Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

The Next 2 Years Are Critical for New York City’s Electricity

The city is caught between its energy past and future.

The Next 2 Years Are Critical for New York City’s Electricity

There’s a reason decarbonization advocates talk so much about power lines. Without them, the fruits of non-carbon-emitting forms of electricity generation, which are often located far away from population centers or are only available when it’s sunny and windy, can’t be fully harvested in the form of electrons flowing to customers when they need them.

The New York state electricity system operator said in a report released Friday that New York City specifically is at risk of a shortfall of 446 megawatts — about enough to power over 350,000 homes — of transmission for nine hours on an especially hot summer day in 2025 when demand for electricity is at its peak.

To those that follow New York state energy planning specifically or, like me, have the sickness that is reading reports from grid operators across the country all the time, the result was not surprising.

Get one great climate story in your inbox every day:

* indicates required
  • The New York Independent System Operator (New York ISO) chalked up the shortfall to a combination of planned shutdowns of some natural gas plants, called peakers, that switch on when demand is high and can’t be supplied with existing resources, as well as expected growth in electricity demand from both economic growth as well as increased used of electricity for building heat and vehicles.

    So far, peakers generating just over 1,000 megawatts have either shut down or reduced their operation, and another almost 600 megawatts of New York City peakers are scheduled to do so in less than two years. This has been a deliberate policy choice by the state. Two plants in the New York City area had their plans for upgrades rejected in 2021; state regulations on nitrous oxide emissions have effectively made several of these types of plants uneconomic to run.

    “With the additional peakers unavailable, the bulk power transmission system will not be able to securely and reliably serve the forecasted demand in New York City,” according to New York ISO.

    While this may seem like an issue of generation (i.e. producing the power) as opposed to transmission (moving it around), New York ISO projects that this shortfall “is expected to improve” in 2026, when the long awaited and under construction Champlain Hudson Power Express (CHPE), a transmission line that would bring hydropower from Quebec to downstate New York, is scheduled to come into operation.

    New York City is caught between its energy past and energy future, and like many areas that are aggressively promoting renewables and retiring existing fossil fuel generation, there is a worry that reliability may suffer in the interim.

    The plan is to build out a combination of renewable energy and storage to meet downstate’s needs. This includes massive installations of wind power which will hopefully both directly provide electricity as well as charge batteries which can be used to dispatch power when generation is otherwise falling short. The shortfall between New York's decarbonization goals and its ability to produce carbon-free electricity was exacerbated by the shutdown of Indian Point nuclear power plant in the Hudson River between 2019 and 2021, which corresponded to an immediate uptick in fossil fuel emissions.

    Regulators and grid operators across the country have echoed New York ISO regularly, voicing concern about reliability as the renewable buildout runs into barriers of inadequate transmission and delays, while fossil fuel plant shutdowns happen quickly.

    But this doesn’t mean that every state or region trying to decarbonize its electricity grid is doomed to blackouts. California is facing a massive heat wave and, at least so far, its grid operator is not expecting any major issues, partially thanks to plentiful hydropower and its massive buildout of energy storage. (It also will likely keep some gas-fired power plants in operation past their original decommissioning date).

    And in New England, the grid operator concluded that an expensive terminal for importing liquefied natural gas could probably close in 2025 without imperiling the electricity system (although this depended on there being ample supply of oil for power plants to run in the winter when natural gas is used for heat). Overall, New England, which has been fretting about its energy reliability for years, has turned more optimistic, thanks in part to a substantial buildout of rooftop solar, which reduces demand on the gird.

    But the report does raise the question of just how fast the grid can get away from gas in any region in the midst of the energy transition. For example, there are still plans for a new peaker plant in Peabody, Massachusetts, despite a state law with the goal of cutting carbon emissions in half by 2030 and reaching net zero in 2050.

    The 2019 rules which are responsible for the peaker shutdowns envision up to four years of extensions “if the generator is designated by the NYISO or by the local transmission owner as needed to resolve a reliability need until a permanent solution is in place.” Whether transmission, wind power, and storage can be built by then is the challenge New York faces.

    Read more about power lines:

    Here Come the Power Lines

    The Canadian Wildfires Ominously Messed Up a Clean Energy Power Line

    The Real Climate Defeat in the Debt Ceiling Deal

    You’re out of free articles.

    Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
    To continue reading
    Create a free account or sign in to unlock more free articles.
    or
    Please enter an email address
    By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
    Climate

    AM Briefing: Trump Brings In the Lumberjacks

    On Alaska’s permitting overhaul, HALEU winners, and Heatmap’s Climate 101

    Trump Axes Logging Protections for 44 Million Acres of National Forest
    Heatmap Illustration/Getty Images

    Current conditions: Kansas, Oklahoma, and Arkansas brace for up to a foot of rain • Tropical Storm Juliette, still located well west of Mexico, is moving northward and bringing rain to parts of Southern California • Heat and dryness are raising the risk of wildfire in South Africa.

    THE TOP FIVE

    1. Trump to ax logging protections from 44 million acres of national forest

    The Trump administration has started the process to roll back logging protections from more than 44 million acres of national forest land. On Wednesday, U.S. Secretary of Agriculture Brooke Rollins proposed undoing a 25-year-old rule that banned building roads or harvesting timber on federally controlled forest land, much of which is located in Alaska. “Today marks a critical step forward in President Trump’s commitment to restoring local decision-making to federal land managers to empower them to do what’s necessary to protect America’s forests and communities from devastating destruction from fires,” Rollins said in a statement. “This administration is dedicated to removing burdensome, outdated, one-size-fits-all regulations that not only put people and livelihoods at risk but also stifle economic growth in rural America.”

    Keep reading...Show less
    Yellow
    Climate 101

    Welcome to Climate 101

    Your guide to the key technologies of the energy transition.

    Welcome to Climate 101
    Heatmap illustration/Getty images

    Here at Heatmap, we write a lot about decarbonization — that is, the process of transitioning the global economy away from fossil fuels and toward long-term sustainable technologies for generating energy. What we don’t usually write about is what those technologies actually do. Sure, solar panels convert energy from the sun into electricity — but how, exactly? Why do wind turbines have to be that tall? What’s the difference between carbon capture, carbon offsets, and carbon removal, and why does it matter?

    So today, we’re bringing you Climate 101, a primer on some of the key technologies of the energy transition. In this series, we’ll cover everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.

    There’s something here for everyone, whether you’re already an industry expert or merely climate curious. For instance, did you know that contemporary 17th century readers might have understood Don Quixote’s famous “tilting at windmills” to be an expression of NIMYBism? I sure didn’t! But I do now that I’ve read Jeva Lange’s 101 guide to wind energy.

    That said, I’d like to extend an especial welcome to those who’ve come here feeling lost in the climate conversation and looking for a way to make sense of it. All of us at Heatmap have been there at some point or another, and we know how confusing — even scary — it can be. The constant drumbeat of news about heatwaves and floods and net-zero this and parts per million that is a lot to take in. We hope this information will help you start to see the bigger picture — because the sooner you do, the sooner you can join the transition, yourself.

    Keep reading...Show less
    Green
    Climate 101

    What Goes on Inside a Solar Panel?

    The basics on the world’s fastest-growing source of renewable energy.

    What Goes on Inside a Solar Panel?
    Heatmap illustration/Getty Images

    Solar power is already the backbone of the energy transition. But while the basic technology has been around for decades, in more recent years, installations have proceeded at a record pace. In the United States, solar capacity has grown at an average annual rate of 28% over the past decade. Over a longer timeline, the growth is even more extraordinary — from an stalled capacity base of under 1 gigawatt with virtually no utility-scale solar in 2010, to over 60 gigawatts of utility-scale solar in 2020, and almost 175 gigawatts today. Solar is the fastest-growing source of renewable energy in both the U.S. and the world.

    Keep reading...Show less
    Yellow