You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An exclusive interview with the Rivian CEO about the future of electric vehicles.
It has been an astonishing year for the electric vehicle industry. In the past 12 months, the world’s three largest car markets — the United States, the European Union, and China — have unveiled aggressive new subsidies or ambitious new targets to accelerate EV adoption. Even automakers that have long sat out the electric revolution, such as Toyota, are now getting in the game.
That might be good news for R.J. Scaringe, the founder and chief executive of Rivian Automotive. Rivian is angling to use the EV revolution to become one of a handful of new American entrants to the automotive space. You can think of its high-end trucks and SUVs, the R1T and R1S, as the Patagonia meets Apple meets Jeep of the vehicle space. But the company, which designs and manufactures its trucks in America, has struggled with scaling issues and delivered only 42,000 electric vehicles since 2021.
I recently had the chance to sit down with Scaringe and chat about what’s next for Rivian and the broader electric vehicle industry. Our conversation has been lightly edited for concision and clarity.
It seems like over the past year — between the Inflation Reduction Act, between things we’ve seen internationally — the entire electric-vehicle market has undergone a number of shifts that the wider world still hasn’t caught up to yet. Could you give us a snapshot of the sector right now, as you see it?
I think we have seen these really large-scale shifts. You could almost look at it across every vantage point.
You have it from the vantage point of policymakers. If you'd told me just a few years ago that Europe would be committing to 100% of new vehicles being electric, you know, within the next 10 years. That California would be making that commitment in the same way. That the United States, through EPA regulations, is going to be 60% EV of new sales by 2030, I don't think I would have believed it. It’s awesome to see that — literally the reason I started the company is to help drive and instigate that change.
But in parallel with that, we see a shift in how consumers are looking at it. The performance envelope and the drivability of an electric vehicle makes it so much more desirable than an alternative. Buying a non-EV just feels very old. Aside from carbon emissions and environmental responsibility, it's just not interesting.
And then I think the third element is the way that the manufacturers have responded. Up until not too long ago, electrification was sort of a thing you had to do to generate some credits and to look responsible as a company, but they weren't really committed to it. Now, most big vehicle manufacturers have begun to really lean into their electrification strategies.
So with all those things happening, then the question becomes like, what does five years from now look like? What does 10 years from now look like?
I think policy is going to ping-pong around a little bit, unfortunately. Electrification and sustainability have become politicized — it makes no sense at all that it has been, but unfortunately it is. So as a result of that, you will see a little bit of variation there.
But I don't think, at a macro level, [the trend] is going to change. The slope of the curve is going to continue to be policy that drives toward electrification, policy that drives toward moving off of fossil fuels. I think consumers have made the switch and it's a diode-like switch — it's one directional.
I don't think we're going to see consumers have any reignited interest in combustion-powered vehicles. You're going to see a lot of entrenched things try to switch that. But the reality is consumers have made it clear that shift is going to come. It’s not as if everyone has reached that decision [today]. But you can see the slope of the curve.
Once you drive an electric vehicle, again, you can't go back. So for example, for us, more than 75% of our vehicles are sold to first-time EV customers, which is really cool, which means our brand is creating new EV customers. We're helping to drive that change. But once you're in a vehicle, you just can't imagine, like, going back to the pump or dealing with the sound of an engine.
And manufacturers now are all working towards both creating supply of vehicles, but also making sure that the products that they offer are interesting enough to generate demand.
The big question is: There's new brands like us, and then there's existing brands, and which of those brands emerge as the sort of stronger pools of demand — that because of their product attributes, the way those attributes are combined together, the way those are put in under a brand position, which of those offerings, create sort of breakaway interests from consumers?
Do you see consumers deciding my next vehicle will be electric? Or at this point, are consumers still being like, I'd like to go electric, but I want these different attributes. And I'm looking around.
Yeah, both. I think the vast majority of customers are now at least asking themselves the question, "Should I be thinking about electric?"
That doesn't mean they're going to decide on electric, either because of concerns around charging infrastructure or price, or the vehicle that they're looking for doesn't exist — "I want a minivan, but there's no electric minivan that's out there.” There may not be a form factor that fits your desire to see convertible electric vehicles today. So like you may end up in a non-EV choice, because it doesn't exist yet on the supply side. But everyone is asking the question. Or a lot of people are.
And I think what will happen over the next 10 years is those questions today that may not get answered with something that leads to an electric vehicle purchase, that will change. The vehicle that I want, that form factor will be available in an electric offering. And the infrastructure is getting solved too.
Then I think the reality of buying a combustion powered vehicle, in light of the policy that's coming, is sort of like building a horse barn in 1910. Like, imagine buying a Chevy Suburban in 2030. Like, what are you going to do with that, right? In 10 years? Yeah, like gas stations will be slowly disappearing. It's just weird.
It's also, like, your second largest asset.
You're buying this thing that absolutely has no future in our society. And will just increasingly become more and more of a relic of the past. But I think the anticipation of that is leading people to say I don't want to be buying a relic of the past.
I think we're one product cycle away from that really driving consumer demand.
What year do you see?
I think towards the end of this decade. This swing is nonlinear because once you get to that point, whether you're thinking about residual value, or just thinking about standing out as, like, the weird person who still drives a combustion powered vehicle, it's just gonna swing really fast.
What’s the biggest obstacle to electrification right now — to consumers making that decision? Is it just acceptance? Is it charging? Additional policy that needs to happen?
There's a number of them. But I think the biggest is customer choice.
Until recently, there were very, very few choices. Even today, I'd say there are very few good choices, especially across all price bands. So if you want to spend $20,000, you just don't have a good choice to make. You want to spend $35,000 or $40,000, there's a couple of choices. But there's still not a lot of choices. And we've seen that manifest in the extreme market share that Tesla has, because of the lack of choice from other manufacturers.
It's funny, because there aren't that many sub $25,000 new vehicles, period. Do you think we'll get back to that place in a few years in EVs? Or that we might have, you know, a Model 3 that gets there with local incentives, but everything will be nominally above $25,000.
$25,000 starts to get pretty low. I mean, the average selling price, or ASP — like, across the industry now — the average selling price of a new vehicle in the States is about double that, right? It’s like $50,000.
Also, I remember when I could buy a new car for less, but, like, inflation is happening.I bought a new car back in the day for less than $10,000. You can't do that anymore.
What does Rivian need to do to be ready for that moment, five years from now, when consumers are ready to make that leap?
This is the really exciting part for us.
The objective of our R1 program was to serve as our handshake to the world. I often say, it's like it opened the brand umbrella for us as a company and it communicated from a brand point of view and values point of view.
We have vehicles that, we say, enable adventure. They can take your kids to the beach, they can take you to the theme park, they can go to your folks' house for the weekend, you can go mountain biking — just these vehicles that enable life.
And we did that at a premium price with a flagship set of products, the R1T and R1s, that have led to the R1 vehicles being the best-selling electric vehicles over a $70,000 price point. Within that range there, they are the best selling vehicles in the premium segment today, the best-selling electric vehicles.
So as we now look at R2, we need to take that same brand excitement that we've generated, and apply it to a smaller form factor and a much lower price point, and therefore a much bigger addressable market, and carry with it the essence of what was embodied in R1, but make it accessible to so many more people.
So the timing of that program fits beautifully with what we see as this big shift, as a lot of people ask themselves, Am I gonna get an electric car? Well maybe the next one.
So we hope that the R2 platform helps pull a lot of customers across that jump where I want to spend $45,000 or $40,000 in a vehicle. It needs to fit my life. So it's my kids, my pets, my gear — it needs to be able to go places and get dirty and go down a rough road. Our brand fits that so well, but today, a lot of customers just can't afford it, or don't want to spend $70,000-plus, so that's where R2 comes in. I couldn't be more excited about what's coming with that program. Because it just fits so nicely into the market.
What’s the timing on R2?
Beginning of '26. So that vehicle will be produced in our second plant and in Atlanta.
I want to talk about factories for a second. I think Rivian was early to what we would now call reshoring — although, of course, for Rivian, it wasn't really "re," it was just locating manufacturing in the United States with engineering talent located here as well. Lots of other companies are now joining that for various policy and political risk reasons. I think for Rivian, the ramp up has been challenging. What advice would you have to other firms looking to, you know, stand up a manufacturing line and a new factory in the United States?
Yeah, well, we launched our R1T, the R1s, and then our two different variants of our commercial van. In any vehicle, a launch is tough, you’ve got thousands of components coming from hundreds of suppliers that have to ramp in unison and be beautifully synchronized. Any one of those parts can throw it off — there's a whole host of things that can go wrong from a quality or production process point of view. And so we were doing that for the first time. New workforce, new supply chain, new plant, new product, new technology.
And we weren't only doing the first time, we were doing it the first time times three, so it's just really challenging.
And then the operational backdrop was far worse than what we could have ever imagined. So the supply chain catastrophe that was 2022 was our launching ramp here. And then managing the build out of a large 5,000-plus person workforce to produce vehicles in our first plant, in the middle of a pandemic, was also really hard.
It was a hard launch and hard ramp. I don't think you could have designed a more complex environment to do that in. And the strategy we had of those three vehicles happening at the same time, in hindsight, knowing what we know now about what the environment was, we would have created more separation.
In 2017, someone should have come to you and been like, there's going to be a global pandemic.
If somebody only told us that.
So as we think about R2, we're simplifying the launch, we have one product that we're launching, it's a new product, leveraging a lot of the existing technology topology that we have in R1. So there's less technical risk, obviously. There’s also dramatic focus on part simplification, joint simplification and manufacturability. So it’s a very, very different vehicle architecture than what we did in R1. All the scars from ramping R1 are informing and driving this deep focus on manufacture building as we go into R2.
Would that have happened anyway or because of the needs of the R2 platform?
I think it's sometimes the pains of the present that enable the skills of the future. I look at like all the pain we've gone through on R1, created this proximity and an appreciation for manufacturing simplicity that, one, everyone would have agreed that that's necessary for R2, but two, embody that in such a deep way because you've lived through it is really powerful. And it's not like a whole different team is doing R2, it's the team that had to go through the R1 launch.
We’re coming off that — there's still people that are involved with the ramp, but a lot of the people that were on that are now moving to our or have moved, I should say, to R2, and so they're directly talking about stuff like, Hey, that was a real big challenge when we had to attach the C pillar trim on this part because the clips do this, this and this. Let's rethink that. Heck, let's get rid of all the clips. Those types of big questions are now coming up.
How do you see and how you think about vehicle weight right now?
Weight or wait? We get asked about both.
Ha, that’s true. Weight — W E I G H T. Rivian has obviously made two very big vehicles right now, and that increases the material needed for them — the bigger the vehicle, the bigger the battery, the bigger the mineral needs. At the same time, consumers seem to prefer larger motor vehicles. So I'm curious, like, do you think we're gonna find a sweet spot on vehicle weight? Do you think there's a trade-off between consumer demand, consumer tastes, and vehicle size? And if so, what does that mean for profitability? Because if vehicles are getting bigger, and it also means less safe for other people, not vehicles?
Yeah. There's a lot of questions.
First of all, our R1 vehicles are and will be our biggest consumer vehicles. They’re the flagship vehicles, as you'd expect — we have a three row SUV and, like, call it a large truck. And as a result of their physical size, their weight is also high, as a result of batteries, and drive train, chassis architecture, all this stuff. R2 will be a much lighter product, inherently.
And that's, I think, where you start to see where the vast majority of demand is going to be — that mid-size or smallish crossover and SUV space, where the vehicles are themselves smaller and therefore require less materials. This goes back to before the start of the company.
We also have to recognize that in order to drive electrification and to drive this transition, we have to be building products that are both just deeply desirable, but also respond to what customers want. So I talked before about what are the things that would block EV adoption? If we told customers the only way you can get an EV is if it's a small sedan, we're not going to sell a lot of EVs, you're going to see low penetration because customers want a vehicle that can fit all their kids, the gear, their stuff, they want larger SUVs —
And for energy density reasons, actually, the smaller the vehicle, the more likely it is to be fossil.
There's a lot of challenges. So I think what we're seeing is customers do want things that fit a form factor that applies what they've grown accustomed to. And we started with the large truck and largest SUV to do that.
The other thing just to note, and I think this is often missed, but if you're to pick the vehicles on the road, that from a carbon emissions point of view, you wanted to reduce carbon emissions by the largest percentage, you wouldn't pick the smallest vehicles in the road to replace, you'd go to the biggest, the least efficient. A 17 mile-per-gallon, 3-row SUV being replaced with a 80 to 90 mile-per-gallon equivalent R1S is a far better trade than a 45 mile-per-gallon ICE Vehicle being replaced with a 100 mile per gallon equivalent EV. Those deltas are really important.
And then I think the last part is — and this is something that I sort of lightly referenced — but there's so much amplified noise around the imperfections of electrification today that is creating a bunch of misinformation around the sustainability of an electric vehicle. No one, including ourselves, is saying an electric vehicle has zero footprint. Everything we do in our industrialized society has a footprint. If you use a light switch in your house, you have footprint. If you buy anything, or eat anything, for that matter, it has a footprint.
So the question is how do we approach a world that can be sustainable for generations upon generations, which means it needs to be a world that's powered by the sun. So that's either direct with photovoltaics or indirect with wind but either way it's sun powered. And that relies on us shifting off of an overall industrial economy that's running on fossil fuels.
And core to that is the things that need to move through stored energy. I think the vast majority [of that stored energy] will likely be in the form of batteries. There are hard problems like planes, but by the end of my lifetime, very few things on the planet will move with propulsion coming from fossil fuels.
And so the world is going to have a diverse set of needs. You're going to see everything from large trucks to buses, to large SUVs, to minivans to station wagons to hatchbacks to sports cars to — everything needs to be electrified.
And that means our vehicles are going to be a little heavier across the board because you know, the average vehicle weight is going to go up because everything's carrying a battery as opposed to a plastic fuel tank.
But you also get into a world where this becomes very circular. So we could talk about raw material extraction and some of the challenges with that. But in my lifetime, we'll also see a world where the source of our lithium is old lithium-ion batteries. And so you get this closed loop and it's why every lithium manufacturer, lithium processor in the world is focused, very focused on access to recycled content, and recycling becomes a really key feedstock as this system starts to reach scale.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.