You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The city is caught between its energy past and future.

There’s a reason decarbonization advocates talk so much about power lines. Without them, the fruits of non-carbon-emitting forms of electricity generation, which are often located far away from population centers or are only available when it’s sunny and windy, can’t be fully harvested in the form of electrons flowing to customers when they need them.
The New York state electricity system operator said in a report released Friday that New York City specifically is at risk of a shortfall of 446 megawatts — about enough to power over 350,000 homes — of transmission for nine hours on an especially hot summer day in 2025 when demand for electricity is at its peak.
To those that follow New York state energy planning specifically or, like me, have the sickness that is reading reports from grid operators across the country all the time, the result was not surprising.
Get one great climate story in your inbox every day:
The New York Independent System Operator (New York ISO) chalked up the shortfall to a combination of planned shutdowns of some natural gas plants, called peakers, that switch on when demand is high and can’t be supplied with existing resources, as well as expected growth in electricity demand from both economic growth as well as increased used of electricity for building heat and vehicles.
So far, peakers generating just over 1,000 megawatts have either shut down or reduced their operation, and another almost 600 megawatts of New York City peakers are scheduled to do so in less than two years. This has been a deliberate policy choice by the state. Two plants in the New York City area had their plans for upgrades rejected in 2021; state regulations on nitrous oxide emissions have effectively made several of these types of plants uneconomic to run.
“With the additional peakers unavailable, the bulk power transmission system will not be able to securely and reliably serve the forecasted demand in New York City,” according to New York ISO.
While this may seem like an issue of generation (i.e. producing the power) as opposed to transmission (moving it around), New York ISO projects that this shortfall “is expected to improve” in 2026, when the long awaited and under construction Champlain Hudson Power Express (CHPE), a transmission line that would bring hydropower from Quebec to downstate New York, is scheduled to come into operation.
New York City is caught between its energy past and energy future, and like many areas that are aggressively promoting renewables and retiring existing fossil fuel generation, there is a worry that reliability may suffer in the interim.
The plan is to build out a combination of renewable energy and storage to meet downstate’s needs. This includes massive installations of wind power which will hopefully both directly provide electricity as well as charge batteries which can be used to dispatch power when generation is otherwise falling short. The shortfall between New York's decarbonization goals and its ability to produce carbon-free electricity was exacerbated by the shutdown of Indian Point nuclear power plant in the Hudson River between 2019 and 2021, which corresponded to an immediate uptick in fossil fuel emissions.
Regulators and grid operators across the country have echoed New York ISO regularly, voicing concern about reliability as the renewable buildout runs into barriers of inadequate transmission and delays, while fossil fuel plant shutdowns happen quickly.
But this doesn’t mean that every state or region trying to decarbonize its electricity grid is doomed to blackouts. California is facing a massive heat wave and, at least so far, its grid operator is not expecting any major issues, partially thanks to plentiful hydropower and its massive buildout of energy storage. (It also will likely keep some gas-fired power plants in operation past their original decommissioning date).
And in New England, the grid operator concluded that an expensive terminal for importing liquefied natural gas could probably close in 2025 without imperiling the electricity system (although this depended on there being ample supply of oil for power plants to run in the winter when natural gas is used for heat). Overall, New England, which has been fretting about its energy reliability for years, has turned more optimistic, thanks in part to a substantial buildout of rooftop solar, which reduces demand on the gird.
But the report does raise the question of just how fast the grid can get away from gas in any region in the midst of the energy transition. For example, there are still plans for a new peaker plant in Peabody, Massachusetts, despite a state law with the goal of cutting carbon emissions in half by 2030 and reaching net zero in 2050.
The 2019 rules which are responsible for the peaker shutdowns envision up to four years of extensions “if the generator is designated by the NYISO or by the local transmission owner as needed to resolve a reliability need until a permanent solution is in place.” Whether transmission, wind power, and storage can be built by then is the challenge New York faces.
Read more about power lines:
The Canadian Wildfires Ominously Messed Up a Clean Energy Power Line
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
“Additionality” is back.
You may remember “additionality” from such debates as, “How should we structure the hydrogen tax credit?”
Well, it’s back, this time around Meta’s massive investment in nuclear power.
On January 9, the hyperscaler announced that it would be continuing to invest in the nuclear business. The announcement went far beyond its deal last year to buy power from a single existing plant in Illinois and embraced a smorgasbord of financial and operational approaches to nukes. Meta will buy the output for 20 years from two nuclear plants in Ohio, it said, including additional power from increased capacity that will be installed at the plants (as well as additional power from a nuclear plant in Pennsylvania), plus work on developing new, so-far commercially unproven designs from nuclear startups Oklo and TerraPower. All told, this could add up to 6.6 gigawatts of clean, firm power.
Sounds good, right?
Well, the question is how exactly to count that power. Over 2 gigawatts of that capacity is already on the grid from the two existing power plants, operated by Vistra. There will also be an “additional 433 megawatts of combined power output increases” from the existing power plants, known as “uprates,” Vistra said, plus another 3 gigawatts at least from the TerraPower and Oklo projects, which are aiming to come online in the 2030s
Princeton professor and Heatmap contributor Jesse Jenkins cried foul in a series of posts on X and LinkedIn responding to the deal, describing it as “DEEPLY PROBLEMATIC.”
“Additionality” means that new demand should be met with new supply from renewable or clean power. Assuming that Meta wants to use that power to serve additional new demand from data centers, Jenkins argued that “the purchase of 2.1 gigawatts of power … from two EXISTING nuclear power plants … will do nothing but increase emissions AND electricity rates” for customers in the area who are “already grappling with huge bill increases, all while establishing a very dangerous precedent for the whole industry.”
Data center demand is already driving up electricity prices — especially in the area where Meta is signing these deals. Customers in the PJM Interconnection electricity grid, which includes Ohio, have paid $47 billion to ensure they have reliable power over the grid operator’s last three capacity auctions. At least $23 billion of that is attributable to data center usage, according to the market’s independent monitor.
“When a huge gigawatt-scale data center connects to the grid,” Jenkins wrote, “it's like connecting a whole new city, akin to plopping down a Pittsburgh or even Chicago. If you add massive new demand WITHOUT paying for enough new supply to meet that growth, power prices spike! It's the simple law of supply & demand.”
And Meta is investing heavily in data centers within the PJM service area, including its Prometheus “supercluster” in New Albany, Ohio. The company called out this facility in its latest announcement, saying that the suite of projects “will deliver power to the grids that support our operations, including our Prometheus supercluster in New Albany, Ohio.”
The Ohio project has been in the news before and is planning on using 400 megawatts of behind-the-meter gas power. The Ohio Power Siting Board approved 200 megawatts of new gas-fired generation in June.
This is the crux of the issue for Jenkins: “Data centers must pay directly for enough NEW electricity capacity and energy to meet their round-the-clock needs,” he wrote. This power should be clean, both to mitigate the emissions impact of new demand and to meet the goals of hyperscalers, including Meta, to run on 100% clean power (although how to account for that is a whole other debate).
While hyperscalers like Meta still have clean power goals, they have been more sotto voce recently as the Trump administration wages war on solar and wind. (Nuclear, on the other hand, is very much administration approved — Secretary of Energy Chris Wright was at Meta’s event announcing the new nuclear deal.)
Microsoft, for example, mentioned the word “clean” just once in its Trump-approved “Building Community-First AI Infrastructure” manifesto, released Tuesday, which largely concerned how it sought to avoid electricity price hikes for retail customers and conserve water.
It’s not entirely clear that Meta views the entirety of these deals — the power purchase agreements, the uprates, financially supporting the development of new plants — as extra headroom to expand data center development right now. For one, Meta at least publicly claims to care about additionality. Meta’s own public-facing materials describing its clean energy commitments say that a “fundamental tenet of our approach to clean and renewable energy is the concept of additionality: partnering with utilities and developers to add new projects to the grid.”
And it’s already made substantial deals for new clean energy in Ohio. Last summer, Meta announced a deal with renewable developer Invenergy to procure some 440 megawatts of solar power in the state by 2027, for a total of 740 megawatts of renewables in Ohio. So Meta and Jenkins may be less far apart than they seem.
There may well be value in these deals from a sustainability and decarbonization standpoint — not to mention a financial standpoint. Some energy experts questioned Jenkins’ contention that Meta was harming the grid by contracting with existing nuclear plants.
“Based on what I know about these arrangements, they don’t see harm to the market,” Jeff Dennis, a former Department of Energy official who’s now executive director of the Electricity Customer Alliance, an energy buyers’ group that includes Meta, told me.
In power purchase agreements, he said, “the parties are contracting for price and revenue certainty, but then the generator continues to offer its supply into the energy and capacity markets. So the contracting party isn’t siphoning off the output for itself and creating or exacerbating a scarcity situation.”
The Meta deal stands in contrast to the proposed (and later scotched) deal between Amazon and Talen Energy, which would have co-located a data center at the existing Susquehanna nuclear plant and sucked capacity out of PJM.
Dennis said he didn’t think Meta’s new deals would have “any negative impact on prices in PJM” because the plants would be staying in the market and on the grid.
Jenkins praised the parts of the Meta announcement that were both clean and additional — that is, the deals with TerraPower and Oklo, plus the uprates from existing nuclear plants.
“That is a huge purchase of NEW clean supply, and is EXACTLY what hyperscalars [sic] and other large new electricity users should be doing,” Jenkins wrote. “Pay to bring new clean energy online to match their growing demand. That avoids raising rates for other electricity users and ensures new demand is met by new clean supply. Bravo!”
But Dennis argued that you can’t neatly separate out the power purchase agreement for the existing output of the plants and the uprates. It is “reasonable to assume that without an agreement that shores up revenues for their existing output and for maintenance and operation of that existing infrastructure, you simply wouldn't get those upgrades and 500 megawatts of upgrades,” he told me.
There’s also an argument that there’s real value — to the grid, to Meta, to the climate — to giving these plants 20 years of financial certainty. While investment is flooding into expanding and even reviving existing nuclear plants, they don’t always fare well in wholesale power markets like PJM, and saw a rash of plant retirements in the 2010s due to persistently low capacity and energy prices. While the market conditions are now quite different, who knows what the next 20 years might bring.
“From a pure first order principle, I agree with the additionality criticism,” Ethan Paterno, a partner at PA Consulting, an innovation advisory firm, told me. “But from a second or third derivative in the Six Degrees of Kevin Bacon, you can make the argument that the hyperscalers are keeping around nukes that perhaps might otherwise be retired due to economic pressure.”.
Ashley Settle, a Meta spokesperson, told me that the deals “enable the extension of the operational lifespan and increase of the energy production at three facilities.” Settle did not respond, however, when asked how Facebook would factor the deals into its own emissions accounting.
“The only way I see this deal as acceptable,” Jenkins wrote, “is if @Meta signed a PPA with the existing reactors only as a financial hedge & to help unlock the incremental capacity & clean energy from uprates at those plants, and they are NOT counting the capacity or energy attributes from the existing capacity to cover new data center demand.”
There’s some hint that Meta may preserve the additionality concept of matching only new supply with demand, as the announcement refers to “new additional uprate capacity,” and says that “consumers will benefit from a larger supply of reliable, always-ready power through Meta-supported uprates to the Vistra facilities.” The text also refers to “additional 20-year nuclear energy agreements,” however, which would likely not meet strict definitions of additionality as it refers to extending the lifetime and maintaining the output of already existing plants.
A third judge rejected a stop work order, allowing the Coastal Virginia offshore wind project to proceed.
Offshore wind developers are now three for three in legal battles against Trump’s stop work orders now that Dominion Energy has defeated the administration in federal court.
District Judge Jamar Walker issued a preliminary injunction Friday blocking the stop work order on Dominion’s Coastal Virginia offshore wind project after the energy company argued it was issued arbitrarily and without proper basis. Dominion received amicus briefs supporting its case from unlikely allies, including from representatives of PJM Interconnection and David Belote, a former top Pentagon official who oversaw a military clearinghouse for offshore wind approval. This comes after Trump’s Department of Justice lost similar cases challenging the stop work orders against Orsted’s Revolution Wind off the coast of New England and Equinor’s Empire Wind off New York’s shoreline.
As for what comes next in the offshore wind legal saga, I see three potential flashpoints:
It’s important to remember the stakes of these cases. Orsted and Equinor have both said that even a week or two more of delays on one of these projects could jeopardize their projects and lead to cancellation due to narrow timelines for specialized ships, and Dominion stated in the challenge to its stop work order that halting construction may cost the company billions.
It’s aware of the problem. That doesn’t make it easier to solve.
The data center backlash has metastasized into a full-blown PR crisis, one the tech sector is trying to get out in front of. But it is unclear whether companies are responding effectively enough to avoid a cascading series of local bans and restrictions nationwide.
Our numbers don’t lie: At least 25 data center projects were canceled last year, and nearly 100 projects faced at least some form of opposition, according to Heatmap Pro data. We’ve also recorded more than 60 towns, cities and counties that have enacted some form of moratorium or restrictive ordinance against data center development. We expect these numbers to rise throughout the year, and it won’t be long before the data on data center opposition is rivaling the figures on total wind or solar projects fought in the United States.
I spent this week reviewing the primary motivations for conflict in these numerous data center fights and speaking with representatives of the data center sector and relevant connected enterprises, like electrical manufacturing. I am now convinced that the industry knows it has a profound challenge on its hands. Folks are doing a lot to address it, from good-neighbor promises to lobbying efforts at the state and federal level. But much more work will need to be done to avoid repeating mistakes that have bedeviled other industries that face similar land use backlash cycles, such as fossil fuel extraction, mining, and renewable energy infrastructure development.
Two primary issues undergird the data center mega-backlash we’re seeing today: energy use fears and water consumption confusion.
Starting with energy, it’s important to say that data center development currently correlates with higher electricity rates in areas where projects are being built, but the industry challenges the presumption that it is solely responsible for that phenomenon. In the eyes of opponents, utilities are scrambling to construct new power supplies to meet projected increases in energy demand, and this in turn is sending bills higher.
That’s because, as I’ve previously explained, data centers are getting power in two ways: off the existing regional electric grid or from on-site generation, either from larger new facilities (like new gas plants or solar farms) or diesel generators for baseload, backup purposes. But building new power infrastructure on site takes time, and speed is the name of the game right now in the AI race, so many simply attach to the existing grid.
Areas with rising electricity bills are more likely to ban or restrict data center development. Let’s just take one example: Aurora, Illinois, a suburb of Chicago and the second most-populous city in the state. Aurora instituted a 180-day moratorium on data center development last fall after receiving numerous complaints about data centers from residents, including a litany related to electricity bills. More than 1.5 gigawatts of data center capacity already operate in the surrounding Kane County, where residential electricity rates are at a three-year high and expected to increase over the near term – contributing to a high risk of opposition against new projects.
The second trouble spot is water, which data centers need to cool down their servers. Project developers have face a huge hurdle in the form of viral stories of households near data centers who suddenly lack a drop to drink. Prominent examples activists bring up include this tale of a family living next to a Meta facility in Newton County, Georgia, and this narrative of people living around an Amazon Web Services center in St. Joseph County, Indiana. Unsurprisingly, the St. Joseph County Council rejected a new data center in response to, among other things, very vocal water concerns. (It’s worth noting that the actual harm caused to water systems by data centers is at times both over- and under-stated, depending on the facility and location.)
“I think it’s very important for the industry as a whole to be honest that living next to [a data center] is not an ideal situation,” said Caleb Max, CEO of the National Artificial Intelligence Association, a new D.C.-based trade group launched last year that represents Oracle and myriad AI companies.
Polling shows that data centers are less popular than the use of artificial intelligence overall, Max told me, so more needs to be done to communicate the benefits that come from their development – including empowering AI. “The best thing the industry could start to do is, for the people in these zip codes with the data centers, those people need to more tangibly feel the benefits of it.”
Many in the data center development space are responding quickly to these concerns. Companies are clearly trying to get out ahead on energy, with the biggest example arriving this week from Microsoft, which pledged to pay more for the electricity it uses to power its data centers. “It’s about balancing that demand and market with these concerns. That’s why you're seeing the industry lean in on these issues and more proactively communicating with communities,” said Dan Diorio, state policy director for the Data Center Coalition.
There’s also an effort underway to develop national guidance for data centers led by the National Electrical Manufacturers Association, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, and the Pacific Northwest National Laboratory, expected to surface publicly by this summer. Some of the guidance has already been published, such as this document on energy storage best practices, which is intended to help data centers know how to properly use solutions that can avoid diesel generators, an environmental concern in communities. But the guidance will ultimately include discussions of cooling, too, which can be a water-intensive practice.
“It’s a great example of an instance where industry is coming together and realizing there’s a need for guidance. There’s a very rapidly developing sector here that uses electricity in a fundamentally different way, that’s almost unprecedented,” Patrick Hughes, senior vice president of strategy, technical, and industry affairs for NEMA, told me in an interview Monday.
Personally, I’m unsure whether these voluntary efforts will be enough to assuage the concerns of local officials. It certainly isn’t convincing folks like Jon Green, a member of the Board of Supervisors in Johnson County, Iowa. Johnson County is a populous area, home to the University of Iowa campus, and Green told me that to date it hasn’t really gotten any interest from data center developers. But that didn’t stop the county from instituting a one-year moratorium in 2025 to block projects and give time for them to develop regulations.
I asked Green if there’s a form of responsible data center development. “I don’t know if there is, at least where they’re going to be economically feasible,” he told me. “If we say they’ve got to erect 40 wind turbines and 160 acres of solar in order to power a data center, I don’t know if when they do their cost analysis that it’ll pencil out.”