Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

How Le Mans Became an Unlikely Laboratory for Cleaner Cars

The world’s greatest auto race is pushing the limits of cleaner combustion.

A checkered flag.
Heatmap Illustration/Getty Images

The irony of it wasn’t lost on me.

Last Wednesday morning, I found myself trudging through the noxious wildfire smoke that had blanketed all of New York City, my eyes burning under a dark orange sky as I struggled to breathe through an old KN95 mask I dug out of a kitchen drawer. Twelve hours later, I would be on a plane to Paris and on my way to witness the 100th anniversary of the 24 Hours of Le Mans.

Let’s just say leaving your city during an ecological crisis to go to a car race will give you some mixed feelings.

On one hand, I had wanted to see this race since I was a car-crazed kid, and I was there to write a feature I had been planning for months. On the other hand, it is never lost on me that the biggest source of greenhouse gas emissions in the U.S. is transportation, including cars. In recent years, I have found it hard to get excited about horsepower when the world is literally on fire. That was doubly true when my clothes stank of torched Canadian forest.

What I got instead was a pleasant surprise at the famed Circuit de la Sarthe: a lot of people, including those who put on this race, agree with me. And making the event more sustainable is now a key part of its future.

Its past is the stuff of motorsports legend. Since 1923 — minus the better part of the 1940s, for obvious reasons — Le Mans has represented the pinnacle of racing, an event where teams of drivers in different types of vehicles compete for a solid day of racing.

It’s called endurance racing for a reason. Le Mans is won by not just outrunning and outmaneuvering your opponents, but by being able to outlast them as well.

Naturally, fewer pit stops to refuel means more time on the track, so you could say sustainability (not to mention the robustness of the car itself) has always been a part of Le Mans even before that word was put into wider use. What began as a race on a dirt-gravel mix in primitive early automobiles has evolved into a competition between different classes of high-tech, highly advanced race cars that often feature experimental technologies, different types of fuels, and hybrid-electric power. Every team may have a completely different approach to taking the checkered flag.

That’s what I’ve always loved about Le Mans: It pushes the boundaries of automotive technology. The stuff you see one year may vary wildly just a couple of years later. Ten years ago, the most unbeatable cars were diesel Audis; the cars from this year’s top Hypercar class are all hybrids now, as they are in Formula One.

Could those cars get even cleaner someday? Potentially. That’s the series’ goal, in fact; recently its governing body announced plans to make all of the top-class cars run on zero-emission hydrogen by 2030. That’s the same year the Le Mans race aims to be fully carbon-neutral.

And Toyota, whose hybrids had been dominant in recent years (but lost on Sunday to Ferrari after an unforgettable war of attrition that took up most of the day) showed off a hydrogen-powered car it hopes to run at Le Mans in 2026 — the first year a new hydrogen racing category will be open.

Toyota is sticking to its big plans for hydrogen, even as the slow rollout of hydrogen cars and fueling infrastructure has meant battery-electric passenger cars are being purchased at an astronomically higher rate. But that fuel source could have also great potential for heavy-duty trucking, aviation, and car markets with little access to electricity. Or in motorsports, where internal-combustion cars that run on liquid fuel create no CO2 emissions but still make the explosive sounds that make racing so exciting. (The all-day nature of the race makes it ill-suited for electric cars and their charging times, for now, anyway.)

Besides that, and to my delight, sustainability was everywhere at Le Mans this year. None of the race cars in competition ran on gasoline. Instead, they used a fuel made from local wine residue biomass that creates significantly fewer emissions. It’s called Excellium Racing 100 and it’s made by French company TotalEnergies (which is, yes, a petroleum company but I’ll give points for effort here.) Le Mans started doing this just last year, and the fuel made from agricultural waste uses no oil and emits 65% less CO2 over its lifecycle. As the company says, this new fuel “no longer contains a single drop of petrol.” At this race, that’s an impressive feat.

Attendees — and there were almost 300,000 of them — got discounted tickets if they came to the race in hybrid cars or EVs, carpooled or took public transit. (Most of the CO2 emissions from the race come from the traffic jam outside, race organizers said.) And the race cars’ Michelin-supplied tires were made from recycled materials.

Now, you yourself may not be in the market anytime soon for the Ferrari 499P LMH race car that won this year — and it’s not street-legal, anyway. So why do you care? Because motorsports, and Le Mans in particular, has a way of serving as a testing lab for new technologies that trickle down to the passenger cars you can buy. Things like fog lights, disc brakes, halogen headlights, better hybrid technology, techniques for reducing fuel consumption, and better tires have all seen introductions or advancements at this race. Here, car tech gets tested in the most extreme conditions; better and cleaner consumer cars can often follow. It’s part of why car manufacturers even do this.

I like to imagine what good things could emerge here in the years to come. More efficient headlights that are safer for pedestrians, for example. Or new lightweight materials so cars can finally go on a diet. Or ways to make hybrid and EV batteries have better range and durability. Or more advanced applications for hydrogen or e-fuels, which could be a useful tool in reducing emissions alongside battery EVs. Or, selfishly, ways to make cars that are fun and fast, but not destructive to the climate.

After all, automakers are looking for a future here where they can exist at all. Regulations around fuel economy and eventually phasing out internal combustion are closing in on them, especially in Europe. And consumers care more than ever about not just efficiency but emissions. Car companies have to step up or go home; I sometimes thought the #WeRaceForChange hashtag I saw everywhere should’ve been #WeRaceToKeepMakingMoneySomeday.

But good things can come from what we see at Le Mans. It has a chance to be a leader in making cars, for as long as we depend on them, better and cleaner and safer. If advancements in tires, efficiency, and even new fuel types can win races, maybe they can pave the way for the rest of us. “Being passionate about cars does not mean being irresponsible,” the racing series says. I say amen to that.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Podcast

Why Geothermal Is So Hot Right Now

Inside season 2, episode 6 of Shift Key.

Geothermal power.
Heatmap Illustration/Fervo Energy

Geothermal is getting closer to the big time. Last week, Fervo Energy — arguably the country’s leading enhanced geothermal company — announced that its Utah demonstration project had achieved record production capacity. The new approach termed “enhanced geothermal,” which borrows drilling techniques and expertise from the oil and gas industry, seems poised to become a big player on America’s clean, 24/7 power grid of the future.

Why is geothermal so hot? How soon could it appear on the grid — and why does it have advantages that other zero-carbon technologies don’t? On this week’s episode of Shift Key, Rob and Jesse speak with a practitioner and an expert in the world of enhanced geothermal. Sarah Jewett is the vice president of strategy at Fervo Energy, which she joined after several years in the oil and gas industry. Wilson Ricks is a doctoral student of mechanical and aerospace engineering at Princeton University, where he studies macro-energy systems modeling. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.

Keep reading...Show less
Yellow
Technology

What Does OpenAI’s New Breakthrough Mean for Energy Consumption?

Why the new “reasoning” models might gobble up more electricity — at least in the short term

A robot with a smokestack coming out of its head.
Heatmap Illustration/Getty Images

What happens when artificial intelligence takes some time to think?

The newest set of models from OpenAI, o1-mini and o1-preview, exhibit more “reasoning” than existing large language models and associated interfaces, which spit out answers to prompts almost instantaneously.

Keep reading...Show less
Blue
Climate

AM Briefing: COP Coming into View

On Azerbaijan’s plans, offshore wind auctions, and solar jobs

What’s in the COP29 ‘Action Agenda’
Heatmap Illustration/Getty Images

Current conditions: Thousands of firefighters are battling raging blazes in Portugal • Shanghai could be hit by another typhoon this week • More than 18 inches of rain fell in less than 24 hours in Carolina Beach, which forecasters say is a one-in-a-thousand-year event.

THE TOP FIVE

1. Azerbaijan unveils COP29 ‘action agenda’

Azerbaijan, the host of this year’s COP29, today put forward a list of “non-negotiated” initiatives for the November climate summit that will “supplement” the official mandated program. The action plan includes the creation of a new “Climate Finance Action Fun” that will take (voluntary) contributions from fossil fuel producing countries, a call for increasing battery storage capacity, an appeal for a global “truce” during the event, and a declaration aimed at curbing methane emissions from waste (which the Financial Times noted is “only the third most common man-made source of methane, after the energy and agricultural sectors”). The plan makes no mention of furthering efforts to phase out fossil fuels in the energy system.

Keep reading...Show less
Yellow