You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Research from the Institute for Energy Economics and Financial Analysis calls blue hydrogen’s carbon math into question.
The largest hydrogen producer in the world, Air Products, stands to earn up to $440 million per year in clean energy tax credits once it opens its massive, $7 billion complex in Louisiana in 2028. But a recent report argues that while the hydrogen produced there will be highly profitable for Air Products, it’s a “lose-lose proposition” for the environment — and for taxpayers.
The research adds to the long-running debate around the climate benefits of “blue hydrogen,” which is produced via the separation of hydrogen molecules from carbon molecules in natural gas, with systems that capture the resulting carbon emissions and store them underground. Advocates of the technology say it’s a critical bridge to a renewables-powered hydrogen economy, as it allows for cleaner hydrogen production now by relying on existing infrastructure. Critics, however, say that blue hydrogen’s emissions benefits are minimal if any, and that a focus on this technology diverts money from more meaningful climate solutions.
The blue hydrogen produced at Air Products’ Louisiana facility will be eligible for the lucrative 45Q carbon sequestration tax credit, which was expanded by the Inflation Reduction Act in 2022 and provides up to $85 per metric ton of carbon that’s permanently locked away.
The March report from the Institute for Energy Economics and Financial Analysis, however, argues that Air Products makes overly optimistic assumptions about both methane leakage rates and the effectiveness of carbon capture equipment, while underestimating the potency of methane in the short term. The company’s estimates are largely based on a Department of Energy life cycle analysis tool, which the report's authors also believe is flawed. The result, the authors write, is that the Louisiana plant would “cost billions of dollars in subsidies for essentially zero environmental benefit.”
With lawmakers in Congress considering which IRA tax credits to preserve and which ones to cut to make way for Trump’s spending priorities, now is a critical moment for climate-focused policymakers to have their priorities in order. It’s worth asking which provisions from Biden’s signature climate law are actually delivering a climate bang for their buck.
Air Products says that its Louisiana facility will sequester 5 million metric tons of CO2 annually over the 12 years that it’s eligible for the tax credit, which equates to $6.3 billion in total tax savings. To state the obvious, that’s a lot of taxpayer money for a project that a leading research group asserts will likely be a net negative for the environment.
“As you start expanding the envelope to take into account the full footprint and the full impact of this project and its product, there’s just not much of a benefit there, if any. It may be making things worse.” Anika Juhn, an energy data analyst at IEEFA and one of the report’s authors, told me. These findings are not specific just to Air Products’ upcoming facility — they’re “broadly applicable to other blue hydrogen projects,” Juhn said. (My colleague Emily Pontecorvo, for instance, wrote about a similar finding regarding methane leakage from the Permian Basin.) At least four of the DOE’s seven hydrogen hubs rely on natural gas with carbon capture and storage to some degree. Meanwhile, the Trump administration is looking to cut funding for the hubs that primarily produce hydrogen via renewable energy.
The DOE’s life cycle analysis tool uses an industrial methane leakage rate of 0.9% and a carbon capture rate of 94.5% for the specific method the Air Products facility will use, called autothermal reforming. (Or at least that’s what the IEEFA report said — I couldn’t find evidence of this carbon capture number in the government’s model itself.)
When Juhn and her co-author David Schlissel adjusted the analysis of Air Products’ Louisiana project using more typical industrial methane leakage rates of 1% to 4% and carbon capture rates ranging from 60% to 94.5%, they found that only under the most optimistic scenario would the project yield any carbon reductions at all. Even then, avoided emissions would only be about 200,000 metric tons per year of CO2 equivalent, whereas at the high end of the report’s “realistic scenario,” the project could result in an additional 7.5 million metric tons of CO2 equivalent annually.
Courtesy of IEEFA
To calculate the net life cycle emissions of a hydrogen project, the authors had to take the estimated benefits of hydrogen production into account, a task complicated by the fact that Air Products hasn’t announced any offtakers, making it impossible to know what dirtier (or cleaner) options customers might turn to if they didn’t have access to blue hydrogen. So instead, IEEFA relied on the White House’s general estimate that the 3 million metric tons of blue and green hydrogen (i.e. hydrogen released from water molecules using carbon-free electricity) produced by the hydrogen hubs would displace 25 million metric tons of CO2. But because the White House didn’t release its formula for determining avoided emissions, take their numbers with a grain of salt.
All of Air Products’ calculations thus come with the usual caveat, which is that they’re measured against an unknowable counterfactual — essentially a best guess at what would happen if plans for the Air Products facility went poof. Would the end users opt for hydrogen alternatives or would they rely on a standard natural gas-powered hydrogen facility with no carbon capture? Is it possible that a green hydrogen plant using renewables-powered electrolysis would be built instead?
All we know is that a portion of the hydrogen will be turned into ammonia and exported abroad, where Juhn told me it’s likely to be burned as fuel. Another portion will be injected into an existing 700-mile hydrogen pipeline on the Gulf Coast for use by existing customers in industries such as energy, transportation and chemicals.
While Air Products did not respond to my request for comment on the report, I was able to discuss the results with John Thompson, a director at the climate nonprofit Clean Air Task Force, which advocates for a wide array of climate-focused technologies, including hydrogen with carbon capture and storage. He took issue with the IEEFA study’s methodology, and told me that blue hydrogen projects have the potential to be a big win for the climate, so long as they’re replacing “gray” hydrogen projects — that is, those powered by natural gas with no carbon capture.
“When you do displace gray hydrogen, you get huge, huge benefits,” Thompson told me. Despite all the unknowns involved, he’s confident the Louisiana project will do just that, primarily due to the existing network of hydrogen pipelines at the site. “Those pipelines are there because they’re serving existing customers — refineries, ammonia plants, chemical manufacturing,” he said, meaning that “the likelihood that you’re displacing existing sources is pretty great.”
Thompson also took issue with the notion that a 95% capture rate is overly optimistic, telling me that there’s no technical barriers to achieving industrial capture rates in the 90s. “The 95% capture rate that they’re proposing to build towards is what is commercially guaranteed by many vendors,” Thompson said. “It hasn’t been widely used, not because it’s not commercially available, but because it’s costly, and there hasn’t been much demand for it until we got into climate considerations.”
To Thompson, the IEEFA report looked more like an “advocacy piece.” To IEEFA, the Louisiana project still appears to be a government subsidized money-making scheme. Notably, the Air Products facility probably will not qualify for the much debated 45V clean hydrogen production tax credit, the most generous subsidy of all in the IRA. That credit provides up to $3 per kilogram of clean hydrogen produced — a whopping $3,000 per metric ton — for projects with the lowest emissions intensity. It’s also tech-neutral, meaning that so long as blue hydrogen projects have life cycle emissions under 4 kilograms of carbon dioxide equivalent per kilogram of hydrogen produced, they will be eligible for at least a $0.60 credit per kilogram of clean hydrogen.
Air Products said last May that it would not even attempt to claim this credit for the Louisiana facility, even as the company asserts that the complex will produce “near-zero carbon emissions.” A 2023 DOE report indicated few blue hydrogen projects will be eligible, period, given “the added [natural gas] and electricity needed to run the [carbon capture and storage] facility.”
So at least by the DOE’s own standards, the hydrogen produced by Air Products will not be “clean.” That’s not a precondition for the carbon sequestration tax credit, though, which doesn’t demand life cycle analysis, just proof that you’re putting a certain amount of CO2 in the ground. Juhn thinks that’s a big mistake. These analyses are “the only way that you can know whether or not investing in CCS projects makes sense, either in a climate sense or in a financial sense,” she told me.
But as fossil fuel interests including Occidental and ExxonMobil have advocated for preserving and even increasing the 45Q tax credit, Juhn doesn’t expect to see any changes to the rule that would mandate more stringent requirements.
“I do hear the fossil fuel industry saying, Oh, we need blue hydrogen first because we can get things moving. We can get this online and we can start creating this product to stimulate demand,” she told me, citing a common argument that blue hydrogen is a necessary stepping stone to creating a robust, economical green hydrogen economy. “But the problem is that these facilities, they’re not going to go away when green hydrogen projects come online, and these projects are being built with a 25-, 30-year lifespan.”
At the very least, what everyone can agree on is the need to address upstream methane leakage. “It’s not enough to do carbon capture, I can’t emphasize that enough,” Thompson told me, pointing out that methane emissions are “not a law of thermodynamics” but rather “a variable that we can control if we choose to.” Unfortunately, it looks like the Trump administration won’t be choosing to, as the president recently signed legislation scrapping a Biden-era rule that imposed fees on oil and gas producers who emit excess methane.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On betrayed regulatory promises, copper ‘anxiety,’ and Mercedes’ stalled EV plans
Current conditions: New York City is once again choking on Canadian wildfire smoke • Torrential rain is flooding southeastern Slovenia and northern Croatia • Central Asia is bracing for the hottest days of the year, with temperatures nearing 100 degrees Fahrenheit in Uzbekistan’s capital of Tashkent all week.
In May, the Trump administration signaled its plans to gut Energy Star, the energy efficiency certification program administered by the Environmental Protection Agency. Energy Star is extremely popular — its brand is recognized by nearly 90% of Americans — and at a cost to the federal government of just $32 million per year, saves American households upward of $40 billion in energy costs per year as of 2024, for a total of more than $500 billion saved since its launch in 1992, by the EPA’s own estimate. Not only that, as one of Energy Star’s architects told Heatmap’s Jeva Lange back in May, more energy efficient appliances and buildings help reduce strain on the grid. “Think about the growing demands of data center computing and AI models,” RE Tech Advisors’ Deb Cloutier told Jeva. “We need to bring more energy onto the grid and make more space for it.”
That value has clearly resonated with lawmakers on the Hill. Legislators tasked with negotiating appropriations in both the Senate and the House of Representatives last week proposed fully funding Energy Star at $32 million for the next fiscal year. It’s unclear how the House’s decision to go into recess until September will affect the vote, but Ben Evans, the federal legislative director at the U.S. Green Building Council, said the bill is “a major step in the right direction demonstrating that ENERGY STAR has strong bipartisan support on Capitol Hill.”
A worker connects panels on floating solar farm project in Huainan, China. Kevin Frayer/Getty Images
The United States installed just under 11 gigawatts of solar panels in the first three months of this year, industry data show. In June alone, China installed nearly 15 gigawatts, PV Tech reported. And, in a detail that demonstrates just how many panels the People’s Republic has been deploying at home in recent years, that represented an 85% drop from the previous month and close to a 40% decline compared to June of last year.
The photovoltaic installation plunge followed Beijing’s rollout of two new policies that changed the renewables business in China. The first, called the 531 policy, undid guaranteed feed-in tariffs and required renewable projects to sell electricity on the spot market. That took effect on June 1. The other, called the 430 policy, took effect on May 1 and mandated that new distributed solar farms consume their own power first before allowing the sale of surplus electricity to the grid. As a result of the stalled installations, a top panel manufacturer warned the trade publication Opis that companies may need to raise prices by as much as 10%.
For years now, Fortescue, the world’s fourth-biggest producer of iron ore, has directed much of the earnings from its mines in northwest Australia and steel mills in China toward building out a global green hydrogen business. But changes to U.S. policy have taken a toll. Last week, Fortescue told investors it was canceling its green hydrogen project in Arizona, which had been set to come online next year. It’s also abandoning its plans for a green hydrogen plant on Australia’s northeastern coast, The Wall Street Journal reported.
“A shift in policy priorities away from green energy has changed the situation in the U.S.,” Gus Pichot, Fortescue’s chief executive of growth and energy, told analysts on a call. “The lack of certainty and a step back in green ambition has stopped the emerging green-energy markets, making it hard for previously feasible projects to proceed.” But green hydrogen isn’t dead everywhere. Just last week, the industrial gas firm Air Liquide made a final decision to invest in a 200-megawatt green hydrogen plant in the Netherlands.
The Trump administration put two high-ranking officials at the National Oceanic and Atmospheric Administration on administrative leave, CNN reported. The reasoning behind the move wasn’t clear, but both officials — Steve Volz, who leads NOAA’s satellites division, and Jeff Dillen, NOAA’s deputy general counsel — headed up the investigation into whether President Donald Trump violated NOAA’s scientific integrity policies during his so-called Sharpiegate scandal.
The incident from September 2019, during Trump’s first term, started when the president incorrectly listed Alabama among the states facing a threat from Hurricane Dorian. Throughout the following week, Trump defended the remark, insisting he had been right, and ultimately showed journalists a weather map that had been altered with a black Sharpie market to show the path of the storm striking Alabama. NOAA’s investigation into the incident concluded that Neil Jacobs, the former agency official who backed Trump at the time and is now nominated to serve as chief, succumbed to political pressure and violated scientific integrity rules.
In March, North Carolina’s Republican-controlled Senate passed a bill to repeal the state’s climate law and scrap the 2030 deadline by which the monopoly utility Duke Energy had to slash its planet-heating emissions by 70% compared to 2005 levels. Governor Josh Stein, a Democrat, vetoed the legislation. But on Tuesday, the GOP majorities in both chambers of the legislature plan to vote to override the veto.
Doing so and enacting the bill could cost North Carolina more than 50,000 jobs annually and cause tens of billions of dollars in lost investments, Canary Media’s Elizabeth Ouzts reported. That’s according to a new study from a consultancy commissioned by clean-energy advocates in the state. The analysis is based on data from the state-sanctioned consumer advocate, Public Staff.
For years, a mystery has puzzled scientists: Why did Neanderthal remains show levels of a nitrogen isotope only seen among carnivores like hyenas and wolves that eat more meat than a hominid could safely consume? New research finally points to an answer: Neanderthals were eating putrefying meat garnished with maggots, said Melanie Beasley, an anthropologist at Purdue University. “When you get the lean meat and the fatty maggot, you have a more complete nutrient that you’re consuming.”
Oregon’s Cram Fire was a warning — the Pacific Northwest is ready to ignite.
What could have been the country’s first designated megafire of 2025 spluttered to a quiet, unremarkable end this week. Even as national headlines warned over the weekend that central Oregon’s Cram Fire was approaching the 100,000-acre spread usually required to achieve that status, cooler, damper weather had already begun to move into the region. By the middle of the week, firefighters had managed to limit the Cram to 95,736 acres, and with mop-up operations well underway, crews began rotating out for rest or reassignment. The wildfire monitoring app Watch Duty issued what it said would be its final daily update on the Cram Fire on Thursday morning.
By this time in 2024, 10 megafires had already burned or ignited in the U.S., including the more-than-million-acre Smokehouse Creek fire in Texas last spring. While it may seem wrong to describe 2025 as a quieter fire season so far, given the catastrophic fires in the Los Angeles area at the start of the year, it is currently tracking below the 10-year average for acres burned at this point in the season. Even the Cram, a grassland fire that expanded rapidly due to the hot, dry conditions of central Oregon, was “not [an uncommon fire for] this time of year in the area,” Bill Queen, a public information officer with the Pacific Northwest Complex Incident Management Team 3, told me over email.
At the same time, the Cram Fire can also be read as a precursor. It was routine, maybe, but also large enough to require the deployment of nearly 900 fire personnel at a time when the National Wildland Fire Preparedness Level is set to 4, meaning national firefighting resources were already heavily committed when it broke out. (The preparedness scale, which describes how strapped federal resources are, goes up to 5.) Most ominous of all, though, is the forecast for the Pacific Northwest for “Dirty August” and “Snaptember,” historically the two worst months of the year in the region for wildfires.
National Interagency Coordination Center
“Right now, we’re in a little bit of a lull,” Jessica Neujahr, a public affairs officer with the Oregon Department of Forestry, acknowledged to me. “What comes with that is knowing that August and September will be difficult, so we’re now doing our best to make sure that our firefighters are taking advantage of having time to rest and get rejuvenated before the next big wave of fire comes through.”
That next big wave could happen any day. The National Interagency Fire Center’s fire potential outlook, last issued on July 1, describes “significant fire potential” for the Northwest that is “expected to remain above average areawide through September.” The reasons given include the fact that “nearly all areas” of Washington and Oregon are “abnormally dry or in drought status,” combined with a 40% to 60% probability of above-average temperatures through the start of the fall in both states. Moisture from the North American Monsoon, meanwhile, looks to be tracking “largely east of the Northwest.” At the same time, “live fuels in Oregon are green at mid to upper elevations but are drying rapidly across Washington.”
In other words, the components for a bad fire season are all there — the landscape just needs a spark. Lightning, in particular, has been top of mind for Oregon forecasters, given the tinderbox on the ground. A single storm system, such as one that rolled over southeast and east-central Oregon in June, can produce as many as 10,000 lightning strikes; over the course of just one night earlier this month, thunderstorms ignited 72 fires in two southwest Oregon counties. And the “kicker with lightning is that the fires don’t always pop up right away,” Neujahr explained. Instead, lightning strike fires can simmer for up to a week after a storm, evading the detection of firefighting crews until it’s too late. “When you have thousands of strikes in a concentrated area, it’s bound to stretch the local resources as far as they can go,” Neujahr said.
National Interagency Coordination Center
The National Interagency Fire Center has “low confidence … regarding the number of lightning ignitions” for the end of summer in the Northwest, in large part due to the incredible difficulty of forecasting convective storms. Additionally, the current neutral phase of the El Niño-Southern Oscillation means there is a “wide range of potential lightning activity” that adds extra uncertainty to any predictions. The NIFC’s higher confidence in its temperature and precipitation outlooks, in turn, “leads to a belief that the ratio of human to natural ignitions will remain high and at or above 2024 levels.” (An exploding transformer appears to have been the ignition source for the Cram Fire; approximately 88% of wildfires in the United States have human-caused origins, including arson.)
Periodic wildfires are a naturally occurring part of the Western ecosystem, and not all are attributable to climate change. But before 1995, the U.S. averaged fewer than one megafire per year; between 2005 and 2014, that average jumped to 9.8 such fires per year. Before 1970, there had been no documented megafires at all.
Above-average temperatures and drought conditions, which can make fires larger and burn hotter, are strongly associated with a warming atmosphere, however. Larger and hotter fires are also more dangerous. “Our biggest goal is always to put the fires out as fast as possible,” Neujahr told me. “There is a correlation: As fires get bigger, the cost of the fire grows, but so do the risks to the firefighters.”
In Oregon, anyway, the Cram Fire’s warning has registered. Shortly after the fire broke out, Oregon Governor Tina Kotek declared a statewide emergency with an eye toward the months ahead. “The summer is only getting hotter, drier, and more dangerous — we have to be prepared for worsening conditions,” she said in a statement at the time.
It’s improbable that there won’t be a megafire this season; the last time the U.S. had a year without a fire of 100,000 acres or more was in 2001. And if or when the megafire — or megafires — break out, all signs point to the “where” being Oregon or Washington, concentrating the area of potential destruction, exhausting local personnel, and straining federal resources. “When you have two states directly next to each other dealing with the same thing, it just makes it more difficult to get resources because of the conflicting timelines,” Neujahr said.
By October, at least, there should be relief: The national fire outlook describes “an increasing frequency of weather systems and precipitation” that should “signal an end of fire season” for the Northwest once fall arrives. But there are still a long 68 days left to go before then.
On China’s Paris pact with Europe, Trump’s mineral geopolitics, and Google’s CO2 battery bet
Current conditions: The record-setting heat roasting more than 100 million Americans in the central U.S. is now headed for the densely populated Northeast • The American Samoan capital of Pago Pago faces “imminent” flash flooding on Friday amid days of rain • China just set a record for the highest number of hot days since March in its history.
The Palisades nuclear plant on the shore of Lake Michigan.Holtec International
Three years after the Palisades nuclear plant in Michigan became the country’s last atomic power station to permanently close, the facility is set to become the first in U.S. history to reopen after a final shutdown. On Thursday afternoon, the Nuclear Regulatory Commission issued its formal approval for the plant’s operating license, putting the single-reactor station on track to restart later this year, the plant’s owner, Holtec International, told me. With just 11 days to go before its license expired, Palisades’ previous owner opted to close down May 2022 rather than make necessary upgrades to continue operations. The Biden-era Loan Programs Office at the Department of Energy put up more than $1.5 to fund the effort. Despite freezing funding for other projects, the Trump administration shelled out the money to Holtec.
The project still faces obstacles. Holtec still needs to finalize repairs at the plant, which are subject to another NRC review. Anti-nuclear activists, meanwhile, vowed to appeal the NRC license. Still, Holtec’s President Kelly Trice said the NRC approval “represents an unprecedented milestone in U.S. nuclear energy.”
As the U.S. seeks to dismantle its climate regulations, China and the European Union signed a pledge Thursday to work together on cutting emissions. The document, dubbed “the way forward” following the 10-year anniversary of the Paris climate accords, called the 2015 pact brokered in the French capital “the cornerstone of international climate cooperation” that “all parties” should implement “in a comprehensive, good-faith and effective manner.” The two global powers also reached a deal for the emergency export of rare earth metals from China, which dominates their global trade, to European factories facing shortages of the materials, according to The New York Times.
The diplomatic communique comes as the U.S. goes through the process to quit the Paris Agreement for the second time. In 2017, Trump waited weeks to initiate the exit, and the protocol completed around the time of the 2020 election. That allowed then-President-elect Joe Biden to signal his plans to rejoin immediately, rendering the American withdrawal a brief hiccup. This time, however, the rules allow the U.S. to leave in about a year, and Trump started the process on his first day in office.
Get Heatmap AM directly in your inbox every morning:
Just over a week after the Pentagon made a landmark investment in the United States’ only rare earths mine, President Donald Trump elevated his minerals adviser to the Nation Security Council. While the Trump administration did not confirm what Copley’s new position would entail, an industry source told E&E News the job change was a promotion for the military veteran and former mining executive, who would now serve as “both the White House mineral and supply chain czar.”
The move comes as China has sought to leverage its grip over global supplies of minerals such as rare earth metals and graphite by tightening export restrictions. While Trump’s military investment into California rare earth producer MP Materials may mirror China’s strategy of government funding for critical materials, Beijing has another thing going for it: Strong demand from electric vehicles. Therein lies what Heatmap’s Matthew Zeitlin recently called the “paradox” of Trump’s mineral policy: He’s making it easier to mine but eliminating the demand pull of electric vehicles and wind turbines.
Google has invested in small modular reactors, nuclear fusion, and even old-fashioned hydropower to shore up a steady supply of electricity for its reactors. This morning, the tech giant announced a strategic investment into carbon dioxide batteries, as I reported earlier today over at Latitude Media. The startup Energy Dome houses its technology in white, inflatable shelters similar to what you see over the courts at professional tennis tournaments. But inside is equipment that compresses and liquefies CO2, stores it in carbon steel tanks, then turns the liquid back into pressurized gas when energy is needed. Once reheated, the carbon dioxide is pumped through turbines to generate electricity for up to 24 hours at a time.
Headquartered in Milan, Energy Dome already had a deal for pilot plants in Wisconsin, Sardinia, and India, about eight hours west of Hyderabad. But Google said it plans to deploy the technology across the U.S., Europe, and Asia.
Maine is speeding up approvals for nearly 1,600 gigawatt-hours of renewable energy to make sure projects can tap into federal tax credits before the Trump administration cracks down, Canary Media's Sarah Shemkus reported. State regulators gave developers a July 25 deadline to take part in the fast-tracking program. The state is seeking enough bids to meet about 13% of its annual electricity demand. The program will give preference to projects sited on property where water or soil is contaminated by toxic PFAS, the cancer-causing substances known as “forever chemicals.”
Not all states are as welcoming of renewables. In Ohio, as Heatmap’s Jael Holzman reported yesterday, 26 out of 88 counties have “established restricted areas where wind or solar are prohibited.” The key to getting around local opposition is early community outreach and building a base of support for a project.
Consider the lobster, but listen to the shrimp. A new study in the journal Royal Society Open Science found that listening to the high-frequency sounds snapping shrimp produce “can be used as a real indicator of coral resilience,” Xavier Raick, postdoctoral fellow in bioacoustics at the Cornell Lab of Ornithology, said in a press release. “Snapping shrimp’s abundance is a mirror of coral cover. So if you have more corals, especially very big colonies, you have more snapping shrimps, and then you can use their sound as a proxy for the reef, structure, and health.”