Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

Maybe Wooden Skyscrapers Aren’t As Climate-Friendly As We Think

New research casts doubt on a popular climate solution.

Timber smokestacks.
Heatmap Illustration/Getty Images

A lengthy report from the nonprofit World Resources Institute released Thursday warns of a “growing land squeeze” where increasing demand for food, housing, and wood is threatening the world’s prospects for tackling climate change. Adding to the competition, the authors argue, is something that’s been broadly advertised as a climate solution — the use of mass timber.

Architects and sustainable building advocates have been spreading the gospel about mass timber for at least a decade. The idea is that replacing carbon-intensive materials like concrete and steel with wood can reduce the climate impact of building stuff. Forests suck up carbon from the atmosphere, and using that timber in the built environment is one way to lock it away more permanently.

Countless articles and photo essays and magazine stories featuring sanctuary-like skyscrapers made of wood have painted it as a no-brainer for sustainability. The concept has also been backed up by academic research published in peer-reviewed journals.

But according to Timothy Searchinger, a senior research scholar at Princeton University and the lead author of the land squeeze report, they’ve been looking at the carbon footprint of timber the wrong way. “What they’re really doing is treating land and plant growth as free,” Searchinger told me.

Mass timber advocates often emphasize that the wood must be “carbon neutral” and come from sustainably managed forests. The idea is that as long as the amount of wood removed from a forest for construction matches the forest’s growth that year, there’s no net impact on the climate. “What that misses,” said Searchinger, “is that if you didn’t harvest it, the forest would grow and absorb carbon. You’re keeping that added growth from happening.”

This is often called the “opportunity cost,” i.e. “the loss of potential gain from other alternatives when one alternative is chosen,” as the Oxford dictionary puts it. Not all researchers agree that it’s always appropriate to account for this kind of what-if scenario. Some told me that you can't assume forests have the ability to perpetually accumulate more carbon — mature forests reach a sort of stasis.

But Searchinger and his co-authors highlight another frequent accounting error with mass timber. Only a small portion of the wood harvested makes it into the final product. Some of it is lost to roots and bark and other debris left behind in the forest or burned, and some of it goes into shorter-lived products like wood chips and paper that decompose and release carbon in a matter of years. “So only a small amount actually gets into the building. All that other carbon is emitted. That is what they’re ignoring,” said Searchinger.

The authors analyzed a number of different scenarios with different types of wood sourced from different types of forests, with greater and greater amounts diverted to construction, searching for any conditions that would make mass timber pencil out as a net benefit for the climate compared with concrete and steel. Few did.

There were more or less two conditions that had to be met to see significant carbon savings. At least 70% of the wood harvested had to make it into the construction product, and the wood needed to be sourced from a fast-growing tree farm. The problem with that, Searchinger told me, is that all of our existing tree plantations are meeting existing demand for other wood products. “So there’s no free lunch out there.”

The calculus could shift if we’re able to reduce demand for other wood products, he said, but by then we may have figured out how to affordably cut emissions from the production of steel and concrete.

I sent the paper to several outside experts who were critical of its findings. One issue they raised was that some forests, when they are not managed, become more susceptible to severe wildfires, disease, and other disturbances, and can thus turn into net sources of carbon emissions as trees burn or rot. Austin Himes, an ecologist at Mississippi State University, told me that in the western U.S., for example, there's good evidence that removing timber and excess fuel can make the remaining forest more resilient and enable it to suck up more carbon.

Himes also stressed that this kind of analysis is complex, and the results are sensitive to tons of assumptions about location, transportation, manufacturing, and what happens to any material that doesn’t make it into the final product. But most of the literature he’s seen strongly suggests that using wood in construction to meet growing demand in our cities is going to have long term benefits.

“There’s uncertainty around that conclusion and this report highlights some of that, and so there’s obviously need for continually assessing a lot of those assumptions,” he said, “but this is one report based on one model and one set of assumptions.”

I also spoke with Beverly Law, a forest ecologist at the Oregon State University, whose research is cited extensively in the report and who praised its findings. She echoed Himes' statement that there is a lot of uncertainty about how to accurately account for the emissions benefits of substituting wood for concrete or steel, but she agrees with the new report that those benefits have been widely overestimated. “Substitution gets really hard,” Law said. “It’s a number that people can fiddle with.”

She pointed me to a 2019 paper by ecologist Mark Harmon which questioned common assumptions made when calculating the emissions benefits of substituting wood for concrete or steel, including not accounting for the fact that the energy used to produce concrete and steel is getting cleaner as coal is replaced with natural gas and renewables on the grid. Innovations in concrete also have the potential to turn the material into a carbon sink.

The bigger picture painted by the land squeeze report should give any mass timber advocate pause, even putting the carbon analysis aside. Demand for wood is expected to rise dramatically between now and 2050, without a growing mass timber industry. The authors estimate that an area roughly the size of the continental United States could be harvested for wood by then, releasing 3.5 to 4.2 billion tons of carbon dioxide per year, or more than 10% of recent annual global emissions.

Searchinger’s team does offer recommendations to shrink those numbers, including expanded recycling of wood products, reduced use of packing materials, the adoption of more efficient wood-burning stoves, and aid to developing countries to move away from wood-based heating systems. There's also potential to increase yields from existing tree farms.

Beyond wood products, the report also raises big, difficult questions about how we might use land more efficiently to feed and house a growing population on a finite planet, especially as tackling climate change requires preserving and restoring natural habitats to store more carbon.

As Searchinger and his co-authors wrote in a blog post about the report, “Given this squeeze, it is dangerous to adopt policies that encourage yet more human demands for land and its outputs.”

Blue
Emily Pontecorvo profile image

Emily Pontecorvo

Emily is a founding staff writer at Heatmap. Previously she was a staff writer at the nonprofit climate journalism outlet Grist, where she covered all aspects of decarbonization, from clean energy to electrified buildings to carbon dioxide removal.

Sparks

The Electrolyzer Tech Business Is Booming

A couple major manufacturers just scored big sources of new capital.

Hysata.
Heatmap Illustration/Screenshot/YouTube

While the latest hydrogen hype cycle may be waning, investment in the fundamental technologies needed to power the green hydrogen economy is holding strong. This past week, two major players in the space secured significant funding: $100 million in credit financing for Massachusetts-based Electric Hydrogen and $111 million for the Australian startup Hysata’s Series B round. Both companies manufacture electrolyzers, the clean energy-powered devices that produce green hydrogen by splitting water molecules apart.

“There is greater clarity in the marketplace now generally about what's required, what it takes to build projects, what it takes to actually get product out there,” Patrick Molloy, a principal at the energy think tank RMI, told me. These investments show that the hydrogen industry is moving beyond the hubris and getting practical about scaling up, he said. “It bodes well for projects coming through the pipeline. It bodes well for the role and the value of this technology stream as we move towards deployment.”

Keep reading...Show less
Green
Electric Vehicles

Car Companies Are Energy Companies Now

The major U.S. automakers are catching up on Tesla’s power game.

A Silverado EV and power lines.
Heatmap Illustration/Getty Images

It was my first truck-powered cocktail party.

General Motors had gathered journalists at a Beverly Hills mansion last week for a vehicle-to-home show and tell. GM’s engineers outfitted the garage with all the components needed for an electric vehicle’s battery to back up the house’s power supply. Then they tripped the circuit breaker to cut off the home from grid power and let the plugged-in Chevy Silverado electric pickup run the home’s lights and other electrical systems for the remainder of the gathering.

Keep reading...Show less
Blue
Climate

AM Briefing: Biden’s Coal Lease Crackdown

On the future of coal mining, critical minerals, and Microsoft’s emissions

What To Know About Biden’s Coal Lease Crackdown
Heatmap Illustration/Getty Images

Current conditions: Rain and cool temperatures are stalling wildfires in an oil-producing region of Canada • A record-setting May heat wave in Florida will linger through the weekend • It is 77 degrees Fahrenheit and sunny in Rome today, where the Vatican climate conference will come to a close.

THE TOP FIVE

1. Severe storms in Houston kill 4

At least four people were killed in Houston last night when severe storms tore through Texas. Wind speeds reached 100 mph, shattering skyscraper windows, destroying trees, and littering downtown Houston with debris. “Downtown is a mess. It’s dangerous,” said Houston Mayor John Whitmire. Outside Houston, winds toppled powerline towers. At one point 1 million customers were without power across the state, and many schools are closed today. The storm front moved into Louisiana this morning, prompting flash flood warnings in New Orleans.

Keep reading...Show less
Yellow