You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

When I was an analyst at the U.S. Treasury, my team’s work centered around promising private investors that we would make it easier for them to invest in renewable energy projects across the Global South. I kept hearing that our job was ultimately to make these projects “bankable.” As the logic went, “there is a sizeable universe of good projects that fall just below many private investors’ desired rate of return,” and therefore lowering the risks of investing in these “good projects” would put them within reach of private investors’ return expectations. To make decarbonization possible, we had to make decarbonization profitable.
This claim cuts straight through Brett Christophers’ latest book, The Price is Wrong: Why Capitalism Won’t Save the Planet, which argues that the cost of developing and generating renewable energy is not what will determine the speed or scale of its uptake. It might finally be cheaper to build solar panels and wind farms than a coal or gas plant, that’s for sure. But given the structure of our energy markets today, it does not follow that assets that are cheap to build are necessarily profitable enough to provide adequate returns to investors.
My old colleagues might have already been aware of this fact, but as Christophers highlights, it’s certainly not intuitive, even to many analysts. Nor are its implications: Decarbonization won’t happen if it’s not profitable enough ― and it’s not profitable enough.
Christophers is a professor at Sweden’s Uppsala University in its “department of human geography,” whose research focuses on how capitalism and the modern financial system shape our lives; in this book, that also includes our energy systems. To make his case, he highlights the vicious feedback loop affecting renewables endemic to today’s energy markets. Government support to build renewable energy drives down its marginal cost, but because there’s now more renewable energy available at any given moment, the falling costs cut into developers’ expected returns, requiring more government support to keep investors and developers interested in the sector.
Combine this dynamic with technical features endemic to renewable energy generation, including its intermittency, and the result is a wholesale electricity market with perennially unstable prices. This volatility throttles the expected returns on any investment in renewable energy. No matter how cheap it is to build renewable energy, private investors and developers won’t decarbonize our globe at the speed or scale we deserve ― not under these financial conditions, at least.
Christophers leans on two theoretical guideposts here. First, Andreas Malm, whose assessment of how the profit motive, not relative costs, drove Britain’s first energy transition from water-wheels to coal and steam is an unmistakable conceptual parallel to today’s transition. Second, Karl Polanyi, whose theory of “fictitious commodities” — referring to land, labor, and money, each of which the state and society must painstakingly regulate into fungible market-friendly products ― Christophers aptly applies to electricity and the artificial markets created around it.
But rather than hew to theory to justify why the energy system needs to be socialized to achieve decarbonization ― which is definitely true, by the way; the profit motive is supremely unhelpful here ― Christophers embraces a holistic understanding of the economy as a set of financial relationships, supply chains, planned markets, and legal institutions connecting various public and private entities with different motives.
That means interviewing investors, who tell him things like: “Low returns and volatility don’t go. No bank in the world will take power price risk at low returns.” Christophers also produces a detailed and data-rich breakdown of the interlocking global energy crises in 2021 and 2022, jumping between Texas, China, India, Australia, and across Europe, to make a larger point about energy markets. These crises were “not taken to be evidence of the failings of markets, or even a reason to question their role as the pre-eminent mechanism of coordination to the state’s electricity sector,” he writes; “the market was regarded as the very means to manage the crisis.” But the markets aren’t working. Something has to give.
He ends the book with a call for socialized power, inspired by the Green New Deal and New York’s Build Public Renewables Act, championed by the state’s democratic socialists on the explicit grounds that, because delivering on the state’s emissions targets is not profitable enough for the private sector to do alone, the public sector must get the job done. With the force of the whole book’s arguments and evidence behind it, this policy prescription hardly appears radical.
Public developers can accept lower profitability thresholds, and public finance institutions can provide debt on more forgiving terms; under the public aegis, rates of return and costs of capital become policy choices. Christophers admits in his introduction that he is more focused on unearthing the fragile relationships among actors across the renewable energy industry than on describing the ways a New York-inspired socialized power sector could function. Given how much there is to unearth, it’s a reasonable choice, but it leaves readers without a working heuristic for the different ways states can intervene in the business of energy.
Here’s my attempt: Energy must be financed, generated, distributed, and consumed. Government intervention in favor of decarbonization looks distinct at each step.
Governments can provide consumption support by shielding ratepayers from the higher electricity bills that come from potential utility investments into renewable energy procurement and decarbonization-related grid management, backstopping utility investments through a demand guarantee. Consumption support is equitable, but it’s also indirect and incomplete — it might provide a utility with more financial breathing room to procure or develop renewables, but if renewables are not available to procure on the grid or are not easy to develop, this demand guarantee likely just pads the utility’s bottom line.
Governments can provide distribution support by encouraging utilities to purchase renewable energy. Distribution support most often takes the form of regulatory nudges: In the United States, mandates like Renewable Portfolio Standards force utilities to increase their clean energy procurement, guaranteeing purchase demand for clean electricity and Renewable Energy Certificates, which companies might buy to clean up their own energy portfolios.
These demand-guarantee interventions have helped speed up renewable energy development nationwide, but with limits. In particular, utility power purchase agreements don’t provide developers with adequate price stability because utilities fix the quantity of energy they purchase rather than the price; corporate PPAs, meanwhile, cannot be relied on at scale because there aren’t enough large creditworthy corporations like Google and Amazon willing to commit to buying energy from new projects at a fixed price. For these reasons and more, supporting utilities’ efforts to decarbonize will not call forth adequate renewable energy generation sources into existence.
Generation support is what most governments already do. Whether through feed-in tariffs, production tax credits, or contracts for difference, generation support entails propping up generators’ profitability, ensuring that the sale price of their energy is never too low. Christophers explains why this mechanism — that is, a revenue guarantee rather than a demand guarantee — is deeply necessary: Renewable energy sources and the energy markets they’re plugged into are both structurally volatile, so, no matter how much energy they generate, they never generate all that much profit. Withdrawing generation support would be, in no uncertain terms, a death knell for renewables development.
And, finally, financing support targets renewable energy sources as capital-intensive assets requiring huge amounts of upfront debt. Whether through the investment tax credit, viability gap funding, concessional financing, or other forms of cost-share plans, financing support is another form of direct price support for generation companies; by lowering a project’s cost of capital, it helps lower its developer’s threshold for project profitability, meaning that generators pay less debt service and keep more of their revenues. High interest rates have lately forced up the cost of debt for renewable energy projects to unsustainable levels, far above private developers’ prospective rates of return. Financing support is a must-have these days ― and it’s all the more necessary across the Global South, where the costs of capital are far higher.
None of this is to say that socializing generation and finance solves every problem ― as far as the United States is concerned, non-financial barriers abound, such as regulations and interconnection queues ― but within the existing structure of energy markets, public ownership does solve a lot.
What does direct government intervention into energy consumption and distribution look like? Public ownership of local distribution utilities is a start. Unlike private utility companies, they don’t need to promise ten percent returns to shareholders, and can use the financial breathing room that comes from lower profitability thresholds to tamp down rate hikes and, perhaps more importantly, rate volatility. Public utilities will not drive decarbonization, but they could potentially help advance transmission reform and better integrate distributed energy resources into the grid.
Christophers all but argues that the best thing governments can do for all four support categories is to redesign energy markets. Beyond simply incentivizing the deployment of clean firm and battery technologies to complement renewables, policymakers’ biggest task is to build an energy system where volatile wholesale energy prices ― which even publicly owned renewable energy developers will have to face for the foreseeable future ― are not the reason that a project fails to get built. That would be a policy failure, and we don’t have time for those.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The cost crisis in PJM Interconnection has transcended partisan politics.
If “war is too important to be left to the generals,” as the French statesman Georges Clemenceau said, then electricity policy may be too important to be left up to the regional transmission organizations.
Years of discontent with PJM Interconnection, the 13-state regional transmission organization that serves around 67 million people, has culminated in an unprecedented commandeering of the system’s processes and procedures by the White House, in alliance with governors within the grid’s service area.
An unlikely coalition including Secretary of Energy Chris Wright, Secretary of the Interior Doug Burgum, and the governors of Indiana, Ohio, Virginia, West Virginia, and Tennessee (Republicans), plus the governors of Maryland, Kentucky, Pennsylvania, Delaware, Illinois, Michigan, New Jersey, and North Carolina (Democrats) — i.e. all 13 states of PJM — signed a “Statement of Principles” Friday demanding extensive actions and reforms to bring new generation onto the grid while protecting consumers.
The plan envisions procuring $15 billion of new generation in the region with “revenue certainty” coming from data centers, “whether they show up and use the power or not,” according to a Department of Energy fact sheet. This would occur through what’s known as a “reliability backstop auction,” The DOE described this as a “an emergency procurement auction,” outside of the regular capacity auction where generation gets paid to be available on the grid when needed. The backstop auction would be for new generation to be built and to serve the PJM grid with payments spreading out over 15 years.
“We’re in totally uncharted waters here,” Jon Gordon, director of the clean energy trade group Advanced Energy United, told me, referring to the degree of direction elected officials are attempting to apply to PJM’s processes.
“‘Unprecedented,’ I feel, is a word that has lost all meaning. But I do think this is unprecedented,” Abraham Silverman, a Johns Hopkins University scholar who previously served as the New Jersey Board of Public Utilities’ general counsel, told me.
“In some ways, the biggest deal here is that they got 13 governors and the Trump administration to agree to something,” Silverman said. “I just don't think there's that many things that [Ohio] Governor [Mike] DeWine and or [Indiana] Governor [Mike] Braun agree with [Maryland] Governor [Wes] Moore.”
This document is “the death of the idea that PJM could govern itself,” Silverman told me. “PJM governors have had a real hands off approach to PJM since we transitioned into these market structures that we have now. And I think there was a real sense that the technocrats are in charge now, the governors can kind of step back and leave the PJM wrangling to the public service commissions.”
Those days are over.
The plan from the states and the White House would also seek to maintain price caps in capacity auctions, which Pennsylvania Governor Josh Shapiro had previously obtained through a settlement. The statement envisions a reliability auction for generators to be held by September of this year, and requested that PJM make the necessary filings “expeditiously.”
Shapiro’s office said in a statement that the caps being maintained was a condition of his participation in the agreement, and that the cost limit had already saved consumers over $18 billion.
The Statement of Principles is clear that the costs of new generation procured in the auction should be allocated to data centers that have not “self-procured new capacity or agreed to be curtailable,” a reference to the increasingly popular idea that data centers can avoid increasing the peak demand on the system by reducing their power usage when the grid is stressed.
The dealmaking seems to have sidestepped PJM entirely, with a PJM spokesperson noting to Bloomberg Thursday evening that its representatives “ were not invited to the event they are apparently having” at the White House. PJM also told Politico that it wasn’t involved in the process.
“PJM is reviewing the principles set forth by the White House and governors,” the grid operator said in a statement to Heatmap.
PJM also said that it would be releasing its own long-gestating proposal to reform rules for large load interconnection, on which it failed to achieve consensus among its membership in November, on Friday.
“The Board has been deliberating on this issue since the end of that stakeholder process. We will work with our stakeholders to assess how the White House directive aligns with the Board’s decision,” the statement said.
The type of “backstop procurement” envisioned by the Statement of Principles sits outside of PJM’s capacity auctions, Jefferies analysts wrote in a note to clients, and “has been increasingly inevitable for months,” the note said.
While the top-down steering is precedent-breaking, any procurement within PJM will have to follow the grid’s existing protocols, which means submitting a plan and seeking signoff from the Federal Energy Regulatory Commission, Gordon told me. “Everything PJM does is guided by their tariffs and their manuals,” he said. “They follow those very closely.”
The governors of the PJM states have been increasingly vocal about how PJM operates, however, presaging today’s announcement. “Nobody really cared about PJM — or even knew what they PJM was or what they did — until electric prices reached a point where they became a political lightning rod,” Gordon said.
The Statement is also consistent with a flurry of announcements and policies issued by state governments, utility regulators, technology companies, and the White House this year coalescing around the principle that data centers should pay for their power such that they do not increase costs for existing users of the electricity system.
Grid Strategies President Rob Gramlich issued a statement saying that “the principle of new large loads paying their fair share is gaining consensus across states, industry groups, and political parties. The rules that have been in place for years did not ensure that.”
This $15 billion could bring on around 5.5 gigawatts of new capacity, according to calculations done by Jefferies. That figure would come close to the 6.6 gigawatts PJM fell short of its target reserve margin after its last capacity auction, conducted in December.
That auction hit the negotiated price caps and occasioned fierce criticism for how PJM manages its capacity markets. Several commissioners of the Federal Energy Regulatory Commission have criticized PJM for its high capacity prices, low reserve margin, and struggles bringing on new generation. PJM’s Independent Market Monitor has estimated that planned and existing data center construction has added over $23 billion in costs to the system.
Several trade and advocacy groups pointed out, however, that a new auction does not fix PJM’s interconnection issues, which have become a major barrier to getting new resources, especially batteries, onto the grid in the PJM region. “The line for energy projects to connect to the power grid in the Mid-Atlantic has basically had a ‘closed for maintenance’ sign up for nearly four years now, and this proposal does nothing to fix that — or any of the other market and planning reforms that are long overdue,” AEU said in a statement.
The Statement of Principles includes some language on interconnection, asking PJM to “commit to rapidly deploying broader interconnection improvements” and to “achieving meaningful reductions in interconnection timelines,” but this language largely echoes what FERC has been saying since at least its Order No. 2023, which took effect over two years ago.
Climate advocacy group Evergreen Action issued a statement signed by Deputy Director of State Action Julia Kortrey, saying that “without fixing PJM’s broken interconnection process and allowing ready-to-build clean energy resources onto the grid, this deal could amount to little more than a band aid over a mortal wound.”
The administration’s language was predictably hostile to renewables and supportive of fossil fuels, blasting PJM for “misguided policies favored intermittent energy resources” and its “reliance on variable generation resources.” PJM has in fact acted to keep coal plants in its territory running, and has for years warned that “retirements are at risk of outpacing the construction of new resources,” as a PJM whitepaper put it in 2023.
There was a predictable partisan divide at the White House event around generation, with Interior Secretary Burgum blaming a renewables “fairy tale” for PJM’s travails. In a DOE statement, Burgum said “For too long, the Green New Scam has left Mid-Atlantic families in the dark with skyrocketing bills.”
Shapiro shot back that “anyone who stands up here and says we need one and not the other doesn’t have a comprehensive, smart energy dominance strategy — to use your word — that is going to ultimately create jobs, create more freedom and create more opportunity.”
While the partisan culture war over generation may never end, today’s announcement was more notable for the agreement it cemented.
“There is an emerging consensus that the political realities of operating a data center in this day and age means that you have to do it in a way that isn't perceived as big tech outsourcing its electric bill to grandma,” Silverman said.
Editor’s note: This article originally misidentified the political affiliation of the governor of Kentucky. It’s been corrected. We regret the error.
“Additionality” is back.
You may remember “additionality” from such debates as, “How should we structure the hydrogen tax credit?”
Well, it’s back, this time around Meta’s massive investment in nuclear power.
On January 9, the hyperscaler announced that it would be continuing to invest in the nuclear business. The announcement went far beyond its deal last year to buy power from a single existing plant in Illinois and embraced a smorgasbord of financial and operational approaches to nukes. Meta will buy the output for 20 years from two nuclear plants in Ohio, it said, including additional power from increased capacity that will be installed at the plants (as well as additional power from a nuclear plant in Pennsylvania), plus work on developing new, so-far commercially unproven designs from nuclear startups Oklo and TerraPower. All told, this could add up to 6.6 gigawatts of clean, firm power.
Sounds good, right?
Well, the question is how exactly to count that power. Over 2 gigawatts of that capacity is already on the grid from the two existing power plants, operated by Vistra. There will also be an “additional 433 megawatts of combined power output increases” from the existing power plants, known as “uprates,” Vistra said, plus another 3 gigawatts at least from the TerraPower and Oklo projects, which are aiming to come online in the 2030s
Princeton professor and Heatmap contributor Jesse Jenkins cried foul in a series of posts on X and LinkedIn responding to the deal, describing it as “DEEPLY PROBLEMATIC.”
“Additionality” means that new demand should be met with new supply from renewable or clean power. Assuming that Meta wants to use that power to serve additional new demand from data centers, Jenkins argued that “the purchase of 2.1 gigawatts of power … from two EXISTING nuclear power plants … will do nothing but increase emissions AND electricity rates” for customers in the area who are “already grappling with huge bill increases, all while establishing a very dangerous precedent for the whole industry.”
Data center demand is already driving up electricity prices — especially in the area where Meta is signing these deals. Customers in the PJM Interconnection electricity grid, which includes Ohio, have paid $47 billion to ensure they have reliable power over the grid operator’s last three capacity auctions. At least $23 billion of that is attributable to data center usage, according to the market’s independent monitor.
“When a huge gigawatt-scale data center connects to the grid,” Jenkins wrote, “it's like connecting a whole new city, akin to plopping down a Pittsburgh or even Chicago. If you add massive new demand WITHOUT paying for enough new supply to meet that growth, power prices spike! It's the simple law of supply & demand.”
And Meta is investing heavily in data centers within the PJM service area, including its Prometheus “supercluster” in New Albany, Ohio. The company called out this facility in its latest announcement, saying that the suite of projects “will deliver power to the grids that support our operations, including our Prometheus supercluster in New Albany, Ohio.”
The Ohio project has been in the news before and is planning on using 400 megawatts of behind-the-meter gas power. The Ohio Power Siting Board approved 200 megawatts of new gas-fired generation in June.
This is the crux of the issue for Jenkins: “Data centers must pay directly for enough NEW electricity capacity and energy to meet their round-the-clock needs,” he wrote. This power should be clean, both to mitigate the emissions impact of new demand and to meet the goals of hyperscalers, including Meta, to run on 100% clean power (although how to account for that is a whole other debate).
While hyperscalers like Meta still have clean power goals, they have been more sotto voce recently as the Trump administration wages war on solar and wind. (Nuclear, on the other hand, is very much administration approved — Secretary of Energy Chris Wright was at Meta’s event announcing the new nuclear deal.)
Microsoft, for example, mentioned the word “clean” just once in its Trump-approved “Building Community-First AI Infrastructure” manifesto, released Tuesday, which largely concerned how it sought to avoid electricity price hikes for retail customers and conserve water.
It’s not entirely clear that Meta views the entirety of these deals — the power purchase agreements, the uprates, financially supporting the development of new plants — as extra headroom to expand data center development right now. For one, Meta at least publicly claims to care about additionality. Meta’s own public-facing materials describing its clean energy commitments say that a “fundamental tenet of our approach to clean and renewable energy is the concept of additionality: partnering with utilities and developers to add new projects to the grid.”
And it’s already made substantial deals for new clean energy in Ohio. Last summer, Meta announced a deal with renewable developer Invenergy to procure some 440 megawatts of solar power in the state by 2027, for a total of 740 megawatts of renewables in Ohio. So Meta and Jenkins may be less far apart than they seem.
There may well be value in these deals from a sustainability and decarbonization standpoint — not to mention a financial standpoint. Some energy experts questioned Jenkins’ contention that Meta was harming the grid by contracting with existing nuclear plants.
“Based on what I know about these arrangements, they don’t see harm to the market,” Jeff Dennis, a former Department of Energy official who’s now executive director of the Electricity Customer Alliance, an energy buyers’ group that includes Meta, told me.
In power purchase agreements, he said, “the parties are contracting for price and revenue certainty, but then the generator continues to offer its supply into the energy and capacity markets. So the contracting party isn’t siphoning off the output for itself and creating or exacerbating a scarcity situation.”
The Meta deal stands in contrast to the proposed (and later scotched) deal between Amazon and Talen Energy, which would have co-located a data center at the existing Susquehanna nuclear plant and sucked capacity out of PJM.
Dennis said he didn’t think Meta’s new deals would have “any negative impact on prices in PJM” because the plants would be staying in the market and on the grid.
Jenkins praised the parts of the Meta announcement that were both clean and additional — that is, the deals with TerraPower and Oklo, plus the uprates from existing nuclear plants.
“That is a huge purchase of NEW clean supply, and is EXACTLY what hyperscalars [sic] and other large new electricity users should be doing,” Jenkins wrote. “Pay to bring new clean energy online to match their growing demand. That avoids raising rates for other electricity users and ensures new demand is met by new clean supply. Bravo!”
But Dennis argued that you can’t neatly separate out the power purchase agreement for the existing output of the plants and the uprates. It is “reasonable to assume that without an agreement that shores up revenues for their existing output and for maintenance and operation of that existing infrastructure, you simply wouldn't get those upgrades and 500 megawatts of upgrades,” he told me.
There’s also an argument that there’s real value — to the grid, to Meta, to the climate — to giving these plants 20 years of financial certainty. While investment is flooding into expanding and even reviving existing nuclear plants, they don’t always fare well in wholesale power markets like PJM, and saw a rash of plant retirements in the 2010s due to persistently low capacity and energy prices. While the market conditions are now quite different, who knows what the next 20 years might bring.
“From a pure first order principle, I agree with the additionality criticism,” Ethan Paterno, a partner at PA Consulting, an innovation advisory firm, told me. “But from a second or third derivative in the Six Degrees of Kevin Bacon, you can make the argument that the hyperscalers are keeping around nukes that perhaps might otherwise be retired due to economic pressure.”.
Ashley Settle, a Meta spokesperson, told me that the deals “enable the extension of the operational lifespan and increase of the energy production at three facilities.” Settle did not respond, however, when asked how Facebook would factor the deals into its own emissions accounting.
“The only way I see this deal as acceptable,” Jenkins wrote, “is if @Meta signed a PPA with the existing reactors only as a financial hedge & to help unlock the incremental capacity & clean energy from uprates at those plants, and they are NOT counting the capacity or energy attributes from the existing capacity to cover new data center demand.”
There’s some hint that Meta may preserve the additionality concept of matching only new supply with demand, as the announcement refers to “new additional uprate capacity,” and says that “consumers will benefit from a larger supply of reliable, always-ready power through Meta-supported uprates to the Vistra facilities.” The text also refers to “additional 20-year nuclear energy agreements,” however, which would likely not meet strict definitions of additionality as it refers to extending the lifetime and maintaining the output of already existing plants.
A third judge rejected a stop work order, allowing the Coastal Virginia offshore wind project to proceed.
Offshore wind developers are now three for three in legal battles against Trump’s stop work orders now that Dominion Energy has defeated the administration in federal court.
District Judge Jamar Walker issued a preliminary injunction Friday blocking the stop work order on Dominion’s Coastal Virginia offshore wind project after the energy company argued it was issued arbitrarily and without proper basis. Dominion received amicus briefs supporting its case from unlikely allies, including from representatives of PJM Interconnection and David Belote, a former top Pentagon official who oversaw a military clearinghouse for offshore wind approval. This comes after Trump’s Department of Justice lost similar cases challenging the stop work orders against Orsted’s Revolution Wind off the coast of New England and Equinor’s Empire Wind off New York’s shoreline.
As for what comes next in the offshore wind legal saga, I see three potential flashpoints:
It’s important to remember the stakes of these cases. Orsted and Equinor have both said that even a week or two more of delays on one of these projects could jeopardize their projects and lead to cancellation due to narrow timelines for specialized ships, and Dominion stated in the challenge to its stop work order that halting construction may cost the company billions.