a letter written by several Maryland congressional representatives to PJM.
Environmental advocates have blamed PJM for not doing enough proactive transmission planning to account for predictable and scheduled plant retirements.
The slowing retirements mean that emissions from the electricity sector, which have been falling since the mid-2000s (with occasional bumps up as the economy has recovered from downturns), are expected to plateau over the next year or so. EIA forecasts show carbon dioxide emissions from electricity as essentially flat from 2023 to 2025, with increased natural gas emissions essentially offsetting falling coal emissions.
There is a bright side to the data, however. So far this year, the U.S. has installed just over 20 gigawatts of new generation, 80% of which has been solar and battery storage, including a 600-plus megawatt projects in Nevada and Texas. If added generation comes on in the second half of this year as planned, the EIA projects we’ll have 15 gigawatts of battery storage by year’s end. Along with the large and growing solar generation in states like California, Nevada, and Texas, the U.S. is getting closer to a grid that can, at least, run without carbon emissions day or night.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A conversation with Scott Cockerham of Latham and Watkins.
This week’s conversation is with Scott Cockerham, a partner with the law firm Latham and Watkins whose expertise I sought to help me best understand the Treasury Department’s recent guidance on the federal solar and wind tax credits. We focused on something you’ve probably been thinking about a lot: how to qualify for the “start construction” part of the new tax regime, which is the primary hurdle for anyone still in the thicket of a fight with local opposition.
The following is our chat lightly edited for clarity. Enjoy.
So can you explain what we’re looking at here with the guidance and its approach to what it considers the beginning of construction?
One of the reasons for the guidance was a distinction in the final version of the bill that treated wind and solar differently for purposes of tax credit phase-outs. They landed on those types of assets being placed in service by the end of 2027, or construction having to begin within 12 months of enactment – by July 4th, 2026. But as part of the final package, the Trump administration promised the House Freedom Caucus members they would tighten up what it means to ‘start construction’ for solar and wind assets in particular.
In terms of changes, probably the biggest difference is that for projects over 1.5 megawatts of output, you can no longer use a “5% safe harbor” to qualify projects. The 5% safe harbor was a construct in prior start of construction guidance saying you could begin construction by incurring 5% of your project cost. That will no longer be available for larger projects. Residential projects and other smaller solar projects will still have that available to them. But that is probably the biggest change.
The other avenue to start construction is called the “physical work test,” which requires the commencement of physical work of a significant nature. The work can either be performed on-site or it can be performed off-site by a vendor. The new guidance largely parrotted those rules from prior guidance and in many cases transferred the concepts word-for-word. So on the physical work side, not much changed.
Significantly, there’s another aspect of these rules that say you have to continue work once you start. It’s like asking if you really ran a race if you didn’t keep going to the finish line. Helpfully, the new guidance retains an old rule saying that you’re assumed to have worked continuously if you place in service within four calendar years after the year work began. So if you begin in 2025 you have until the end of 2029 to place in service without having to prove continuous work. There had been rumors about that four-year window being shortened, so the fact that it was retained is very helpful to project pipelines.
The other major point I’d highlight is that the effective date of the new guidance is September 2. There’s still a limited window between now and then to continue to access the old rules. This also provides greater certainty for developers who attempted to start construction under the old rules after July 4, 2025. They can be confident that what they did still works assuming it was consistent with the prior guidance.
On the construction start – what kinds of projects would’ve maybe opted to use the 5% cost metric before?
Generally speaking it has mostly been distributed generation and residential solar projects. On the utility scale side it had recently tended to be projects buying domestic modules where there might have been an angle to access the domestic content tax credit bonus as well.
For larger projects, the 5% test can be quite expensive. If you’re a 200-megawatt project, 5% of your project is not nothing – that actually can be quite high. I would say probably the majority of utility scale projects in recent years had relied on the manufacturing of transformers as the primary strategy.
So now that option is not available to utility scale projects anymore?
The domestic content bonus is still available, but prior to September 2 you can procure modules for a large project and potentially both begin construction and qualify for the domestic content bonus at the same time. Beginning September 2 the module procurement wouldn’t help that same project begin construction.
Okay, so help me understand what kinds of work will developers need to do in order to pass the physical work test here?
A lot of it is market-driven by preferences from tax equity investors and tax credit buyers and their tax counsel. Over the last 8 years or so transformer manufacturing has become quite popular. I expect that to continue to be an avenue people will pursue. Another avenue we see quite often is on-site physical work, so for a wind project for example that can involve digging foundations for your wind turbines, covering them with concrete slabs, and doing work for something called string roads – roads that go between your turbines primarily for operations and maintenance. On the solar side, it would be similar kinds of on-site work: foundation work, road work, driving piles, putting things up at the site.
One of the things that is more difficult about the physical work test as opposed to the 5% test is that it is subjective. I always tell people that more work is always better. In the first instance it’s likely up to whatever your financing party thinks is enough and that’s going to be a project-specific determination, typically.
Okay, and how much will permitting be a factor in passing the physical work test?
It depends. It can certainly affect on-site work if you don’t have access to the site yet. That is obviously problematic.
But it wouldn’t prevent you from doing an off-site physical work strategy. That would involve procuring a non-inventory item like a transformer for the project. So there are still different things you can do depending on the facts.
What’s your ultimate takeaway on the Treasury guidance overall?
It certainly makes beginning construction on wind and solar more difficult, but I think the overall reaction that I and others in the market have mostly had is that the guidance came out much better than people feared. There were a lot of rumors going around about things that could have been really problematic, but for the most part, other than the 5% test option going away, the sense is that not a whole lot changed. This is a positive result on the development side.
And more of the week’s most important news around renewable energy conflicts.
1. Carroll County, Arkansas – The head of an influential national right-wing advocacy group is now targeting a wind project in Arkansas, seeking federal intervention to block something that looked like it would be built.
2. Suffolk County, New York – EPA Administrator Lee Zeldin this week endorsed efforts by activists on Long Island to oppose energy storage in their neighborhoods.
3. Multiple counties, Indiana – This has been a very bad week for renewables in the Sooner state.
4. Brunswick County, North Carolina – Duke Energy is pouring cold water on anyone still interested in developing offshore wind off the coast of North Carolina.
5. Bell County, Texas – We have a solar transmission stand-off brewing in Texas, of all places.
Is there going to be a flight out of Nevada?
Donald Trump’s renewables permitting freeze is prompting solar companies to find an escape hatch from Nevada.
As I previously reported, the Interior Department has all but halted new approvals for solar and wind projects on federal lands. It was entirely unclear how that would affect transmission out west, including in the solar-friendly Nevada desert where major lines were in progress to help power both communities and a growing number of data centers. Shortly after the pause, I took notice of the fact that regulators quietly delayed the timetable by at least two weeks for a key line – the northern portion of NV Energy’s Greenlink project – that had been expected to connect to a litany of solar facilities. Interior told me it still planned to complete the project in September, but it also confirmed that projects specifically necessary for connecting solar onto the grid would face “enhanced” reviews.
Well, we have the latest update in this saga. It turns out NV Energy has actually been beseeching the Federal Energy Regulatory Commission to let solar projects previously planned for Greenlink bail from the interconnection queue without penalty. And the solar industry is now backing them up.
In a July 28 filing submitted after Interior began politically reviewing all renewables projects, NV Energy requested FERC provide a short-term penalty waiver to companies who may elect to leave the interconnection queue because their projects are no longer viable. Typically, companies are subject to financial penalties for withdrawals from the queue, a policy intended to keep developers from hogging a place in line with a risky project they might never build. Now, at least in the eyes of this key power company, it seems Trump’s pause has made that the case for far too many projects.
“It is important that non-viable projects be terminated or withdrawn so that the queue and any required restudies be updated as quickly as possible,” stated the filing, which was first reported by Utility Dive earlier this week. NV Energy also believes there is concern customers may seek to have their deals for power expected from these projects terminated under “force majeure" clauses, and so “the purpose of this waiver request is thus to both clear the queue to the extent possible and avoid unneeded disputes.”
On Monday, the Solar Energy Industries Association endorsed the request in a filing to the commission made in partnership with regional renewable trade group Interwest Energy Alliance. The support statement referenced both the recent de facto repeal of IRA credits as well as the permitting freeze, stating it now “appears that federal agency review staff are unsure how to proceed on solar projects.” This even includes projects on private lands, a concern first raised by Nevada Gov. Joe Lombardo, a Republican, after the permitting freeze came into effect.
The groups all but stated they anticipate companies will pull the plug on solar projects in Nevada, proclaiming that by granting the waiver, “it will encourage projects facing uncertainty due to recent legislation and federal action to exit the process sooner and without penalty, creating more certainty for the remaining projects.”
How this reads to me: Energy developers are understandably trying to figure out how to skate away from this increasingly risky situation as cleanly as they can. It’s anybody’s guess if FERC is willing to show lenience toward these developers.