Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Energy

This Massive Hydrogen Project Could Hurt the Climate More Than It Helps

Research from the Institute for Energy Economics and Financial Analysis calls blue hydrogen’s carbon math into question.

Pollution and clean skies.
Heatmap Illustration/Getty Images, Library of Congress, Air Products

The largest hydrogen producer in the world, Air Products, stands to earn up to $440 million per year in clean energy tax credits once it opens its massive, $7 billion complex in Louisiana in 2028. But a recent report argues that while the hydrogen produced there will be highly profitable for Air Products, it’s a “lose-lose proposition” for the environment — and for taxpayers.

The research adds to the long-running debate around the climate benefits of “blue hydrogen,” which is produced via the separation of hydrogen molecules from carbon molecules in natural gas, with systems that capture the resulting carbon emissions and store them underground. Advocates of the technology say it’s a critical bridge to a renewables-powered hydrogen economy, as it allows for cleaner hydrogen production now by relying on existing infrastructure. Critics, however, say that blue hydrogen’s emissions benefits are minimal if any, and that a focus on this technology diverts money from more meaningful climate solutions.

The blue hydrogen produced at Air Products’ Louisiana facility will be eligible for the lucrative 45Q carbon sequestration tax credit, which was expanded by the Inflation Reduction Act in 2022 and provides up to $85 per metric ton of carbon that’s permanently locked away.

The March report from the Institute for Energy Economics and Financial Analysis, however, argues that Air Products makes overly optimistic assumptions about both methane leakage rates and the effectiveness of carbon capture equipment, while underestimating the potency of methane in the short term. The company’s estimates are largely based on a Department of Energy life cycle analysis tool, which the report's authors also believe is flawed. The result, the authors write, is that the Louisiana plant would “cost billions of dollars in subsidies for essentially zero environmental benefit.”

With lawmakers in Congress considering which IRA tax credits to preserve and which ones to cut to make way for Trump’s spending priorities, now is a critical moment for climate-focused policymakers to have their priorities in order. It’s worth asking which provisions from Biden’s signature climate law are actually delivering a climate bang for their buck.

Air Products says that its Louisiana facility will sequester 5 million metric tons of CO2 annually over the 12 years that it’s eligible for the tax credit, which equates to $6.3 billion in total tax savings. To state the obvious, that’s a lot of taxpayer money for a project that a leading research group asserts will likely be a net negative for the environment.

“As you start expanding the envelope to take into account the full footprint and the full impact of this project and its product, there’s just not much of a benefit there, if any. It may be making things worse.” Anika Juhn, an energy data analyst at IEEFA and one of the report’s authors, told me. These findings are not specific just to Air Products’ upcoming facility — they’re “broadly applicable to other blue hydrogen projects,” Juhn said. (My colleague Emily Pontecorvo, for instance, wrote about a similar finding regarding methane leakage from the Permian Basin.) At least four of the DOE’s seven hydrogen hubs rely on natural gas with carbon capture and storage to some degree. Meanwhile, the Trump administration is looking to cut funding for the hubs that primarily produce hydrogen via renewable energy.

The DOE’s life cycle analysis tool uses an industrial methane leakage rate of 0.9% and a carbon capture rate of 94.5% for the specific method the Air Products facility will use, called autothermal reforming. (Or at least that’s what the IEEFA report said — I couldn’t find evidence of this carbon capture number in the government’s model itself.)

When Juhn and her co-author David Schlissel adjusted the analysis of Air Products’ Louisiana project using more typical industrial methane leakage rates of 1% to 4% and carbon capture rates ranging from 60% to 94.5%, they found that only under the most optimistic scenario would the project yield any carbon reductions at all. Even then, avoided emissions would only be about 200,000 metric tons per year of CO2 equivalent, whereas at the high end of the report’s “realistic scenario,” the project could result in an additional 7.5 million metric tons of CO2 equivalent annually.

Life cycle emissions chartCourtesy of IEEFA

To calculate the net life cycle emissions of a hydrogen project, the authors had to take the estimated benefits of hydrogen production into account, a task complicated by the fact that Air Products hasn’t announced any offtakers, making it impossible to know what dirtier (or cleaner) options customers might turn to if they didn’t have access to blue hydrogen. So instead, IEEFA relied on the White House’s general estimate that the 3 million metric tons of blue and green hydrogen (i.e. hydrogen released from water molecules using carbon-free electricity) produced by the hydrogen hubs would displace 25 million metric tons of CO2. But because the White House didn’t release its formula for determining avoided emissions, take their numbers with a grain of salt.

All of Air Products’ calculations thus come with the usual caveat, which is that they’re measured against an unknowable counterfactual — essentially a best guess at what would happen if plans for the Air Products facility went poof. Would the end users opt for hydrogen alternatives or would they rely on a standard natural gas-powered hydrogen facility with no carbon capture? Is it possible that a green hydrogen plant using renewables-powered electrolysis would be built instead?

All we know is that a portion of the hydrogen will be turned into ammonia and exported abroad, where Juhn told me it’s likely to be burned as fuel. Another portion will be injected into an existing 700-mile hydrogen pipeline on the Gulf Coast for use by existing customers in industries such as energy, transportation and chemicals.

While Air Products did not respond to my request for comment on the report, I was able to discuss the results with John Thompson, a director at the climate nonprofit Clean Air Task Force, which advocates for a wide array of climate-focused technologies, including hydrogen with carbon capture and storage. He took issue with the IEEFA study’s methodology, and told me that blue hydrogen projects have the potential to be a big win for the climate, so long as they’re replacing “gray” hydrogen projects — that is, those powered by natural gas with no carbon capture.

“When you do displace gray hydrogen, you get huge, huge benefits,” Thompson told me. Despite all the unknowns involved, he’s confident the Louisiana project will do just that, primarily due to the existing network of hydrogen pipelines at the site. “Those pipelines are there because they’re serving existing customers — refineries, ammonia plants, chemical manufacturing,” he said, meaning that “the likelihood that you’re displacing existing sources is pretty great.”

Thompson also took issue with the notion that a 95% capture rate is overly optimistic, telling me that there’s no technical barriers to achieving industrial capture rates in the 90s. “The 95% capture rate that they’re proposing to build towards is what is commercially guaranteed by many vendors,” Thompson said. “It hasn’t been widely used, not because it’s not commercially available, but because it’s costly, and there hasn’t been much demand for it until we got into climate considerations.”

To Thompson, the IEEFA report looked more like an “advocacy piece.” To IEEFA, the Louisiana project still appears to be a government subsidized money-making scheme. Notably, the Air Products facility probably will not qualify for the much debated 45V clean hydrogen production tax credit, the most generous subsidy of all in the IRA. That credit provides up to $3 per kilogram of clean hydrogen produced — a whopping $3,000 per metric ton — for projects with the lowest emissions intensity. It’s also tech-neutral, meaning that so long as blue hydrogen projects have life cycle emissions under 4 kilograms of carbon dioxide equivalent per kilogram of hydrogen produced, they will be eligible for at least a $0.60 credit per kilogram of clean hydrogen.

Air Products said last May that it would not even attempt to claim this credit for the Louisiana facility, even as the company asserts that the complex will produce “near-zero carbon emissions.” A 2023 DOE report indicated few blue hydrogen projects will be eligible, period, given “the added [natural gas] and electricity needed to run the [carbon capture and storage] facility.”

So at least by the DOE’s own standards, the hydrogen produced by Air Products will not be “clean.” That’s not a precondition for the carbon sequestration tax credit, though, which doesn’t demand life cycle analysis, just proof that you’re putting a certain amount of CO2 in the ground. Juhn thinks that’s a big mistake. These analyses are “the only way that you can know whether or not investing in CCS projects makes sense, either in a climate sense or in a financial sense,” she told me.

But as fossil fuel interests including Occidental and ExxonMobil have advocated for preserving and even increasing the 45Q tax credit, Juhn doesn’t expect to see any changes to the rule that would mandate more stringent requirements.

“I do hear the fossil fuel industry saying, Oh, we need blue hydrogen first because we can get things moving. We can get this online and we can start creating this product to stimulate demand,” she told me, citing a common argument that blue hydrogen is a necessary stepping stone to creating a robust, economical green hydrogen economy. “But the problem is that these facilities, they’re not going to go away when green hydrogen projects come online, and these projects are being built with a 25-, 30-year lifespan.”

At the very least, what everyone can agree on is the need to address upstream methane leakage. “It’s not enough to do carbon capture, I can’t emphasize that enough,” Thompson told me, pointing out that methane emissions are “not a law of thermodynamics” but rather “a variable that we can control if we choose to.” Unfortunately, it looks like the Trump administration won’t be choosing to, as the president recently signed legislation scrapping a Biden-era rule that imposed fees on oil and gas producers who emit excess methane.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

Why EV-Makers Are Suddenly Obsessed With Wires

Batteries can only get so small so fast. But there’s more than one way to get weight out of an electric car.

A Rivian having its wires pulled out.
Heatmap Illustration/Rivian, Getty Images

Batteries are the bugaboo. We know that. Electric cars are, at some level, just giant batteries on wheels, and building those big units cheaply enough is the key to making EVs truly cost-competitive with fossil fuel-burning trucks and cars and SUVs.

But that isn’t the end of the story. As automakers struggle to lower the cost to build their vehicles amid a turbulent time for EVs in America, they’re looking for any way to shave off a little expense. The target of late? Plain old wires.

Keep reading...Show less
Blue
Adaptation

How to Save Ski Season

Europeans have been “snow farming” for ages. Now the U.S. is finally starting to catch on.

A snow plow and skiing.
Heatmap Illustration/Getty Images

February 2015 was the snowiest month in Boston’s history. Over 28 days, the city received a debilitating 64.8 inches of snow; plows ran around the clock, eventually covering a distance equivalent to “almost 12 trips around the Equator.” Much of that plowed snow ended up in the city’s Seaport District, piled into a massive 75-foot-tall mountain that didn’t melt until July.

The Seaport District slush pile was one of 11 such “snow farms” established around Boston that winter, a cutesy term for a place that is essentially a dumpsite for snow plows. But though Bostonians reviled the pile — “Our nightmare is finally over!” the Massachusetts governor tweeted once it melted, an event that occasioned multiple headlines — the science behind snow farming might be the key to the continuation of the Winter Olympics in a warming world.

Keep reading...Show less
Yellow
AM Briefing

New York Quits

On microreactor milestones, the Colorado River, and ‘crazy’ Europe

Wind turbines.
Heatmap Illustration/Getty Images

Current conditions: A train of three storms is set to pummel Southern California with flooding rain and up to 9 inches mountain snow • Cyclone Gezani just killed at least four people in Mozambique after leaving close to 60 dead in Madagascar • Temperatures in the southern Indian state of Kerala are on track to eclipse 100 degrees Fahrenheit.


THE TOP FIVE

1. New York abandons its fifth offshore wind solicitation

What a difference two years makes. In April 2024, New York announced plans to open a fifth offshore wind solicitation, this time with a faster timeline and $200 million from the state to support the establishment of a turbine supply chain. Seven months later, at least four developers, including Germany’s RWE and the Danish wind giant Orsted, submitted bids. But as the Trump administration launched a war against offshore wind, developers withdrew their bids. On Friday, Albany formally canceled the auction. In a statement, the state government said the reversal was due to “federal actions disrupting the offshore wind market and instilling significant uncertainty into offshore wind project development.” That doesn’t mean offshore wind is kaput. As I wrote last week, Orsted’s projects are back on track after its most recent court victory against the White House’s stop-work orders. Equinor's Empire Wind, as Heatmap’s Jael Holzman wrote last month, is cruising to completion. If numbers developers shared with Canary Media are to be believed, the few offshore wind turbines already spinning on the East Coast actually churned out power more than half the time during the recent cold snap, reaching capacity factors typically associated with natural gas plants. That would be a big success. But that success may need the political winds to shift before it can be translated into more projects.

Keep reading...Show less
Blue