You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
It’s tough out there for an electric truck.
Rivian’s R1T was the showpiece that launched the company; I was blown away the moment I saw its concept version at a car show in the 2010s. But the truck’s sales are down 38% over last year as the R1S SUV becomes the brand’s signature vehicle. Ford has found some footing with the F-150 Lightning, but is lowering expectations for the vehicle as Detroit faces fierce headwinds trying to convince its legion of truck drivers to go electric — and backtracks toward plug-in hybrids. The category leader in sales, the Tesla Cybertruck, exists primarily to inspire TikTok derision, which would be easier to swallow if its sales, while rising, didn’t pale in comparison to the Model Y and 3.
There are practical reasons for sluggish truck sales — the SUV shape is more useful than a pickup truck for the kinds of people currently buying EVs. There are political reasons, of course. Even with Donald Trump’s softening his EV hatred thanks to support from Elon Musk, lots of pickup drivers remain electric-averse. There are financial reasons, since many of the electric truck offerings to date are staggeringly expensive. Above these concerns floats a broader, more all-consuming problem: Maybe it’s just not the right time to make an all-electric truck, at least not the monstrous kind America buys.
Lucid’s CEO recently remarked on this idea in response to drawings of a theoretical Lucid pickup circulating on the internet. Despite America’s insatiable appetite for pickups, the company is absolutely not making a truck right now, he said.
His rationale boils down to the conundrum for today’s EVs: Vehicles of all stripes have been getting bigger as American drivers choose crossovers, SUVs, and trucks. Since those are the shapes Americans want, and want to pay extra for, those are the kinds of EVs carmakers want to sell. But a larger EV is a less efficient one. It takes lots of energy to move a heavy vehicle, which means they need huge batteries just to achieve a normal driving range.
As I noted earlier this month, Lucid has been counterculturally hyper-focused on making efficient vehicles that can maximize range. Its Air sedans achieve an industry-leading 4 miles per kilowatt-hour of electricity, which lets the cars claim more than 400 miles per charge despite having a battery of average size. The excellent but heavyweight R1T is only about half as efficient. You can buy one with 420 miles of range, but doing so requires an enormous and expensive battery pack.
Weight alone is not the only issue. Pickup owners — even those who never stray from the smooth pavement of the suburbs — want their vehicles to be able to tow a boat or tackle the Rubicon trail. Towing with an EV dings the driving range that’s already low because of the vehicle’s heft. Knowing that, Lucid CTO and CEO Peter Rawlinson estimated the minimum battery size threshold for a workable electric pickup at 150 kilowatt-hours — nearly double the size of the 84-kilowatt hour battery that powers the simplest Lucid Air, and well past the 118-kilowatt hour pack in the long range Grand Touring edition. Given the cost of today’s batteries and their physical limitations, it’s simply difficult to make the math work for the kind of megavehicle that full-size pickups have become.
Downsizing the truck would help, of course. It’d be much easier, and cheaper, to fully electrify something the size and weight of the Chevy S-10. However, the chorus of car enthusiasts and compact truck fans calling for the pickup to return to its reasonably sized roots has been drowned out by all the money Detroit is making on monster trucks. Don’t pin your hopes there.
But just because the full-size EV pickup is in a tough spot now doesn’t mean it’ll stay that way. The battery calculus will change as technologies improve and economies of scale emerge. At some point, it might be possible to squeeze 150 or 200 kilowatt-hours of juice into a not-gargantuan battery pack, and to build it for less than a small fortune, at which point the fully electric F-150 or Silverado becomes a far more attractive proposition.
The more immediate solution, though, is the ongoing rise of the hybrid. Trucks make terrific hybrids. The hybrid version of the current Ford F-150 has plenty of power and driving range for serious work or play, and also gets 25 miles per gallon in the city compared to 18-20 mpg for combustion-only trucks. If that doesn’t sound like a lot, remember that when it comes to cutting fossil fuels consumption and emissions, improving gas-guzzlers by a little can be more powerful than improving already-efficient cars by a lot. (With mpg, it’s better to go from bad to decent than from good to great. It’s a bad statistic.)
Crucially for the potential to cut the carbon emissions of America’s truck fleet, conventional hybrids are less weighed down by a feeling of foreignness and political baggage. There was a time when vehicles like the Prius were the peak of conspicuous car consumption for lefty greens. Now a slew of vehicles, including trucks, come in hybrid configurations (and some cars, like the Toyota Camry, have ditched combustion-only models altogether). A hybrid is just a car, one you can pump gas into and drive without thinking too much about the partisan implications of its powertrain.
The idea of plug-in hybrid full-size trucks is alluring, too. Owners could live out the fantasy of driving a weekend warrior 4x4 — and enjoy the in-group signaling that comes with pickup ownership — all while using electricity for the local driving that makes up most of their actual transportation needs. Perhaps someday we could even get Heatmap’s dream vehicle, a plug-in hybrid version of the reasonably sized Ford Maverick.
Trucks are good candidates for unusual hybrid configurations, too. This week, some American reviewers tested, and loved, the BYD Shark, a Chinese-made pickup on sale in Mexico but not here. The Shark’s hybrid setup is a range extender, meaning that although the gas engine can drive the front wheels in some situations, it exists primarily to charge a generator that powers electric motors, and those motors push the vehicle. Its battery pack can hold enough energy for an estimated 60 miles of electric driving.
The Shark won’t swim to America, given the ongoing tariffs battle. But it doesn’t have to. For 2025, Ram has promised us the Ramcharger extended-range pickup that puts this tech into a truck Americans can buy. Heatmap’s Jesse Jenkins called it an “ideal near-term product to satisfy some of the trickiest American market segments to electrify: namely the uniquely American demand for full-size pickups and massive SUVs.”
Indeed, if truck shoppers give this new kind of electrified vehicle a chance, they’re going to like what they find.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Loan Programs Office is good for more than just nuclear funding.
That China has a whip hand over the rare earths mining and refining industry is one of the few things Washington can agree on.
That’s why Alex Jacquez, who worked on industrial policy for Joe Biden’s National Economic Council, found it “astounding”when he read in the Washington Post this week that the White House was trying to figure out on the fly what to do about China restricting exports of rare earth metals in response to President Trump’s massive tariffs on the country’s imports.
Rare earth metals have a wide variety of applications, including for magnets in medical technology, defense, and energy productssuch as wind turbines and electric motors.
Jacquez told me there has been “years of work, including by the first Trump administration, that has pointed to this exact case as the worst-case scenario that could happen in an escalation with China.” It stands to reason, then, that experienced policymakers in the Trump administration might have been mindful of forestalling this when developing their tariff plan. But apparently not.
“The lines of attack here are numerous,” Jacquez said. “The fact that the National Economic Council and others are apparently just thinking about this for the first time is pretty shocking.”
And that’s not the only thing the Trump administration is doing that could hamper American access to rare earths and critical minerals.
Though China still effectively controls the global pipeline for most critical minerals (a broader category that includes rare earths as well as more commonly known metals and minerals such as lithium and cobalt), the U.S. has been at work for at least the past five years developing its own domestic supply chain. Much of that work has fallen to the Department of Energy, whose Loan Programs Office has funded mining and processing facilities, and whose Office of Manufacturing and Energy Supply Chains hasfunded and overseen demonstration projects for rare earths and critical minerals mining and refining.
The LPO is in line for dramatic cuts, as Heatmap has reported. So, too, are other departments working on rare earths, including the Office of Manufacturing and Energy Supply Chains. In its zeal to slash the federal government, the Trump administration may have to start from scratch in its efforts to build up a rare earths supply chain.
The Department of Energy did not reply to a request for comment.
This vulnerability to China has been well known in Washington for years, including by the first Trump administration.
“Our dependence on one country, the People's Republic of China (China), for multiple critical minerals is particularly concerning,” then-President Trump said in a 2020 executive order declaring a “national emergency” to deal with “our Nation's undue reliance on critical minerals.” At around the same time, the Loan Programs Office issued guidance “stating a preference for projects related to critical mineral” for applicants for the office’s funding, noting that “80 percent of its rare earth elements directly from China.” Using the Defense Production Act, the Trump administration also issued a grant to the company operating America's sole rare earth mine, MP Materials, to help fund a processing facility at the site of its California mine.
The Biden administration’s work on rare earths and critical minerals was almost entirely consistent with its predecessor’s, just at a greater scale and more focused on energy. About a month after taking office, President Bidenissued an executive order calling for, among other things, a Defense Department report “identifying risks in the supply chain for critical minerals and other identified strategic materials, including rare earth elements.”
Then as part of the Inflation Reduction Act in 2022, the Biden administration increased funding for LPO, which supported a number of critical minerals projects. It also funneled more money into MP Materials — including a $35 million contract from the Department of Defense in 2022 for the California project. In 2024, it awarded the company a competitive tax credit worth $58.5 million to help finance construction of its neodymium-iron-boron magnet factory in Texas. That facilitybegan commercial operation earlier this year.
The finished magnets will be bought by General Motors for its electric vehicles. But even operating at full capacity, it won’t be able to do much to replace China’s production. The MP Metals facility is projected to produce 1,000 tons of the magnets per year.China produced 138,000 tons of NdFeB magnets in 2018.
The Trump administration is not averse to direct financial support for mining and minerals projects, but they seem to want to do it a different way. Secretary of the Interior Doug Burgum has proposed using a sovereign wealth fund to invest in critical mineral mines. There is one big problem with that plan, however: the U.S. doesn’t have one (for the moment, at least).
“LPO can invest in mining projects now,” Jacquez told me. “Cutting 60% of their staff and the experts who work on this is not going to give certainty to the business community if they’re looking to invest in a mine that needs some government backstop.”
And while the fate of the Inflation Reduction Act remains very much in doubt, the subsidies it provided for electric vehicles, solar, and wind, along with domestic content requirements have been a major source of demand for critical minerals mining and refining projects in the United States.
“It’s not something we’re going to solve overnight,” Jacquez said. “But in the midst of a maximalist trade with China, it is something we will have to deal with on an overnight basis, unless and until there’s some kind of de-escalation or agreement.”
A conversation with VDE Americas CEO Brian Grenko.
This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.
The following conversation has been lightly edited for clarity.
Hiya Brian. So why’d you get into the hail issue?
Obviously solar panels are made with glass that can allow the sunlight to come through. People have to remember that when you install a project, you’re financing it for 35 to 40 years. While the odds of you getting significant hail in California or Arizona are low, it happens a lot throughout the country. And if you think about some of these large projects, they may be in the middle of nowhere, but they are taking hundreds if not thousands of acres of land in some cases. So the chances of them encountering large hail over that lifespan is pretty significant.
We partnered with one of the country’s foremost experts on hail and developed a really interesting technology that can digest radar data and tell folks if they’re developing a project what the [likelihood] will be if there’s significant hail.
Solar panels can withstand one-inch hail – a golfball size – but once you get over two inches, that’s when hail starts breaking solar panels. So it’s important to understand, first and foremost, if you’re developing a project, you need to know the frequency of those events. Once you know that, you need to start thinking about how to design a system to mitigate that risk.
The government agencies that look over land use, how do they handle this particular issue? Are there regulations in place to deal with hail risk?
The regulatory aspects still to consider are about land use. There are authorities with jurisdiction at the federal, state, and local level. Usually, it starts with the local level and with a use permit – a conditional use permit. The developer goes in front of the township or the city or the county, whoever has jurisdiction of wherever the property is going to go. That’s where it gets political.
To answer your question about hail, I don’t know if any of the [authority having jurisdictions] really care about hail. There are folks out there that don’t like solar because it’s an eyesore. I respect that – I don’t agree with that, per se, but I understand and appreciate it. There’s folks with an agenda that just don’t want solar.
So okay, how can developers approach hail risk in a way that makes communities more comfortable?
The bad news is that solar panels use a lot of glass. They take up a lot of land. If you have hail dropping from the sky, that’s a risk.
The good news is that you can design a system to be resilient to that. Even in places like Texas, where you get large hail, preparing can mean the difference between a project that is destroyed and a project that isn’t. We did a case study about a project in the East Texas area called Fighting Jays that had catastrophic damage. We’re very familiar with the area, we work with a lot of clients, and we found three other projects within a five-mile radius that all had minimal damage. That simple decision [to be ready for when storms hit] can make the complete difference.
And more of the week’s big fights around renewable energy.
1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.
2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.
3. Garrett County, Maryland – Fight readers tell me they’d like to hear a piece of good news for once, so here’s this: A 300-megawatt solar project proposed by REV Solar in rural Maryland appears to be moving forward without a hitch.
4. Stark County, Ohio – The Ohio Public Siting Board rejected Samsung C&T’s Stark Solar project, citing “consistent opposition to the project from each of the local government entities and their impacted constituents.”
5. Ingham County, Michigan – GOP lawmakers in the Michigan State Capitol are advancing legislation to undo the state’s permitting primacy law, which allows developers to evade municipalities that deny projects on unreasonable grounds. It’s unlikely the legislation will become law.
6. Churchill County, Nevada – Commissioners have upheld the special use permit for the Redwood Materials battery storage project we told you about last week.