You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The R2 reveals — in its smallest details — the automaker’s aggressive new focus on keeping costs low.
Let’s get the big news out of the way: The new Rivian cars are very cool. The airy R2 is a two-row SUV that, if released today, would rival anything else on the American electric vehicle market; Rivian claims that its entry level trim will cost $45,000 and that it will get more than 300 miles of range. After including the Inflation Reduction Act’s incentives, that means the starting price for this car — for many Americans — will be $37,500.
Even more exciting are the company’s R3 and performance-oriented R3X, a hot-hatchback-slash-crossover concept that will be even cheaper than the R2 and has “the soul of a rally car,” according to Rivian’s lead designer Jeff Hammoud. It looks at once like a Volkswagen Golf GTI, an AMC Gremlin, and — could it be? — a Yugo. I love it.
It was a good day for Rivian after a disappointing year. Many things about its business are still working well. The brand evokes a fusion of Apple’s and Patagonia’s sensibilities, although it’s historically been priced more like Porsche, and it has become a favorite of high-earning Millennial dads. I saw more Apple Watch Ultras on Thursday than I have ever seen in one place before. RJ Scaringe, Rivian’s chief executive officer, was wearing one of them.
But Thursday, more importantly, signaled a new phase in Rivian’s life. After years of aggressive spending, the Irvine, California-based company is cutting costs and trying to find a financially sustainable — and profitable — footing. It’s one more sign that in the global electric vehicle sector, an industry that will be central to the fight against climate change, the startup phase has definitively ended.
This shift to profitability can be seen in virtually every aspect of Rivian’s business right now — and even in the design of the R2 itself.
Courtesy of Rivian.
If Rivian can make it, its prospects are good. It is one of a handful of American electric-vehicle makers that has a shot at competing with Tesla and surviving for the long term. But that will require it to get through the next few years and cross the “EV valley of death.” This is the period after a company has fully ramped up production and has very high costs, but before its revenue has grown to compensate. Tesla made it across this valley in 2021 and 2022; now Rivian is making its own attempt. This was the deeper message of Thursday’s event: Now is Rivian’s make-or-break moment, and the company’s leadership knows it.
To get across the valley of death, Rivian must become obsessive to the point of maniacal about its costs. The company’s survival is going to be an exceptionally close thing, and every dollar will matter. That’s why possibly the event’s most important news came right at the end, when Scaringe disclosed, almost as an aside, that Rivian is indefinitely delaying work on its new Georgia factory. That will save it about $2.25 billion, a significant sum for a company that burned roughly twice that amount last year. Rivian’s shares leapt 13% on the news.
“Every single thing we do within the business is focused on driving costs on this,” Scaringe told CNBC on Thursday. Other Rivian executives kept the message going: Walking through the R2’s design with reporters, Jeff Hammoud, Rivian’s design chief, mentioned the company’s efforts to cut costs at least six times. (Form follows function, indeed.)
The team kept asking itself “how can we simplify things — and not only simplify things from a design perspective, but also from a cost perspective,” he said, adding that “we’re not trying to make this thing feel or look cheap — that’s not what we do.”
He’s right: The R2 does not look cheap (as for feel, I wasn’t allowed to touch it), but some of the R1 series’s more premium touches are gone. Rivian has moved the R2’s speakers out of the driver and passenger doors and put them in the center console, a cost-saving measure that Hammoud suggested would give people more space for their water bottles. One of the panels in the car’s rear is made of mold-injected plastic, not sheet metal, which Hammoud said will save money and make the car easier to repair after a fender bender.
Then there are changes most drivers will never notice. The R2’s dashboard panels have a wood-like finish, and Hammoud wanted us to know that they are made of actual wood. And unlike other cars, which use wood purely as a decorative element — I assumed he was talking about the BMW i3 here — the R2’s wood is structurally integral to the dashboard. In other words, they look good and save money on underlying structural material. “With our vehicles and the R2, [the wood] literally holds the screen, it creates the shape for the vents,” Hammoud said. “If you were to take it out, literally the panel would fall apart.”
Courtesy of Rivian.
You can see, too, how other business needs are shaping how the vehicle looks and works — and even what kind of vehicle it is in the first place. Rivian only sells vehicles in the United States and Canada now, but wants and needs to expand into global markets in the coming years. It might be most famous for its pickup trucks, and yet Rivian didn’t announce a next-generation pickup on Thursday. Hammoud told me that that’s partly because Rivian is thinking about what will work well abroad, and mass pickup truck ownership remains a profoundly American phenomenon.
The charging port on the new Rivian models is on the rear passenger side, a move that confused many Americans who have come to prefer the charging port on the drivers’ side. (That’s where Tesla and the Rivian R1 put it, and the location is seen as better for home charging.) But think about it, Hammoud said. Many people in left-hand-drive countries charge their vehicles on the street, and a passenger-side setup — which becomes a driver’s side setup — makes more sense for them. The new setup also puts the charger closer to the battery, reducing the amount of high-voltage wires needed in the car. That cuts the car’s weight and — ding ding ding — lowers its cost. (Tesla puts its charger in the car’s rear for the same reason.)
The company hasn’t always been like this. During the first decade of its existence, interest rates sat nearly at zero, and Rivian could spend with abandon. It planned for its sprawling Georgia factory and could plan to sell more expensive cars to consumers who had access to cheap credit to buy them. The R2 carries forward the R1 tradition of having a flashlight in the drivers’ side door, but it lacks the hidey holes and air suspension of its predecessor. “With the R1, it was our premium flagship. We got to say yes to a lot of things,” Hammoud said. With R2, the question was “what do we have to say no to.”
Courtesy of Rivian.
This spring, Rivian will close down its Normal, Illinois, factory for a series of process upgrades. These will speed up its assembly lines and allow it to make its existing vehicles, the R1T and R1S, faster, with fewer internal computers and less wasted material; Rivian expects these improvements to carry it most of the way to profitability.
Even if it achieves its goal of turning a technical profit by the fall, it will still have a long way to go to become an actually sustainable business — and it will have to survive another year with no new products. The R2 is not due to go on sale until the first half of 2026, and the R3, which is built on the same platform as the R2, won’t start deliveries until “after the R2.” (No price or firm release date for the R3 has been announced.) The American EV market will change significantly by then. By the end of this year, some 50 different EV models in the U.S. will get more than 300 miles of range. Hyundai, Kia, Ford, and GM are all capable of bringing new cars to market during that interval that could smoke the R2 or R3, in part because they will be benchmarked off of them. The R2 and especially R3 seem like perfect cars for today’s market — and perfect cars for Rivian’s cash-saving situation. Whether they’ll be as perfect two years from now is anyone’s guess.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Suburban streets, exploding pipes, and those Santa Ana winds, for starters.
A fire needs three things to burn: heat, fuel, and oxygen. The first is important: At some point this week, for a reason we have yet to discover and may never will, a piece of flammable material in Los Angeles County got hot enough to ignite. The last is essential: The resulting fires, which have now burned nearly 29,000 acres, are fanned by exceptionally powerful and dry Santa Ana winds.
But in the critical days ahead, it is that central ingredient that will preoccupy fire managers, emergency responders, and the public, who are watching their homes — wood-framed containers full of memories, primary documents, material wealth, sentimental heirlooms — transformed into raw fuel. “Grass is one fuel model; timber is another fuel model; brushes are another — there are dozens of fuel models,” Bobbie Scopa, a veteran firefighter and author of the memoir Both Sides of the Fire Line, told me. “But when a fire goes from the wildland into the urban interface, you’re now burning houses.”
This jump from chaparral shrubland into neighborhoods has frustrated firefighters’ efforts to gain an upper hand over the L.A. County fires. In the remote wilderness, firefighters can cut fire lines with axes, pulaskis, and shovels to contain the blaze. (A fire’s “containment” describes how much firefighters have encircled; 25% containment means a quarter of the fire perimeter is prevented from moving forward by manmade or natural fire breaks.)
Once a fire moves into an urban community and starts spreading house to house, however, as has already happened in Santa Monica, Pasadena, and other suburbs of Los Angeles, those strategies go out the window. A fire break starves a fire by introducing a gap in its fuel; it can be a cleared strip of vegetation, a river, or even a freeway. But you can’t just hack a fire break through a neighborhood. “Now you’re having to use big fire engines and spray lots of water,” Scopa said, compared to the wildlands where “we do a lot of firefighting without water.”
Water has already proven to be a significant issue in Los Angeles, where many hydrants near Palisades, the biggest of the five fires, had already gone dry by 3:00 a.m. Wednesday. “We’re fighting a wildfire with urban water systems, and that is really challenging,” Los Angeles Department of Water and Power CEO Janisse Quiñones explained in a news conference later that same day.
LADWP said it had filled its 114 water storage tanks before the fires started, but the city’s water supply was never intended to stop a 17,000-acre fire. The hydrants are “meant to put out a two-house fire, a one-house fire, or something like that,” Faith Kearns, a water and wildfire researcher at Arizona State University, told me. Additionally, homeowners sometimes leave their sprinklers on in the hopes that it will help protect their house, or try to fight fires with their own hoses. At a certain point, the system — just like the city personnel — becomes overwhelmed by the sheer magnitude of the unfolding disaster.
Making matters worse is the wind, which restricted some of the aerial support firefighters typically employ. As gusts slowed on Thursday, retardant and water drops were able to resume, helping firefighters in their efforts. (The Eaton Fire, while still technically 0% contained because there are no established fire lines, has “significantly stopped” growing, The New York Times reports). Still, firefighters don’t typically “paint” neighborhoods; the drops, which don’t put out fires entirely so much as suppress them enough that firefighters can fight them at close range, are a liability. Kearns, however, told me that “the winds were so high, they weren’t able to do the water drops that they normally do and that are an enormous part of all fire operations,” and that “certainly compounded the problems of the fire hydrants running dry.”
Firefighters’ priority isn’t saving structures, though. “Firefighters save lives first before they have to deal with fire,” Alexander Maranghides, a fire protection engineer at the National Institute of Standards and Technology and the author of an ongoing case study of the 2018 Camp fire in Paradise, California, told me. That can be an enormous and time-consuming task in a dense area like suburban Los Angeles, and counterintuitively lead to more areas burning down. Speaking specifically from his conclusions about the Camp fire, which was similarly a wildland-urban interface, or WUI fire, Maranghides added, “It is very, very challenging because as things deteriorate — you’re talking about downed power lines, smoke obstructing visibility, and you end up with burn-overs,” when a fire moves so quickly that it overtakes people or fire crews. “And now you have to go and rescue those civilians who are caught in those burn-overs.” Sometimes, that requires firefighters to do triage — and let blocks burn to save lives.
Perhaps most ominously, the problems don’t end once the fire is out. When a house burns down, it is often the case that its water pipes burst. (This also adds to the water shortage woes during the event.) But when firefighters are simultaneously pumping water out of other parts of the system, air can be sucked down into those open water pipes. And not just any air. “We’re not talking about forest smoke, which is bad; we’re talking about WUI smoke, which is bad plus,” Maranghides said, again referring to his research in Paradise. “It’s not just wood burning; it’s wood, plastics, heavy metals, computers, cars, batteries, everything. You don’t want to be breathing it, and you don’t want it going into your water system.”
Water infrastructure can be damaged in other ways, as well. Because fires are burning “so much hotter now,” Kearns told me, contamination can occur due to melting PVC piping, which releases benzene, a carcinogen. Watersheds and reservoirs are also in danger of extended contamination, particularly once rains finally do come and wash soot, silt, debris, and potentially toxic flame retardant into nearby streams.
But that’s a problem for the future. In the meantime, Los Angeles — and lots of it — continues to burn.
“I don’t care how many resources you have; when the fires are burning like they do when we have Santa Anas, there’s so little you can do,” Scopa said. “All you can do is try to protect the people and get the people out, and try to keep your firefighters safe.”
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for many of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Five major fires started during the Santa Ana wind event this week:
Officials have not made any statements about the cause of any of the fires yet.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At about 27,000 acres burned, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 2,000 structures damaged so far, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 1,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between very wet and very dry years over the past eight decades. But climate change is expected to make dry years drier in Los Angeles. “The LA area is about 3°C warmer than it would be in preindustrial conditions, which (all else being equal) works to dry fuels and makes fires more intense,” Brown wrote.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.