You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An exclusive interview with the Rivian CEO about the future of electric vehicles.
It has been an astonishing year for the electric vehicle industry. In the past 12 months, the world’s three largest car markets — the United States, the European Union, and China — have unveiled aggressive new subsidies or ambitious new targets to accelerate EV adoption. Even automakers that have long sat out the electric revolution, such as Toyota, are now getting in the game.
That might be good news for R.J. Scaringe, the founder and chief executive of Rivian Automotive. Rivian is angling to use the EV revolution to become one of a handful of new American entrants to the automotive space. You can think of its high-end trucks and SUVs, the R1T and R1S, as the Patagonia meets Apple meets Jeep of the vehicle space. But the company, which designs and manufactures its trucks in America, has struggled with scaling issues and delivered only 42,000 electric vehicles since 2021.
I recently had the chance to sit down with Scaringe and chat about what’s next for Rivian and the broader electric vehicle industry. Our conversation has been lightly edited for concision and clarity.
It seems like over the past year — between the Inflation Reduction Act, between things we’ve seen internationally — the entire electric-vehicle market has undergone a number of shifts that the wider world still hasn’t caught up to yet. Could you give us a snapshot of the sector right now, as you see it?
I think we have seen these really large-scale shifts. You could almost look at it across every vantage point.
You have it from the vantage point of policymakers. If you'd told me just a few years ago that Europe would be committing to 100% of new vehicles being electric, you know, within the next 10 years. That California would be making that commitment in the same way. That the United States, through EPA regulations, is going to be 60% EV of new sales by 2030, I don't think I would have believed it. It’s awesome to see that — literally the reason I started the company is to help drive and instigate that change.
But in parallel with that, we see a shift in how consumers are looking at it. The performance envelope and the drivability of an electric vehicle makes it so much more desirable than an alternative. Buying a non-EV just feels very old. Aside from carbon emissions and environmental responsibility, it's just not interesting.
And then I think the third element is the way that the manufacturers have responded. Up until not too long ago, electrification was sort of a thing you had to do to generate some credits and to look responsible as a company, but they weren't really committed to it. Now, most big vehicle manufacturers have begun to really lean into their electrification strategies.
So with all those things happening, then the question becomes like, what does five years from now look like? What does 10 years from now look like?
I think policy is going to ping-pong around a little bit, unfortunately. Electrification and sustainability have become politicized — it makes no sense at all that it has been, but unfortunately it is. So as a result of that, you will see a little bit of variation there.
But I don't think, at a macro level, [the trend] is going to change. The slope of the curve is going to continue to be policy that drives toward electrification, policy that drives toward moving off of fossil fuels. I think consumers have made the switch and it's a diode-like switch — it's one directional.
I don't think we're going to see consumers have any reignited interest in combustion-powered vehicles. You're going to see a lot of entrenched things try to switch that. But the reality is consumers have made it clear that shift is going to come. It’s not as if everyone has reached that decision [today]. But you can see the slope of the curve.
Once you drive an electric vehicle, again, you can't go back. So for example, for us, more than 75% of our vehicles are sold to first-time EV customers, which is really cool, which means our brand is creating new EV customers. We're helping to drive that change. But once you're in a vehicle, you just can't imagine, like, going back to the pump or dealing with the sound of an engine.
And manufacturers now are all working towards both creating supply of vehicles, but also making sure that the products that they offer are interesting enough to generate demand.
The big question is: There's new brands like us, and then there's existing brands, and which of those brands emerge as the sort of stronger pools of demand — that because of their product attributes, the way those attributes are combined together, the way those are put in under a brand position, which of those offerings, create sort of breakaway interests from consumers?
Do you see consumers deciding my next vehicle will be electric? Or at this point, are consumers still being like, I'd like to go electric, but I want these different attributes. And I'm looking around.
Yeah, both. I think the vast majority of customers are now at least asking themselves the question, "Should I be thinking about electric?"
That doesn't mean they're going to decide on electric, either because of concerns around charging infrastructure or price, or the vehicle that they're looking for doesn't exist — "I want a minivan, but there's no electric minivan that's out there.” There may not be a form factor that fits your desire to see convertible electric vehicles today. So like you may end up in a non-EV choice, because it doesn't exist yet on the supply side. But everyone is asking the question. Or a lot of people are.
And I think what will happen over the next 10 years is those questions today that may not get answered with something that leads to an electric vehicle purchase, that will change. The vehicle that I want, that form factor will be available in an electric offering. And the infrastructure is getting solved too.
Then I think the reality of buying a combustion powered vehicle, in light of the policy that's coming, is sort of like building a horse barn in 1910. Like, imagine buying a Chevy Suburban in 2030. Like, what are you going to do with that, right? In 10 years? Yeah, like gas stations will be slowly disappearing. It's just weird.
It's also, like, your second largest asset.
You're buying this thing that absolutely has no future in our society. And will just increasingly become more and more of a relic of the past. But I think the anticipation of that is leading people to say I don't want to be buying a relic of the past.
I think we're one product cycle away from that really driving consumer demand.
What year do you see?
I think towards the end of this decade. This swing is nonlinear because once you get to that point, whether you're thinking about residual value, or just thinking about standing out as, like, the weird person who still drives a combustion powered vehicle, it's just gonna swing really fast.
What’s the biggest obstacle to electrification right now — to consumers making that decision? Is it just acceptance? Is it charging? Additional policy that needs to happen?
There's a number of them. But I think the biggest is customer choice.
Until recently, there were very, very few choices. Even today, I'd say there are very few good choices, especially across all price bands. So if you want to spend $20,000, you just don't have a good choice to make. You want to spend $35,000 or $40,000, there's a couple of choices. But there's still not a lot of choices. And we've seen that manifest in the extreme market share that Tesla has, because of the lack of choice from other manufacturers.
It's funny, because there aren't that many sub $25,000 new vehicles, period. Do you think we'll get back to that place in a few years in EVs? Or that we might have, you know, a Model 3 that gets there with local incentives, but everything will be nominally above $25,000.
$25,000 starts to get pretty low. I mean, the average selling price, or ASP — like, across the industry now — the average selling price of a new vehicle in the States is about double that, right? It’s like $50,000.
Also, I remember when I could buy a new car for less, but, like, inflation is happening.I bought a new car back in the day for less than $10,000. You can't do that anymore.
What does Rivian need to do to be ready for that moment, five years from now, when consumers are ready to make that leap?
This is the really exciting part for us.
The objective of our R1 program was to serve as our handshake to the world. I often say, it's like it opened the brand umbrella for us as a company and it communicated from a brand point of view and values point of view.
We have vehicles that, we say, enable adventure. They can take your kids to the beach, they can take you to the theme park, they can go to your folks' house for the weekend, you can go mountain biking — just these vehicles that enable life.
And we did that at a premium price with a flagship set of products, the R1T and R1s, that have led to the R1 vehicles being the best-selling electric vehicles over a $70,000 price point. Within that range there, they are the best selling vehicles in the premium segment today, the best-selling electric vehicles.
So as we now look at R2, we need to take that same brand excitement that we've generated, and apply it to a smaller form factor and a much lower price point, and therefore a much bigger addressable market, and carry with it the essence of what was embodied in R1, but make it accessible to so many more people.
So the timing of that program fits beautifully with what we see as this big shift, as a lot of people ask themselves, Am I gonna get an electric car? Well maybe the next one.
So we hope that the R2 platform helps pull a lot of customers across that jump where I want to spend $45,000 or $40,000 in a vehicle. It needs to fit my life. So it's my kids, my pets, my gear — it needs to be able to go places and get dirty and go down a rough road. Our brand fits that so well, but today, a lot of customers just can't afford it, or don't want to spend $70,000-plus, so that's where R2 comes in. I couldn't be more excited about what's coming with that program. Because it just fits so nicely into the market.
What’s the timing on R2?
Beginning of '26. So that vehicle will be produced in our second plant and in Atlanta.
I want to talk about factories for a second. I think Rivian was early to what we would now call reshoring — although, of course, for Rivian, it wasn't really "re," it was just locating manufacturing in the United States with engineering talent located here as well. Lots of other companies are now joining that for various policy and political risk reasons. I think for Rivian, the ramp up has been challenging. What advice would you have to other firms looking to, you know, stand up a manufacturing line and a new factory in the United States?
Yeah, well, we launched our R1T, the R1s, and then our two different variants of our commercial van. In any vehicle, a launch is tough, you’ve got thousands of components coming from hundreds of suppliers that have to ramp in unison and be beautifully synchronized. Any one of those parts can throw it off — there's a whole host of things that can go wrong from a quality or production process point of view. And so we were doing that for the first time. New workforce, new supply chain, new plant, new product, new technology.
And we weren't only doing the first time, we were doing it the first time times three, so it's just really challenging.
And then the operational backdrop was far worse than what we could have ever imagined. So the supply chain catastrophe that was 2022 was our launching ramp here. And then managing the build out of a large 5,000-plus person workforce to produce vehicles in our first plant, in the middle of a pandemic, was also really hard.
It was a hard launch and hard ramp. I don't think you could have designed a more complex environment to do that in. And the strategy we had of those three vehicles happening at the same time, in hindsight, knowing what we know now about what the environment was, we would have created more separation.
In 2017, someone should have come to you and been like, there's going to be a global pandemic.
If somebody only told us that.
So as we think about R2, we're simplifying the launch, we have one product that we're launching, it's a new product, leveraging a lot of the existing technology topology that we have in R1. So there's less technical risk, obviously. There’s also dramatic focus on part simplification, joint simplification and manufacturability. So it’s a very, very different vehicle architecture than what we did in R1. All the scars from ramping R1 are informing and driving this deep focus on manufacture building as we go into R2.
Would that have happened anyway or because of the needs of the R2 platform?
I think it's sometimes the pains of the present that enable the skills of the future. I look at like all the pain we've gone through on R1, created this proximity and an appreciation for manufacturing simplicity that, one, everyone would have agreed that that's necessary for R2, but two, embody that in such a deep way because you've lived through it is really powerful. And it's not like a whole different team is doing R2, it's the team that had to go through the R1 launch.
We’re coming off that — there's still people that are involved with the ramp, but a lot of the people that were on that are now moving to our or have moved, I should say, to R2, and so they're directly talking about stuff like, Hey, that was a real big challenge when we had to attach the C pillar trim on this part because the clips do this, this and this. Let's rethink that. Heck, let's get rid of all the clips. Those types of big questions are now coming up.
How do you see and how you think about vehicle weight right now?
Weight or wait? We get asked about both.
Ha, that’s true. Weight — W E I G H T. Rivian has obviously made two very big vehicles right now, and that increases the material needed for them — the bigger the vehicle, the bigger the battery, the bigger the mineral needs. At the same time, consumers seem to prefer larger motor vehicles. So I'm curious, like, do you think we're gonna find a sweet spot on vehicle weight? Do you think there's a trade-off between consumer demand, consumer tastes, and vehicle size? And if so, what does that mean for profitability? Because if vehicles are getting bigger, and it also means less safe for other people, not vehicles?
Yeah. There's a lot of questions.
First of all, our R1 vehicles are and will be our biggest consumer vehicles. They’re the flagship vehicles, as you'd expect — we have a three row SUV and, like, call it a large truck. And as a result of their physical size, their weight is also high, as a result of batteries, and drive train, chassis architecture, all this stuff. R2 will be a much lighter product, inherently.
And that's, I think, where you start to see where the vast majority of demand is going to be — that mid-size or smallish crossover and SUV space, where the vehicles are themselves smaller and therefore require less materials. This goes back to before the start of the company.
We also have to recognize that in order to drive electrification and to drive this transition, we have to be building products that are both just deeply desirable, but also respond to what customers want. So I talked before about what are the things that would block EV adoption? If we told customers the only way you can get an EV is if it's a small sedan, we're not going to sell a lot of EVs, you're going to see low penetration because customers want a vehicle that can fit all their kids, the gear, their stuff, they want larger SUVs —
And for energy density reasons, actually, the smaller the vehicle, the more likely it is to be fossil.
There's a lot of challenges. So I think what we're seeing is customers do want things that fit a form factor that applies what they've grown accustomed to. And we started with the large truck and largest SUV to do that.
The other thing just to note, and I think this is often missed, but if you're to pick the vehicles on the road, that from a carbon emissions point of view, you wanted to reduce carbon emissions by the largest percentage, you wouldn't pick the smallest vehicles in the road to replace, you'd go to the biggest, the least efficient. A 17 mile-per-gallon, 3-row SUV being replaced with a 80 to 90 mile-per-gallon equivalent R1S is a far better trade than a 45 mile-per-gallon ICE Vehicle being replaced with a 100 mile per gallon equivalent EV. Those deltas are really important.
And then I think the last part is — and this is something that I sort of lightly referenced — but there's so much amplified noise around the imperfections of electrification today that is creating a bunch of misinformation around the sustainability of an electric vehicle. No one, including ourselves, is saying an electric vehicle has zero footprint. Everything we do in our industrialized society has a footprint. If you use a light switch in your house, you have footprint. If you buy anything, or eat anything, for that matter, it has a footprint.
So the question is how do we approach a world that can be sustainable for generations upon generations, which means it needs to be a world that's powered by the sun. So that's either direct with photovoltaics or indirect with wind but either way it's sun powered. And that relies on us shifting off of an overall industrial economy that's running on fossil fuels.
And core to that is the things that need to move through stored energy. I think the vast majority [of that stored energy] will likely be in the form of batteries. There are hard problems like planes, but by the end of my lifetime, very few things on the planet will move with propulsion coming from fossil fuels.
And so the world is going to have a diverse set of needs. You're going to see everything from large trucks to buses, to large SUVs, to minivans to station wagons to hatchbacks to sports cars to — everything needs to be electrified.
And that means our vehicles are going to be a little heavier across the board because you know, the average vehicle weight is going to go up because everything's carrying a battery as opposed to a plastic fuel tank.
But you also get into a world where this becomes very circular. So we could talk about raw material extraction and some of the challenges with that. But in my lifetime, we'll also see a world where the source of our lithium is old lithium-ion batteries. And so you get this closed loop and it's why every lithium manufacturer, lithium processor in the world is focused, very focused on access to recycled content, and recycling becomes a really key feedstock as this system starts to reach scale.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob talks to Peter Brannen, author of the new book The Story of CO2 Is the Story of Everything.
How did life first form on Earth? What does entropy have to do with the origins of mammalian life — or the creation of the modern economy? And what chemical process do people, insects, Volkswagens, and coal power plants all share?
On this week’s episode of Shift Key, Rob chats with Peter Brannen, the author of a new history of the planet, The Story of CO2 Is the Story of Everything. The book weaves together a single narrative from the Big Bang to the Permian explosion to the oil-devouring economy of today by means of a single common thread: CO2, the same molecule now threatening our continued flourishing.
Brannen is a contributing writer at The Atlantic and the author of The Ends of the World, a history of mass extinctions on Earth. He is an affiliate at the Institute of Arctic and Alpine Research at the University of Colorado, Boulder. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Why do we have a surplus of oxygen in the air in the first place? It was, for me, also something I did not understand at all before I read the book.
Peter Brannen: So there’s this common trope that two out of the next three breaths you have is from phytoplankton the ocean, or a quarter of it is from the Amazon alive today. And there’s a sense in which that’s true because oxygen and CO2 are being exchanged very quickly in the biosphere. But there is something like 800 times more oxygen in the air than can be produced by the entire biosphere. And all of the oxygen that’s produced by the rainforest, say — the rainforest is a living system where everything else is consuming that organic matter and feeding off of it. And it’s kind of a wash — just as much oxygen is created by the trees as is consumed by the bugs and fungi and jaguars and all the things that are living in the rainforest that are feeding off those plants and respiring that plant matter back to things like CO2 and water. So on a net scale it’s a wash.
So that gets you a planet with close to zero oxygen, and instead we have this absurd abundance of this thing that wants to react with everything. And the only way you can do that is if, say, you imagine a tree and when it dies, rather than being decomposed by fungi and beetles and on and on, that tree suddenly gets buried in sediment and falls into the crust and becomes part of the rock record, and the oxygen it made in life is not used in its own destruction. And by shielding that tree in the earth, you leave this surplus of oxygen in the air. And over all of Earth history, as a vanishingly small amount of this organic matter, things like plants and algae, do make it into the rock record, they leave an equivalent gift of oxygen in the air as a surplus.
We are more familiar with plant matter in the crust where it’s economically exploitable — we call those fossil fuels. So in a weird way, the fact that me and you can breathe — I don’t think a lot of people attribute that to the fact that there’s fossil fuels in the ground. Luckily most, you know, quote-unquote fossil fuels are very diffuse in mudstones, and they’re not economically exploitable. And we’re never going to run out of oxygen by burning fossil fuels because, you know, we worry about CO2 going up in parts per million and oxygens in whole percent. So, you know, it is true that for every molecule of CO2 we burn we’re bringing down oxygen by an equivalent amount, it’s just not that concerning.
But yeah, there is this astounding way of reframing, of looking at the world where the plant surface is breathable only because of what’s happened in the rocks beneath it.
Mentioned:
Peter’s book, The Story of CO2 Is the Story of Everything
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Music for Shift Key is by Adam Kromelow.
Is the “turbine crisis” coming to an end? Or at least the end of the beginning?
One of the few bright spots for renewables this year has been that their main competitor for energy generation, natural gas, has been in a manufacturing crunch. An inability (or unwillingness) to ramp up production of turbines, the core component of a gas-fired power plant, to meet rising energy demand is cited regularly by industry executives and financiers to explain why renewables are the best solution to quickly getting power. And it’s reflected in the data; planned additions to the grid are overwhelmingly solar and storage.
But now there might be more turbines coming. Mitsubishi Heavy Industry chief executive Eisaku Ito told Bloomberg over the weekend that it aims to double its capacity to build gas turbines over the next two years.
The industry is essentially an oligopoly of three suppliers: Mitsubishi, GE Vernova, and Siemens Energy. Due to the high level of capital investment necessary to build turbines, there’s little chance of the triumvirate expanding. This means it’s a seller’s market. Developers describe having to be vetted by their suppliers for a product that might get delivered in five years, instead of suppliers fiercely competing for new business. That means for the turbine crisis to be truly reversed, executives (and investors) at Mitsubishi’s two competitors will have to be convinced that large-scale capacity expansions are worth it.
Something that might help them reach that conclusion is if capacity expansion plans are met with a higher stock price. In another ominous development for the renewable energy industry, Mitsubishi’s stock price went up in response to the news. Renewable developers have enough problems on their hands without having to worry about a gas turbine industry that could supply more and more megawatts over the medium term.
Gas turbine manufacturers have been trying to navigate the tension of fulfilling orders for new gas turbines and avoiding costly investments in new capacity that might not actually be utilized should the AI boom peter out, let alone if public policy makes it much more difficult to build new fossil-powered generation.
Up until now, manufacturers — and their investors — have seemed content with heavy demand and constrained supply. Going into the weekend, the stock prices of the gas turbine industry powerhouses GE Vernova, Siemens, and Mitsubishi Heavy Industry had risen 86%, 79%, and 69% so far this year.
But Mitsubishi Heavy Industry’s stock bump on Tuesday indicates that investors are not completely averse to capacity expansion. Yet at the same time, executives across the industry are careful to portray themselves as thoughtful and prudent stewards of capital.
Ito emphasized that the planned capacity expansion would not mean reckless investments, telling Bloomberg “the goal is to be as lean as possible” and that there would be work on the efficiency of the production process to address spiraling costs of turbine manufacturing.
“The executives seem keen to stress that this expansion will be lean and efficient,” Advait Arun, a climate and infrastructure analyst at the Center for Public Enterprise and the author of a much-cited Heatmap article on the turbine shortage, told me. “There’s a tension between getting over their skis by expanding overmuch while also killing the goose that’s laying their golden egg by not expanding.”
The pressure to build is immense — but so is the industry’s hard-won reticence about expansion.
Gas turbine orders are likely to hit a new record this year, according to S&P Global Commodities Insights, and the industry might be unwilling to go further.
“Past boom-and-bust cycles have made the industry cautious in its investments, and turbine demand in the early 2030s is uncertain,” S&P analysts wrote.
Siemens Energy chief executive Christian Bruch had told Morgan Stanley analysts in a note released Tuesday that the company had “no intention” of increasing capacity beyond working to expand the facilities it already has. He also said the company’s constraints are its own supply chain issues, namely the blades and vanes used in the turbines
And GE Vernova has been practically bragging about how far back they have reservations for turbines. “Our pipeline of activity for gas demand is only growing, but it is growing at even more healthy levels for 2029 deliveries, 2030, 2031,” the company’s chief executive Scott Strazik said on an earnings call in July.
And Wall Street has been happy to see developers get in line for whatever turbines can be made from the industry’s existing facilities. But what happens when the pressure to build doesn’t come from customers but from competitors?
A federal appeals court on Tuesday cleared the way for the Trump administration to kill former President Biden’s $20 billion green bank program, which would have provided low-cost loans for solar installations, building efficiency upgrades, and other local efforts to reduce greenhouse gas emissions.
The three-judge panel overturned a lower court’s injunction temporarily requiring the Environmental Protection Agency to resume payments, and ruled that most of the plaintiffs’ claims were contract disputes and belonged in the Court of Federal Claims. If the case now moves to the Court of Federal Claims, the plaintiffs would only be able to sue for damages and any possibility of reinstating the grants would be gone. But they could also petition to appeal the decision.
Congress created the grants, known as the Greenhouse Gas Reduction Fund, as part of the Inflation Reduction Act in 2022. It authorized Biden’s EPA to award $20 billion to a handful of nonprofits that would then offer financing to individuals and organizations for emission-reduction projects, mostly geared toward low-income or otherwise disadvantaged communities. The agency fully obligated the funds last August to eight nonprofits that would “create a national financing network for clean energy and climate solutions across the country.”
Then Trump took office and ordered his agency heads to pause and review all funding for Inflation Reduction Act programs. EPA Secretary Lee Zeldin targeted the Greenhouse Gas Reduction Program for termination, making a big show of a covert recording of a former agency employee comparing Biden’s efforts to get climate money out the door after the election to “throwing gold bars off the edge” of the Titanic. Nevermind that this particular program had been fully obligated prior to the election, and recipients had already started to announce investments as early as October.
The nonprofit awardees sued the Trump administration, and the District Court for the District of Columbia issued a temporary injunction on the EPA’s grant terminations in mid-April, mandating that the funds continue to be paid out while the case proceeded. The EPA appealed that injunction, leading to today’s ruling.
In her opinion for the majority, appeals court Judge Neomi Rao, a Trump appointee, dismissed the nonprofits’ claims that the EPA’s grant terminations were arbitrary and capricious, in violation of the Administrative Procedures Act. She wrote that the dispute was “essentially contractual” and therefore did not belong in the district court to begin with. The nonprofits had also alleged that the EPA violated the constitution's separation of powers in attempting to cancel the grant agreements, as Congress had given explicit direction to the agency to award the funds by September 2024. While Judge Rao allowed that the district court had jurisdiction over this particular claim, she ruled that it was “unlikely to succeed” on the merits.
This decision, if it stands, means the case is basically over, David Super, an administrative law expert at Georgetown Law, told me. The plaintiffs could ask to have it transferred to the Court of Federal Claims if they wish to pursue monetary damages, but that’s likely a losing proposition since Judge Rao — unusually, according to Super — went on to opine that the plaintiffs would have no case there, either.
The plaintiffs could, however, ask for a rehearing by the full D.C. circuit. “Given that this is a very important case, both legally and practically, I think they would have a good chance of getting reheard,” Super said.
There was one other important point in the decision. While this case has been playing out, Congress rescinded any “unobligated” funding — money that hasn’t yet been spent or contracted out — from the Greenhouse Gas Reduction Fund as part of Trump’s tax and spending law. The Congressional Budget Office estimated that the remaining balance in the fund was just $19 million, essentially the cost of program administration. But the Trump administration has argued in the ongoing court case that the law rescinded the full $20 billion. Judge Rao disagreed, writing that the law “did not render this appeal moot.”
This is the latest in a series of wins for the Trump administration over the termination of grant funding. Last week, the D.C. district court dismissed a challenge brought by nonprofits over the termination of the Environmental and Climate Justice Block Grants, another Inflation Reduction Act program, on the grounds that it belonged in the Court of Federal Claims. The Supreme Court also issued a similar opinion in August regarding grant funding from the National Institutes of Health that was terminated on the grounds of a shift in agency priorities.
The evaporation of $20 billion in clean energy funding is no small loss, but Super said the consequences could also be much more systemic, threatening the viability of federal grantmaking as a tool to stimulate private capital. “If these commitments are utterly unenforceable, then no one's going to do business with the federal government,” he said.