You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fossil fuel plant retirements are slowing down, and projected load growth is to blame.

To fully decarbonize the electricity system will require more than just the rapid deployment of non-carbon-emitting generation capacity, plus the transmission necessary to get that electricity to where it needs to go. It will also require that our existing stock of electricity generation — which is largely natural gas- and coal-powered — get mostly mothballed. So far, this process has been proceeding briskly. Renewable deployment is on the way up and is projected to accelerate, and older electricity generation was sliding quickly but gracefully into retirement — until recently.
Retirements of existing generation have slowed down dramatically in the first half of this year, which is on pace to be the slowest for existing generation retirements since 2011, according to new data from the Energy Information Administration.
In the first half of the year, some 5.1 gigawatts of generating capacity have been retired, and another 2.4 gigawatts are scheduled to be retired by year’s end, for a projected total of 7.5 retired gigawatts. From 2004 to 2023, by contrast, just over 12 gigawatts of capacity were retired each year on average, with almost 15 gigawatts retired per year this decade. Since 2022, according to EIA data, over 90% of retired capacity has been coal or natural gas.
What’s behind the slowdown? “Reliability is threatened because the grid conditions are tightening,” Douglas Giuffre, executive director of gas, power and renewables analysis at S&P Global Commodity Insights, explained in an email. “This is partly due to the recent pace of coal and natural gas retirements in the U.S., which worked off some of the excess capacity in power markets. Now we are seeing tighter reserve margins, and a relatively thin pipeline of new gas-fired projects that can come online quickly.” That’s especially concerning for utilities at a time when projected electricity demand is way, way up.
The wave of retirements was a national phenomenon, often having nothing to do with state-level plans to decarbonize. Coal and gas were being retired so steadily over the past 20 years not just because plants were aging, but also because power use was essentially flat from the early 2000s through, essentially, yesterday. This meant that older plants — especially dirty coal plants — became uneconomic to run, especially as natural gas prices began to fall.
Now, we are in a completely different world. Electricity use is forecast to start growing again, thanks to a buildout of new data centers and manufacturing, plus the ongoing electrification of automobiles and home heating and cooling.
The Southeast offers an example of how these trends have played out on the ground. In December 2020, the Mississippi Public Service Commission determined that the state had “excess reserves … largely due to decreases in projected load” and ordered a 950 megawatt reduction in generating capacity by Mississippi Power by 2027. A consulting firm hired by the commission determined that Plant Daniel, a coal plant, was “relatively inefficient compared to other available resources;” a few months later, the utility said it would decommission Plant Daniel by 2027.
Then Georgia Power, the utility that covers most of the state (and, like Mississippi Power, a subsidiary of Southern Company), rushed out a new three-year plan for its future power usage less than a year after finalizing its old one. Its demand forecast through the end of the decade had jumped from 400 megawatts to 6,600 megawatts, the result of a projected boom in data center construction.
“They came in with a preselected list of ways it wanted to meet that power need,” including buying power from Plant Daniel and new gas, Bob Sherrier, a staff attorney at the Southern Environmental Law Center, told me. Georgia Power told the state’s utility commission that to respond to growing demand it would need to extend contracts with its sister utility in Mississippi — which meant not only that Daniel would remain open for at least another year — and build new new plants that could run on gas or diesel, plans for which regulators approved on Tuesday. The utility also hinted that its existing plans to euthanize, for the most part, its coal-fired generation fleet by the end of 2028 were likely to be revised.
“To meet that projected need, the utilities are reverting to what they know, which is fossil fuels,” Sherrier said.
In vertically integrated markets, where utilities own generating assets and sell power to customers, environmentalists have seen delayed retirements and the building of new fossil plants as examples of utilities slipping into their comfort zone, building and operating expensive projects instead of developing or procuring renewables to handle rising demand.
But it's not just in vertically integrated markets where fossil retirements are being delayed. In Maryland, for instance, Brandon Shores, a coal-fired power plant that was scheduled to close in 2025, is staying open because PJM Interconnection, the regional electricity market, determined that a plan to replace it with battery storage was not a “realistic option at present” nor “technically viable to resolve the reliability violations or avoid the need for an RMR agreement at this time,” PJM president Manu Asthana said in a letter to Paul Pinsky, the director of the Maryland Energy Administration. The transmission investments required to make up the difference, meanwhile, would take several years.
Along with the neighboring Wagner plant, which burns a mix of coal, oil, and natural gas, Brandon Shores will likely stay open more than three years past its planned retirement date thanks to what’s known as a “reliability must run” contract, which “would put Maryland ratepayers on the hook for over $600 million dollars in out-of-market payments,” according to a letter written by several Maryland congressional representatives to PJM.
Environmental advocates have blamed PJM for not doing enough proactive transmission planning to account for predictable and scheduled plant retirements.
The slowing retirements mean that emissions from the electricity sector, which have been falling since the mid-2000s (with occasional bumps up as the economy has recovered from downturns), are expected to plateau over the next year or so. EIA forecasts show carbon dioxide emissions from electricity as essentially flat from 2023 to 2025, with increased natural gas emissions essentially offsetting falling coal emissions.
There is a bright side to the data, however. So far this year, the U.S. has installed just over 20 gigawatts of new generation, 80% of which has been solar and battery storage, including a 600-plus megawatt projects in Nevada and Texas. If added generation comes on in the second half of this year as planned, the EIA projects we’ll have 15 gigawatts of battery storage by year’s end. Along with the large and growing solar generation in states like California, Nevada, and Texas, the U.S. is getting closer to a grid that can, at least, run without carbon emissions day or night.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
New Jersey Governor-elect Mikie Sherrill made a rate freeze one of her signature campaign promises, but that’s easier said than done.
So how do you freeze electricity rates, exactly? That’s the question soon to be facing New Jersey Governor-elect Mikie Sherrill, who achieved a resounding victory in this November’s gubernatorial election in part due to her promise to declare a state of emergency and stop New Jersey’s high and rising electricity rates from going up any further.
The answer is that it can be done the easy way, or it can be done the hard way.
What will most likely happen, Abraham Silverman, a Johns Hopkins University scholar who previously served as the New Jersey Board of Public Utilities’ general counsel, told me, is that New Jersey’s four major electric utilities will work with the governor to deliver on her promise, finding ways to shave off spending and show some forbearance.
Indeed, “We stand ready to work with the incoming administration to do our part to keep rates as low as possible in the short term work on longer-term solutions to add supply,” Ralph LaRossa, the chief executive of PSE&G, one of the major utilities in New Jersey, told analysts on an earnings call held the day before the election.
PSE&G’s retail bills rose 36% this past summer, according to the investment bank Jefferies. As for what working with the administration might look like, “We expect management to offer rate concessions,” Jefferies analyst Paul Zimbrado wrote in a note to clients in the days following the election, meaning essentially that the utility would choose to eat some higher costs. PSE&G might also get “creative,” which could mean things like “extensions of asset recoverable lives, regulatory item amortization acceleration, and other approaches to deliver customer bill savings in the near-term,” i.e. deferring or spreading out costs to minimize their immediate impact. “These would be cash flow negative but [PSE&G] has the cushion to absorb it,” Zimbrado wrote.
In return, Silverman told me that the New Jersey utilities “have a wish list of things they want from the administration and from the legislature,” including new nuclear plants, owning generation, and investing in energy storage. “I think that they are probably incented to work with the new administration to come up with that list of items that they think they can accomplish again without sacrificing reliability.”
Well before the election, in a statement issued in August responding to Sherrill’s energy platform, PSE&G hinted toward a path forward in its dealings with the state, noting that it isn’t allowed to build or own power generation and arguing that this deregulatory step “precluded all New Jersey electric companies from developing or offering new sources of power supply to meet rising demand and reduce prices.” Of course, the failure to get new supply online has bedeviled regulators and policymakers throughout the PJM Interconnection, of which New Jersey is a part. If Mikie Sherrill can figure out how to get generation online quickly in New Jersey, she’ll have accomplished something more impressive than a rate freeze.
As for ways to accomplish the governor-elect’s explicit goal of keeping price increases at zero, Silverman suggested that large-scale investments could be paid off on a longer timeline, which would reduce returns for utilities. Other investments could be deferred for at least a few years in order to push out beyond the current “bubble” of high costs due to inflation. That wouldn’t solve the problem forever, though, Silverman told me. It could simply mean “seeing lower costs today, but higher costs in the future,” he said.
New Jersey will also likely have to play a role in deliberations happening in front of the Federal Energy Regulatory Commission about interconnecting large loads — i.e. data centers — a major driver of costs throughout PJM and within New Jersey specifically. Rules that force data centers to “pay their own way” for transmission costs associated with getting on the grid could relieve some of the New Jersey price crunch, Silverman told me. “I think that will be a really significant piece.”
Then there’s the hard way — slashing utilities’ regulated rates of return.
In a report prepared for the Natural Resources Defence Council and Evergreen Collective and released after the election, Synapse Economics considered reducing utilities’ regulated return on equity, the income they’re allowed to generate on their investments in the grid, from its current level of 9.6% as one of four major levers to bring down prices. A two percentage point reduction in the return on equity, the group found, would reduce annual bills by $40 in 2026.
Going after the return on equity would be a more difficult, more contentious path than working cooperatively on deferring costs and increasing generation, Silverman told me. If voluntary and cooperative solutions aren’t enough to stop rate increases, however, Sherrill might choose to take it anyway. “You could come in and immediately cut that rate of return, and that would absolutely put downward pressure on rates in the short run. But you establish a very contentious relationship with the utilities,” Silverman told me.
Silverman pointed to Connecticut, where regulators and utilities developed a hostile relationship in recent years, resulting in the state’s Public Utilities Regulatory Authority chair, Marissa Gillett, stepping down last month. Gillett had served on PURA since 2019, and had tried to adopt “performance-based ratemaking,” where utility payouts wouldn’t be solely determined by their investment level, but also by trying to meet public policy goals like energy efficiency and reducing greenhouse gas emissions.
Connecticut utilities said these rules would make attracting capital to invest in the grid more difficult. Gillett’s tenure was also marred by lawsuits from the state’s utilities over accusations of “bias” against them in the ratemaking process. At the same time, environmental and consumer groups hailed her approach.
While Sherrill and her energy officials may not want to completely overhaul how they approach ratemaking, some conflict with the state’s utilities may be necessary to deliver on her signature campaign promise.
Going directly after the utilities’ regulated return “is kind of like making your kid eat their broccoli,” Silverman said. “You can probably make them eat it. You can have a very contentious evening for the rest of the night.”
Current conditions: Unseasonable warmth of up to 20 degrees Fahrenheit above average is set to spread across the Central United States, with the potential to set records • Scattered snow showers from water off the Great Lakes are expected to dump up to 18 inches on parts of northern New England • As winter dawns, Israel is facing summertime-like temperatures of nearly 90 degrees this week.
The Department of the Interior finalized a rule last week opening up roughly half of the largely untouched National Petroleum Reserve-Alaska to oil and gas drilling. The regulatory change overturns a Biden-era measure blocking oil and gas drilling on 11 million acres of the nation’s largest swath of public land, as my predecessor in anchoring this newsletter, Heatmap’s Jeva Lange, wrote in June. The Trump administration vowed to “unleash” energy production in Alaska by opening the 23 million-acre reserve, as well as nearby Arctic National Wildlife Refuge, to exploration. By rescinding the Biden-era restrictions, “we are following the direction set by President Trump to unlock Alaska’s energy potential, create jobs for North Slope communities, and strengthen American energy security,” Secretary of the Interior Doug Burgum said in a statement, according to E&E News. In a post on X, Alaska Governor Mike Dunleavy, a Republican, called the move “yet another step in the right direction for Alaska and American energy dominance.”
The new rule is expected to face challenges in court.“Today’s action is another example of how the Trump administration is trying to take us back in time with its reckless fossil fuels agenda,” Erik Grafe, a lawyer with Earthjustice, an environmental nonprofit group, said in a statement to The New York Times.

For the first time in United Nations climate negotiations, countries attending the COP30 summit in Belém, Brazil, are grappling with the effects of mining the minerals needed for batteries, solar panels, and wind turbines, Climate Home News reported. In a draft text on Friday, a working group at the summit recognized “the social and environmental risks associated with scaling up supply chains for clean energy technologies, including risks arising from the extraction and processing of critical minerals.”
The statement came amid ongoing protests from Indigenous groups, including those from Argentina who warned that the world’s increased appetite for South America’s lithium reserves came at the cost of local water resources for peoples who have lived in regions near mining operations for millennia.
Nearly one fifth of the Environmental Protection Agency’s workforce has opted into President Donald Trump’s mass resignation plan, according to new data E&E News obtained on Friday. As of the end of September, the EPA’s payroll included 15,166 employees, according to data released during the government shutdown, meaning that more than 2,620 employees accepted the “deferred resignation” offer.
Under Administrator Lee Zeldin, the EPA has advanced proposals that even the agency under Scott Pruitt, the top environmental regulator at the start of Trump’s first term, dared not attempt. Zeldin has moved to rescind the endangerment finding, which forms the legal basis for virtually all major climate regulations at the EPA. Zeldin even tried to kill off the popular Energy Star program for efficient appliances, but — as I wrote earlier this month — he backed off the plan.
Sign up to receive Heatmap AM in your inbox every morning:
The next-generation geothermal company Eavor is preparing to start up its debut closed-loop system at its pilot project in Germany, Think Geoenergy reported. The startup has stood out in the race to commercialize technology that can harness energy from the Earth’s molten core in more places than conventional approaches allow. While rivals such as Fervo Energy, Sage Geosystems, and XGS Energy, pursue projects in the American Southwest, Eavor focused its efforts on Germany, where it saw potential to tap into the lucrative district heating market. Eavor also developed special drilling tools that promised to shave “tens of millions” off the cost of digging wells. As I wrote here last month, the company just completed successful tests of its technology.
BlackRock’s Global Infrastructure Partners inked a deal with the Spanish construction company ACS to form a joint venture to develop roughly $2.3 billion worth of data centers. The 50-50 joint venture will consist of ACS’ existing data-center portfolio, including 1.7 gigawatts of assets under development in Europe, the U.S., and Australia. ACS is contributing its existing portfolio to the business, The Wall Street Journal reported, “in exchange for about 1 billion euros in cash and initial earnout payments of up to 1 billion euros” if the data centers hit certain commercial milestones. “Global demand for data centers is set to grow more than 15 times by 2035, driven by the expansion of AI, cloud migration, and the exponential rise in data volumes,” ACS CEO Juan Santamaria said.
In a first, Swedish scientists have managed to successfully isolate and sequence RNA from an Ice Age wooly mammoth. Researchers at Stockholm University extracted the genetic information from mammoth tissue preserved in Siberian permafrost for nearly 40,000 years. The findings, published in the journal Cell, show that RNA, in addition to DNA and proteins, can be preserved over long periods of time. “With RNA, we can obtain direct evidence of which genes are ‘turned on,’ offering a glimpse into the final moments of life of a mammoth that walked the Earth during the last Ice Age. This is information that cannot be obtained from DNA alone,” Emilio Mármol, lead author of the study, said in a press release.
Editor’s note: This article has been updated to clarify the staff shrinkage at the EPA.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Energy Secretary Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd, a Republican, wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.