Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Aerodynamics Is the Next Frontier of EV Design

New designs are giving consumers exactly what they want — striking looks and killer range. Electric vehicles will never be the same.

A Mercedes-Benz EV.
Heatmap Illustration/Mercedes-Benz, Getty Images

Cutting-edge aerodynamics tend to only be appreciated in hindsight.

The first American car to truly be designed aerodynamically was the iconic 1934 Chrysler Airflow. At a time when everything else on the road was huge and imposing, the Chrysler Airflow introduced streamlining to the automotive industry and featured a radical Art Deco shape that was developed in a wind tunnel. It was much more efficient and stable at high speeds than its contemporaries, and its groundbreaking unibody construction provided fantastic ride quality.

It was an absolute flop.

The Chrysler Airflow.Via Stellantis

Yet the Airflow’s aerodynamic design changed the face of the industry. Toyota’s first production car was inspired by the Airflow, and Peugeot found big success with its streamliner 202 and 402 models.

Since then, there have been many other aero-focused cars that push the boundaries of engineering, and quite a few of them have been flops. The UFO-like General Motors EV1 of the 1990s was a lease-only experimental electric vehicle with a record-breaking 0.19 drag coefficient. Almost its entire production run was bought back and crushed. Then there was the limited-run 2013 Volkswagen XL1, a diesel-powered hybrid with carbon-fiber construction and butterfly-wing doors that returned 260 MPG. Only 250 were ever made. Maybe the most successful modern example of aero-first design is the Toyota Prius, which is hugely popular, seriously efficient, and has an exterior that people love to hate.

Modern electric cars might just change things though.

The category is still in its relative infancy. Most automakers are focusing on large, heavy EV crossovers and trucks, whether powered by batteries or combustion engines, because those are the most popular segments. But they are also seriously inefficient. To get the kind of range that customers want, most of these new EVs have enormous battery packs. The GMC Hummer EV’s 210-kWh pack is double the size of the ones found in most other EVs and weighs 3,000 pounds. Yet the boxy Hummer still only has a range of around 300 miles.

But EVs like the Hummer might quickly end up an evolutionary curiosity. There’s growing concerned about the dangers these heavy but lightning-fast EVs pose to pedestrians and smaller cars, and some countries are already pushing consumers towards lighter and smaller options through tax rates and incentives. Yet even as charging infrastructure improves and solid-state battery tech emerges, consumers are still expected to prioritize range and efficiency. The result will be a sea change in EV styling, and we’re already starting to see the tides shift.

Finally, aerodynamic designs are going mainstream.

The Lucid Air, Porsche Taycan, and Tesla Model S are all super slippery sedans, but good aero isn’t limited to high-end EVs. The new Hyundai Ioniq 6 has an incredible drag coefficient of 0.21, giving the Long Range RWD trim a range of 361 miles from a 77.4-kWh battery pack. Its starting price of $46,615 is a couple of grand below the average price of a new car. Hyundai prominently features the Ioniq 6’s streamlined design in its advertising, positioning aerodynamics and efficiency not only as economical but cool and desirable. Volkswagen’s upcoming ID 7 will essentially take the Passat’s place in the lineup, featuring a sleek sedan body and a range of well over 300 miles.

The Hyundai Ioniq 6.Via Hyundai

This is not to say SUVs won’t still remain incredibly popular, and engineers are finding interesting ways to improve their aerodynamics too. The gorgeous Polestar 3 has an aero blade at the front of the hood that improves airflow and reduces pressures, and a floating rear wing that increases downforce and stability.

The Polestar 3.Via Polestar

The closest modern equivalent to the Airflow is arguably the Mercedes-Benz EQS, the first of Mercedes’ electric EQ sub-brand to go on sale in the U.S. The EQS’ lozenge-shaped body and cab-forward proportions give it a drag coefficient of 0.20, enough to make it the most aerodynamic series-production car when it launched. (The Lucid Air has since beat it with a 0.197 coefficient.) Like the Airflow, many customers and vocal online commenters are put off by the EQS’ styling, especially traditional Mercedes buyers. Mercedes appears undeterred, using the blobby styling throughout its EQ lineup, with an SUV version of the EQS and a midsize EQE sedan already on sale. Despite the success of the EQ models, Mercedes is still probably leaving money on the table by doubling down on the controversial aesthetic.

The Mercedes-Benz EQS.Via Mercedes-Benz

Until then, there is one recent production car that has pushed the boundaries of what’s currently possible: The Lightyear 0, an expensive Dutch sedan that briefly entered production in 2022. The nearly $300,000 Lightyear 0 was touted as the first truly solar-powered car, with 782 solar cells on the body that add over 40 miles of range per day during the summer, and its drag coefficient of 0.175 makes it the most aerodynamic production car ever. But back in January, Lightyear’s owners went bankrupt and production of the 0 was stopped for good after just a handful were made. The company says it’s focusing now on launching a much cheaper, still solar-powered EV called the Lightyear 2, which will wrap the 0’s know-how in a more accessible package.

The Lightyear 0.Via Lightyear

Chrysler is bringing back the name Airflow for its first legit production electric car, which will be going on sale in 2024. Sadly, the new Airflow is a crossover that, while handsome, captures none of the same groundbreaking spirit as the original. Yet while Chrysler might still be playing it safe 100 years later, the Airflow’s influence lives on in the world’s most exciting new cars. Aerodynamics are once again having a moment.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Trump Wants to Prop Up Coal Plants. They Keep Breaking Down.

According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.

Donald Trump as Sisyphus.
Heatmap Illustration/Getty Images

The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.

This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.

Keep reading...Show less
Blue
Spotlight

The New Transmission Line Pitting Trump’s Rural Fans Against His Big Tech Allies

Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.

Donald Trump, Maryland, and Virginia.
Heatmap Illustration/Getty Images

A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.

The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.

Keep reading...Show less
Yellow
Hotspots

Trump Punished Wind Farms for Eagle Deaths During the Shutdown

Plus more of the week’s most important fights around renewable energy.

The United States.
Heatmap Illustration/Getty Images

1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.

  • On November 3, Fox News published a story claiming it had “reviewed” a notice from the Fish and Wildlife Service showing that it had proposed fining Orsted more than $32,000 for dead bald eagles that were discovered last year at two of its wind projects – the Plum Creek wind farm in Wayne County and the Lincoln Land Wind facility in Morgan County, Illinois.
  • Per Fox News, the Service claims Orsted did not have incidental take permits for the two projects but came forward to the agency with the bird carcasses once it became aware of the deaths.
  • In an email to me, Orsted confirmed that it received the letter on October 29 – weeks into what became the longest government shutdown in American history.
  • This is the first action we’ve seen to date on bird impacts tied to Trump’s wind industry crackdown. If you remember, the administration sent wind developers across the country requests for records on eagle deaths from their turbines. If companies don’t have their “take” permits – i.e. permission to harm birds incidentally through their operations – they may be vulnerable to fines like these.

2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.

Keep reading...Show less
Yellow