You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
When I was an analyst at the U.S. Treasury, my team’s work centered around promising private investors that we would make it easier for them to invest in renewable energy projects across the Global South. I kept hearing that our job was ultimately to make these projects “bankable.” As the logic went, “there is a sizeable universe of good projects that fall just below many private investors’ desired rate of return,” and therefore lowering the risks of investing in these “good projects” would put them within reach of private investors’ return expectations. To make decarbonization possible, we had to make decarbonization profitable.
This claim cuts straight through Brett Christophers’ latest book, The Price is Wrong: Why Capitalism Won’t Save the Planet, which argues that the cost of developing and generating renewable energy is not what will determine the speed or scale of its uptake. It might finally be cheaper to build solar panels and wind farms than a coal or gas plant, that’s for sure. But given the structure of our energy markets today, it does not follow that assets that are cheap to build are necessarily profitable enough to provide adequate returns to investors.
My old colleagues might have already been aware of this fact, but as Christophers highlights, it’s certainly not intuitive, even to many analysts. Nor are its implications: Decarbonization won’t happen if it’s not profitable enough ― and it’s not profitable enough.
Christophers is a professor at Sweden’s Uppsala University in its “department of human geography,” whose research focuses on how capitalism and the modern financial system shape our lives; in this book, that also includes our energy systems. To make his case, he highlights the vicious feedback loop affecting renewables endemic to today’s energy markets. Government support to build renewable energy drives down its marginal cost, but because there’s now more renewable energy available at any given moment, the falling costs cut into developers’ expected returns, requiring more government support to keep investors and developers interested in the sector.
Combine this dynamic with technical features endemic to renewable energy generation, including its intermittency, and the result is a wholesale electricity market with perennially unstable prices. This volatility throttles the expected returns on any investment in renewable energy. No matter how cheap it is to build renewable energy, private investors and developers won’t decarbonize our globe at the speed or scale we deserve ― not under these financial conditions, at least.
Christophers leans on two theoretical guideposts here. First, Andreas Malm, whose assessment of how the profit motive, not relative costs, drove Britain’s first energy transition from water-wheels to coal and steam is an unmistakable conceptual parallel to today’s transition. Second, Karl Polanyi, whose theory of “fictitious commodities” — referring to land, labor, and money, each of which the state and society must painstakingly regulate into fungible market-friendly products ― Christophers aptly applies to electricity and the artificial markets created around it.
But rather than hew to theory to justify why the energy system needs to be socialized to achieve decarbonization ― which is definitely true, by the way; the profit motive is supremely unhelpful here ― Christophers embraces a holistic understanding of the economy as a set of financial relationships, supply chains, planned markets, and legal institutions connecting various public and private entities with different motives.
That means interviewing investors, who tell him things like: “Low returns and volatility don’t go. No bank in the world will take power price risk at low returns.” Christophers also produces a detailed and data-rich breakdown of the interlocking global energy crises in 2021 and 2022, jumping between Texas, China, India, Australia, and across Europe, to make a larger point about energy markets. These crises were “not taken to be evidence of the failings of markets, or even a reason to question their role as the pre-eminent mechanism of coordination to the state’s electricity sector,” he writes; “the market was regarded as the very means to manage the crisis.” But the markets aren’t working. Something has to give.
He ends the book with a call for socialized power, inspired by the Green New Deal and New York’s Build Public Renewables Act, championed by the state’s democratic socialists on the explicit grounds that, because delivering on the state’s emissions targets is not profitable enough for the private sector to do alone, the public sector must get the job done. With the force of the whole book’s arguments and evidence behind it, this policy prescription hardly appears radical.
Public developers can accept lower profitability thresholds, and public finance institutions can provide debt on more forgiving terms; under the public aegis, rates of return and costs of capital become policy choices. Christophers admits in his introduction that he is more focused on unearthing the fragile relationships among actors across the renewable energy industry than on describing the ways a New York-inspired socialized power sector could function. Given how much there is to unearth, it’s a reasonable choice, but it leaves readers without a working heuristic for the different ways states can intervene in the business of energy.
Here’s my attempt: Energy must be financed, generated, distributed, and consumed. Government intervention in favor of decarbonization looks distinct at each step.
Governments can provide consumption support by shielding ratepayers from the higher electricity bills that come from potential utility investments into renewable energy procurement and decarbonization-related grid management, backstopping utility investments through a demand guarantee. Consumption support is equitable, but it’s also indirect and incomplete — it might provide a utility with more financial breathing room to procure or develop renewables, but if renewables are not available to procure on the grid or are not easy to develop, this demand guarantee likely just pads the utility’s bottom line.
Governments can provide distribution support by encouraging utilities to purchase renewable energy. Distribution support most often takes the form of regulatory nudges: In the United States, mandates like Renewable Portfolio Standards force utilities to increase their clean energy procurement, guaranteeing purchase demand for clean electricity and Renewable Energy Certificates, which companies might buy to clean up their own energy portfolios.
These demand-guarantee interventions have helped speed up renewable energy development nationwide, but with limits. In particular, utility power purchase agreements don’t provide developers with adequate price stability because utilities fix the quantity of energy they purchase rather than the price; corporate PPAs, meanwhile, cannot be relied on at scale because there aren’t enough large creditworthy corporations like Google and Amazon willing to commit to buying energy from new projects at a fixed price. For these reasons and more, supporting utilities’ efforts to decarbonize will not call forth adequate renewable energy generation sources into existence.
Generation support is what most governments already do. Whether through feed-in tariffs, production tax credits, or contracts for difference, generation support entails propping up generators’ profitability, ensuring that the sale price of their energy is never too low. Christophers explains why this mechanism — that is, a revenue guarantee rather than a demand guarantee — is deeply necessary: Renewable energy sources and the energy markets they’re plugged into are both structurally volatile, so, no matter how much energy they generate, they never generate all that much profit. Withdrawing generation support would be, in no uncertain terms, a death knell for renewables development.
And, finally, financing support targets renewable energy sources as capital-intensive assets requiring huge amounts of upfront debt. Whether through the investment tax credit, viability gap funding, concessional financing, or other forms of cost-share plans, financing support is another form of direct price support for generation companies; by lowering a project’s cost of capital, it helps lower its developer’s threshold for project profitability, meaning that generators pay less debt service and keep more of their revenues. High interest rates have lately forced up the cost of debt for renewable energy projects to unsustainable levels, far above private developers’ prospective rates of return. Financing support is a must-have these days ― and it’s all the more necessary across the Global South, where the costs of capital are far higher.
None of this is to say that socializing generation and finance solves every problem ― as far as the United States is concerned, non-financial barriers abound, such as regulations and interconnection queues ― but within the existing structure of energy markets, public ownership does solve a lot.
What does direct government intervention into energy consumption and distribution look like? Public ownership of local distribution utilities is a start. Unlike private utility companies, they don’t need to promise ten percent returns to shareholders, and can use the financial breathing room that comes from lower profitability thresholds to tamp down rate hikes and, perhaps more importantly, rate volatility. Public utilities will not drive decarbonization, but they could potentially help advance transmission reform and better integrate distributed energy resources into the grid.
Christophers all but argues that the best thing governments can do for all four support categories is to redesign energy markets. Beyond simply incentivizing the deployment of clean firm and battery technologies to complement renewables, policymakers’ biggest task is to build an energy system where volatile wholesale energy prices ― which even publicly owned renewable energy developers will have to face for the foreseeable future ― are not the reason that a project fails to get built. That would be a policy failure, and we don’t have time for those.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s already conquered solar, batteries, and EVs. With a $2 billion new turbine factory in Scotland, it may have set its next target.
Batteries, solar panels, electric vehicles. The story of renewable energy deployment globally is increasingly one of China’s fiercely competitive domestic industries and deep supply chains exporting their immense capacity globally. Now, it may be wind’s turn.
The Chinese turbine manufacturer Ming Yang announced last week that it plans to invest $2 billion in a factory in Scotland. The facility is scheduled to start production in late 2028, churning out offshore wind equipment for use in the United Kingdom, which has over 15 gigawatts of offshore wind capacity, as well as for export, likely in Europe.
The deal comes as China finds itself at a kind of domestic clean energy crossroads, in terms of both supply and demand. On the former, the country has launched a campaign aimed at softening the cutthroat domestic competition, overproduction, and price wars that have defined many of its green industries, especially electric vehicles.
At the same time, China is setting out to alter its electricity markets to put renewable energy on a more market-based footing, while also paying coal-fired power plants to stay on the grid, as University of California, San Diego researcher Michael Davidson explained on a recent episode of Shift Key. These changes in electricity markets will reduce payments to solar and wind producers, making foreign markets potentially more attractive.
“We anticipate Chinese original equipment manufacturers will intensify their push toward international expansion, with Mingyang’s planned investment a signal of this trend,” Morningstar analyst Tancrede Fulop wrote in a note to clients. “This poses a challenge for Western incumbents, as Chinese players can capitalize on their cost advantages in a market driven by price.”
Ironically, Fulop said, the market changes will make the Chinese market more like Europe’s, which has become more price conscious as the market has matured and reductions in cost have slowed or outright stopped. “The transition is expected to make renewable developers increasingly price-sensitive as they seek to preserve project returns, ultimately weighing on wind turbine manufacturers’ profitability,” he wrote.
There’s a “cliff” coming in Chinese renewable energy deployment, Kyle Chan, a postdoctoral researcher at Princeton University, told me. “Overall, the net effect is expected to be a pretty sharp drop, and we’re already starting to see some of the effects of that.”
And turbine manufacturers would not be the first Chinese renewable industry to show up in Europe.
“There’s already an existing model” for Chinese manufacturers to set up shop in Western countries, Chan said. Chinese companies are already planning to manufacture solar modules in France, while Chinese EV maker BYD’s is planning factories in Hungary, Turkey, and potentially Spain.
China as a whole is responsible for over half of all new offshore wind capacity added in 2024, according to Global Energy Monitor, and has been growing at a 41% annual rate for the past five years. The energy intelligence firm Rystad estimates that China will make up 45% of all offshore wind capacity by 2030. Ming Yang itself claims to be behind almost a third of new offshore wind capacity built last year.
Meanwhile, offshore wind projects in the West — especially the United States — have faced the omnicrisis of high interest rates, backed-up supply chains, and Donald Trump. News of Ming Yang’s Scotland factory sent yet another shock through the ailing Western offshore wind market, with shares in the Danish company Vestas down 4% when the market opened Monday.
But with Chinese products and Chinese investment comes controversy and nerves among European political leaders. “There’re questions about tech transfer and job creation,” Chan said. “They also face some security issues and potential political backlash.”
In August, the German asset manager Luxcara announced that it would use Siemens Gamesa turbines for a planned offshore wind project instead of Ming Yang ones after backlash from German defense officials. “We see this as further evidence that a Chinese entry into the European wind market remains challenging,” analysts at Jefferies wrote to clients in August.
They were right to be skeptical — Chinese turbines’ entry into the European market has been long predicted and yet remains unrealized. “China’s increasingly cheap wind turbines could open new markets,” S&P Global Insights wrote in 2022, citing the same cost advantages as Morningstar did in reference to the Ming Yang factory announcement.
“China was already trying to angle into the European market,” Chan told me, seeing it as comparable to the U.S. in size and potentially more open to Chinese investment. “If they were kind of thinking about it before, now it’s gotten a greater sense of commercial urgency because I think the expectation is that their profit margins are really going to get squeezed.”
While China leads the world in building out renewable energy capacity domestically and exporting technology abroad, it has “decided not to decide” on pursuing a rapid, near-term decarbonization, Johns Hopkins University China scholar Jeremy Wallace recently argued in Heatmap.
While that means that the Paris Agreement goals are even farther out of reach, it may be fine for Chinese industries, including wind, as they look to sell abroad.
“Chinese firms have lots of reasons to want to build things abroad: Diversification away from the Chinese market, the zero or negative profits from selling domestically, and geopolitical balancing,” Wallace told me.
“If Brits want to have their citizens making the turbines that will power the country,” Wallace said, “this seems like a reasonable opportunity.”
Current conditions: A major Pacific storm is drenching California and bringing several inches of snow to Montana, Idaho, and Wyoming • A tropical storm in the Atlantic dumped nearly a foot of water on South Carolina over three days • Algeria is roasting in temperatures of more than 105 degrees Fahrenheit.
The Department of Energy notified workers in multiple offices Friday that they were likely to be fired or reassigned to another part of the agency, E&E News reported Tuesday. Staffers at the Office of Clean Energy Demonstrations and the Office of State and Community Energy Programs received notices stating that the offices would “be undergoing a major reorganization and your position may be reassigned to another organization, transferred to another function or abolished.” Still, the notice said “no determination has been made concerning your specific position” just yet.
At least five offices received “general reduction in force notices,” as opposed to official notification of a reduction in force, according to a Latitude Media report. These included the Office of Clean Energy Demonstrations, the Office of Energy Efficiency and Renewable Energy, the Office of State and Community Energy Plans, and the Office of Fossil Energy. Nearly 200 Energy Department employees received direct layoff notices.
Catastrophic floods brought on by the remnants of a typhoon devastated the Alaska Native village of Kipnuk on Sunday. Five months ago, the Trump administration canceled a $20 million grant intended to protect the community against exactly this kind of extreme flooding, The New York Times reported Tuesday. The grant from the Environmental Protection Agency was meant to stabilize the riverbank on which Kipnuk is built. But in May, the agency yanked back the Biden-era grant, which EPA Administrator Lee Zeldin said was “no longer consistent” with the government’s priorities. In a post on X, Zeldin said the award was part of "wasteful DEI and Environmental Justice grants,” suggesting the funding was part of an ideological push for diversity, equity, and inclusion rather than a practical infrastructure boost to an Indigenous community facing serious challenges.
Zealan Hoover, a Biden-era senior adviser at the EPA, accused Zeldin of using “inflammatory rhetoric” that misrepresented the efforts in places like Kipnuk. “For decades, E.P.A. has been a partner to local communities,” Hoover said. “For the first time under this administration, E.P.A. has taken an aggressively adversarial posture toward the very people and communities that it is intended to protect.”
Get Heatmap AM directly in your inbox every morning:
Late last Thursday, Heatmap’s Jael Holzman observed that the status of the 6.2-gigawatt Esmeralda 7, the nation’s largest solar project, had changed on the Bureau of Land Management’s website to “canceled.” The news sent shockwaves nationwide and drew blowback even from Republicans, including Utah Governor Spencer Cox, as I reported in this newsletter. Now, however, the bureau’s parent agency is denying that it made the call to cancel the project. “During routine discussions prior to the lapse in appropriations, the proponents and BLM agreed to change their approach for the Esmeralda 7 Solar Project in Nevada,” a spokesperson for the Department of the Interior told Utility Dive. “Instead of pursuing a programmatic level environmental analysis, the applicants will now have the option to submit individual project proposals to the BLM to more effectively analyze potential impacts.”
That means the project could still move forward with a piecemeal approach to permitting rather than one overarching approval, which aligns with what one of the developers involved told Jael last week. A representative for NextEra said that it is “in the early stage of development” with its portion of the Esmeralda 7 mega-project, and that the company is “committed to pursuing our project’s comprehensive environmental analysis by working closely with the Bureau of Land Management.” Still, the move represents a devastating setback for the solar installation, which may never fully materialize.
Ethane exports are rising as export capacity soars.EIA
U.S. exports of ethane, a key petrochemical feedstock extracted from raw natural gas during processing, are on track for “significant growth” through 2026, according to new analysis from the Energy Information Administration. Overseas sales are projected to grow 14% this year compared to the previous year, and another 16% next year. Ethane is mostly used as a feedstock for ethylene, a key ingredient in plastics, resins, and synthetic rubber. China has been the fastest growing source of demand for American ethane in recent years, rising to the largest single destination with 47% of exports last year.
Spain’s electricity-grid operator shrugged off concerns of another major blackout after detecting two sharp voltage variations in recent weeks. Red Electrica, which operates Spain’s grid, said that what The Wall Street Journal described as “recent voltage swings” didn’t threaten to knock out the grid because they stayed within acceptable limits. But the operator warned that variations could jeopardize the electricity supply if the grid didn’t overhaul its approach to managing a system that increasingly relies on intermittent, inverter-based generating sources such as solar panels. Red, which is 20% owned by the Spanish government, acknowledged that the high penetration of renewables was responsible for the recent fluctuations. Among the changes needed to improve the grid: real-time monitoring, which Heatmap’s Matthew Zeitlin noted in April “is necessary because traditionally, grid inertia is just thought of as an inherent quality of the system, not something that has to be actively ensured and bolstered.”
It’s not just Spain facing blackouts. New York City will have a power deficiency equivalent to the energy needed to power between 410,000 and 650,000 homes next summer — and that number could double by 2050, the state’s grid operator warned this week in its latest five-year report. “The grid is at a significant inflection point,” Zach Smith, senior vice president of system and resource planning for NYISO, said in a statement to Gothamist. “Depending on future demand growth and generator retirements, the system may need several thousand megawatts of new dispatchable generation within the next 10 years.”
Sodium-ion batteries are all the rage, as Heatmap’s Katie Brigham reported yesterday about the commercial breakthrough by the startup Alsym. But a major challenge facing sodium-ion batteries compared to lithium-ion rivals is the stability of the cathode material in air and water, which can degrade the battery’s performance and lifespan. A new study by researchers at Tokyo University of Science found that one ingredient can solve the problem: Calcium. By discovering the protective effects of calcium doping in the batteries, “this study could pave the way for the widespread adoption” of sodium-ion batteries.
Rob talks with the author and activist about his new book, We Survived the Night.
Julian Brave NoiseCat is a writer, Oscar-nominated filmmaker, champion powwow dancer, and student of Salish art and history. His first book, We Survived the Night, was released this week — it uses memoir, reporting, and literary anthology to tell the story of Native families across North America, including his own.
NoiseCat was previously an environmental and climate activist at groups including 350.org and Data for Progress. On this week’s episode of Shift Key, Rob talks with Julian about Native American nations and politics, the complexity and reality of Native life in 2025, and the “trickster” as a recurring political archetype.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: What were lessons that you took away from the writing of the book, or from the reporting of the book, that changed how you thought about climate or the environment in some way that maybe wasn’t the case when you were working on these issues full time?
Julian Brave NoiseCat: I would say that while I was working on climate issues, I was actually, myself, really changing a lot in terms of my thoughts on how politics worked and did not work. I think I came into my period of my life as a climate activist really believing in the power of direct action, and protest, and, you know, if you get enough people in the streets and you get enough politicians on your side, you eventually can change the laws. And I think that there is some truth to that view.
But I think being in DC for four years, being really involved in this movement, conversation — however you want to put that — around the Green New Deal, around eventually a Biden administration and how that would be shaped around how they might go about actually taking on climate change for the first time in U.S. history in a significant way, really transformed my understanding of how change happens. I got a greater appreciation, for example, for the importance of persuading people to your view, particularly elites in decision-making positions. And I also started to understand a little bit more of the true gamesmanship of politics — that there is a bit of tricks and trickery, and all kinds of other things that are going on in our political system that are really fundamental to how it all works.
And I bring that last piece up because while I was writing the book, I was also thinking really purposefully about my own people’s narrative traditions, and how they get at transformations and how they happen in the world. And it just so happens that probably the most significant oral historical tradition of my own people is a story called a coyote story, which is about a trickster figure who makes change in the world through cunning and subterfuge and tricks, and also who gets tricked himself a fair amount.
And I think that in that worldview, I actually found a lot of resonance with my own observations on how political change happened when I was in Washington, D.C., and so that insight did really deeply shape the book.
Mentioned:
We Survived the Night, by Julian Brave NoiseCat
How Deb Haaland Became the First Native American Cabinet Secretary
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
A warmer world is here. Now what? Listen to Shocked, from the University of Chicago’s Institute for Climate and Sustainable Growth, and hear journalist Amy Harder and economist Michael Greenstone share new ways of thinking about climate change and cutting-edge solutions. Find it here.
Music for Shift Key is by Adam Kromelow.