Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Aerodynamics Is the Next Frontier of EV Design

New designs are giving consumers exactly what they want — striking looks and killer range. Electric vehicles will never be the same.

A Mercedes-Benz EV.
Heatmap Illustration/Mercedes-Benz, Getty Images

Cutting-edge aerodynamics tend to only be appreciated in hindsight.

The first American car to truly be designed aerodynamically was the iconic 1934 Chrysler Airflow. At a time when everything else on the road was huge and imposing, the Chrysler Airflow introduced streamlining to the automotive industry and featured a radical Art Deco shape that was developed in a wind tunnel. It was much more efficient and stable at high speeds than its contemporaries, and its groundbreaking unibody construction provided fantastic ride quality.

It was an absolute flop.

The Chrysler Airflow.Via Stellantis

Yet the Airflow’s aerodynamic design changed the face of the industry. Toyota’s first production car was inspired by the Airflow, and Peugeot found big success with its streamliner 202 and 402 models.

Since then, there have been many other aero-focused cars that push the boundaries of engineering, and quite a few of them have been flops. The UFO-like General Motors EV1 of the 1990s was a lease-only experimental electric vehicle with a record-breaking 0.19 drag coefficient. Almost its entire production run was bought back and crushed. Then there was the limited-run 2013 Volkswagen XL1, a diesel-powered hybrid with carbon-fiber construction and butterfly-wing doors that returned 260 MPG. Only 250 were ever made. Maybe the most successful modern example of aero-first design is the Toyota Prius, which is hugely popular, seriously efficient, and has an exterior that people love to hate.

Modern electric cars might just change things though.

The category is still in its relative infancy. Most automakers are focusing on large, heavy EV crossovers and trucks, whether powered by batteries or combustion engines, because those are the most popular segments. But they are also seriously inefficient. To get the kind of range that customers want, most of these new EVs have enormous battery packs. The GMC Hummer EV’s 210-kWh pack is double the size of the ones found in most other EVs and weighs 3,000 pounds. Yet the boxy Hummer still only has a range of around 300 miles.

But EVs like the Hummer might quickly end up an evolutionary curiosity. There’s growing concerned about the dangers these heavy but lightning-fast EVs pose to pedestrians and smaller cars, and some countries are already pushing consumers towards lighter and smaller options through tax rates and incentives. Yet even as charging infrastructure improves and solid-state battery tech emerges, consumers are still expected to prioritize range and efficiency. The result will be a sea change in EV styling, and we’re already starting to see the tides shift.

Finally, aerodynamic designs are going mainstream.

The Lucid Air, Porsche Taycan, and Tesla Model S are all super slippery sedans, but good aero isn’t limited to high-end EVs. The new Hyundai Ioniq 6 has an incredible drag coefficient of 0.21, giving the Long Range RWD trim a range of 361 miles from a 77.4-kWh battery pack. Its starting price of $46,615 is a couple of grand below the average price of a new car. Hyundai prominently features the Ioniq 6’s streamlined design in its advertising, positioning aerodynamics and efficiency not only as economical but cool and desirable. Volkswagen’s upcoming ID 7 will essentially take the Passat’s place in the lineup, featuring a sleek sedan body and a range of well over 300 miles.

The Hyundai Ioniq 6.Via Hyundai

This is not to say SUVs won’t still remain incredibly popular, and engineers are finding interesting ways to improve their aerodynamics too. The gorgeous Polestar 3 has an aero blade at the front of the hood that improves airflow and reduces pressures, and a floating rear wing that increases downforce and stability.

The Polestar 3.Via Polestar

The closest modern equivalent to the Airflow is arguably the Mercedes-Benz EQS, the first of Mercedes’ electric EQ sub-brand to go on sale in the U.S. The EQS’ lozenge-shaped body and cab-forward proportions give it a drag coefficient of 0.20, enough to make it the most aerodynamic series-production car when it launched. (The Lucid Air has since beat it with a 0.197 coefficient.) Like the Airflow, many customers and vocal online commenters are put off by the EQS’ styling, especially traditional Mercedes buyers. Mercedes appears undeterred, using the blobby styling throughout its EQ lineup, with an SUV version of the EQS and a midsize EQE sedan already on sale. Despite the success of the EQ models, Mercedes is still probably leaving money on the table by doubling down on the controversial aesthetic.

The Mercedes-Benz EQS.Via Mercedes-Benz

Until then, there is one recent production car that has pushed the boundaries of what’s currently possible: The Lightyear 0, an expensive Dutch sedan that briefly entered production in 2022. The nearly $300,000 Lightyear 0 was touted as the first truly solar-powered car, with 782 solar cells on the body that add over 40 miles of range per day during the summer, and its drag coefficient of 0.175 makes it the most aerodynamic production car ever. But back in January, Lightyear’s owners went bankrupt and production of the 0 was stopped for good after just a handful were made. The company says it’s focusing now on launching a much cheaper, still solar-powered EV called the Lightyear 2, which will wrap the 0’s know-how in a more accessible package.

The Lightyear 0.Via Lightyear

Chrysler is bringing back the name Airflow for its first legit production electric car, which will be going on sale in 2024. Sadly, the new Airflow is a crossover that, while handsome, captures none of the same groundbreaking spirit as the original. Yet while Chrysler might still be playing it safe 100 years later, the Airflow’s influence lives on in the world’s most exciting new cars. Aerodynamics are once again having a moment.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Q&A

You, Too, Can Protect Solar Panels Against Hail

A conversation with VDE Americas CEO Brian Grenko.

This week's interview subject.
Heatmap Illustration

This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.

The following conversation has been lightly edited for clarity.

Keep reading...Show less
Yellow
Hotspots

The Pro-Renewables Crowd Gets Riled Up

And more of the week’s big fights around renewable energy.

The United States.
Heatmap Illustration/Getty Images

1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.

  • Activists came together on Earth Day to protest the Trump administration’s decision to issue a stop work order on Equinor’s Empire Wind project. It’s the most notable rally for offshore wind I’ve seen since September, when wind advocates protested offshore opponents at the Preservation Society of Newport County, Rhode Island.
  • Esther Rosario, executive director of Climate Jobs New York, told me the rally was intended to focus on the jobs that will be impacted by halting construction and that about a hundred people were at the rally – “a good half of them” union members or representing their unions.
  • “I think it’s important that the elected officials that are in both the area and at the federal level understand the humans behind what it means to issue a stop-work order,” she said.

2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.

Keep reading...Show less
Yellow
Spotlight

How a Carbon Pipeline Is Turning Iowa Against Wind

Long Islanders, meanwhile, are showing up in support of offshore wind, and more in this week’s edition of The Fight.

Iowa.
Heatmap Illustration/Getty Images, Library of Congress

Local renewables restrictions are on the rise in the Hawkeye State – and it might have something to do with carbon pipelines.

Iowa’s known as a renewables growth area, producing more wind energy than any other state and offering ample acreage for utility-scale solar development. This has happened despite the fact that Iowa, like Ohio, is home to many large agricultural facilities – a trait that has often fomented conflict over specific projects. Iowa has defied this logic in part because the state was very early to renewables, enacting a state portfolio standard in 1983, signed into law by a Republican governor.

Keep reading...Show less
Yellow