You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Biden administration is hoping they’ll be a starting gun for the industry. The industry may or may not be fully satisfied.

In one of the Biden administration’s final acts to advance decarbonization, and after more than two years of deliberation and heated debate, the Treasury Department issued the final requirements governing eligibility for the clean hydrogen tax credit on Friday.
At up to $3 per kilogram of clean hydrogen produced, this was the most generous subsidy in the 2022 Inflation Reduction Act, and it came with significant risks if the Treasury did not get the rules right. Hydrogen could be an important tool to help decarbonize the economy. But without adequate guardrails, the tax credit could turn it into a shovel that digs the U.S. deeper into a warming hole by paying out billions of dollars to projects that increase emissions rather than reducing them.
In the final guidelines, the Biden administration recognized the severity of this risk. It maintained key safeguards from the rules proposed in 2023, while also making a number of changes, exceptions, and other “flexibilities” — in the preferred parlance of the Treasury Department — that sacrifice rigorous emissions accounting in favor of making the program easier to administer and take advantage of.
For example, it kept a set of requirements for hydrogen made from water and electricity known as the “three pillars.” Broadly, they compel producers to match every hour of their operation with simultaneous clean energy generation, buy this energy from newly built sources, and ensure those sources are in the same general region as the hydrogen plant. Hydrogen production is extremely energy-intensive, and the pillars were designed to ensure that it doesn’t end up causing coal and natural gas plants to run more. But the final rules are less strict than the proposal. For example, the hourly matching requirement doesn’t apply until 2030, and existing nuclear plants count as new zero-emissions energy if they are considered to be at risk of retirement.
Finding a balance between limiting emissions and ensuring that the tax credit unlocks development of this entirely new industry was a monumental challenge. The Treasury Department received more than 30,000 comments on the proposed rule, compared to about 2,000 for the clean electricity tax credit, and just 89 for the electric vehicle tax credit. Senior administration officials told me this may have been the most complicated of all of the provisions in the IRA. In October, the department assured me that the rules would be finished by the end of the year.
Energy experts, environmental groups, and industry are still digesting the rule, and I’ll be looking out for future analyses of the department’s attempt at compromise. But initial reactions have been cautiously optimistic.
On the environmental side, Dan Esposito from the research nonprofit Energy Innovation told me his first impression was that the final rule was “a clear win for the climate” and illustrated “overwhelming, irrefutable evidence” in favor of the three pillars approach, though he did have concerns about a few specific elements that I’ll get to in a moment. Likewise, Conrad Schneider, the U.S. senior director at the Clean Air Task Force, told me that with the exception of a few caveats, “we want to give this final rule a thumbs up.”
Princeton University researcher Jesse Jenkins, a co-host of Heatmap’s Shift Key podcast and a vocal advocate for the three pillars approach, told me by email that, “Overall, Treasury’s final rules represent a reasonable compromise between competing priorities and will provide much-needed certainty and a solid foundation for the growth of a domestic clean hydrogen industry.”
On the industry side, the Fuel Cell and Hydrogen Energy Association put out a somewhat cryptic statement. CEO Frank Wolak applauded the administration for making “significant improvements” but warned that the rules were “still extremely complex” and contain several open-ended parts that will be subject to interpretation by the incoming Trump-Vance administration.
“This issuance of Final Rules closes a long chapter, and now the industry can look forward to conversations with the new Congress and new Administration regarding how federal tax and energy policy can most effectively advance the development of hydrogen in the U.S.,” Wolak said.
Constellation Energy, the country’s biggest supplier of nuclear power, was among the most vocal critics of the proposed rule and had threatened to sue the government if it did not create a pathway for hydrogen plants that are powered by existing nuclear plants to claim the credit. In response to the final rule, CEO and President Joe Dominguez said he was “pleased” that the Treasury changed course on this and that the final rule was “an important step in the right direction.”
The California governor’s office, which had criticized the proposed rule, was also swayed. “The final rules create the certainty needed for developers to invest in and build clean, renewable hydrogen production projects in states like California,” Dee Dee Myers, the director of the Governor’s Office of Business and Economic Development, said in a statement. The state has plans to build a $12.6 billion hub for producing and using clean hydrogen.
Part of the reason the Treasury needed to find a Goldilocks compromise that pleased as many stakeholders as possible was to protect the rule from future lawsuits and lobbying. But not everyone got what they wanted. For example, the energy developer NextEra, pushed the administration to get rid of the hourly matching provision, which though delayed remained essentially untouched. NextEra did not respond to a request for comment.
Companies that fall on the wrong side of the final rules may still decide to challenge them in court. The next Congress could also make revisions to the underlying tax code, or the incoming Trump administration could change the rules to perhaps make them more favorable to hydrogen made from fossil fuels. But all of this would take time — a rule change, for example, would trigger a whole new notice and comment process. Though the one thing I’ve heard over and over is that the industry wants certainty, which the final rule provides, it’s not yet clear whether that will outweigh any remaining gripes.
In the meantime, it's off to the races for the nascent clean hydrogen industry. Between having clarity on the tax credit, the Department of Energy’s $7 billion hydrogen hubs grant program, and additional federal grants to drive down the cost of clean hydrogen, companies now have numerous incentives to start building the hydrogen economy that has received much hype but has yet to prove its viability. The biggest question now is whether producers will find any buyers for their clean hydrogen.
Below is a more extensive accounting of where the Treasury landed in the final rules.
Get our best story in your inbox every day:
On “deliverability,” or the requirement to procure clean energy from the same region, the rules are largely unchanged, although they do allow for some flexibility on regional boundaries.
As I explained above, the Treasury Department also kept the hourly matching requirement, but delayed it by two years until 2030 to give the market more time to set up systems to achieve it — a change Schneider said was “really disappointing” due to the potential emissions consequences. Until then, companies only have to match their operations with clean energy on an annual basis, which is a common practice today. The new deadline is strict, and those that start operations before 2030 will not be grandfathered in — that is, they’ll have to switch to hourly matching once that extended clock runs out. In spite of that, the final rules also ensure that producers won’t be penalized if they are not able to procure clean energy for every single hour their plant operates, an update several groups applauded.
On the requirement to procure clean power from newly built sources, also known as “incrementality,” the department made much bigger changes. It kept an overarching definition that “incremental” generators are those built within three years of the hydrogen plant coming into service, but added three major exceptions:
1. If the hydrogen facility buys power from an existing nuclear plant that’s at risk of retirement.
2. If the hydrogen facility is in a state that has both a robust clean electricity standard and a broad, binding, greenhouse gas cap, such as a cap and trade system. Currently, only California and Washington pass this test.
3. If the hydrogen facility buys power from an existing natural gas or coal plant that has added new carbon capture and storage capacity within three years of the hydrogen project coming into service.
The hydrogen tax credit is so lucrative that environmental groups and energy analysts were concerned it would drive companies like Constellation to start selling all their nuclear power to hydrogen plants instead of to regular energy consumers, which could drive up prices and induce more fossil fuel emissions.
The final rules try to limit this possibility by only allowing existing reactors that are at risk of retirement to qualify. But the definition of “at risk of retirement” is loose. It includes “merchant” nuclear power plants — those that sell at least half their power on the wholesale electricity market rather than to regulated utilities — as well as plants that have just a single reactor, which the rules note have lower or more uncertain revenue and higher operational costs. Looking at the Nuclear Energy Institute’s list of plants, merchant plants make up roughly 40% of the total. All of Constellation Energy’s plants are merchant plants.
There are additional tests — the plant has to have had average annual gross receipts of less than 4.375 cents per kilowatt hour for at least two calendar years between 2017 and 2021. It also has to obtain a minimum 10-year power purchase agreement with the hydrogen company. Beyond that, the reactors that meet this definition are limited to selling no more than 200 megawatts to hydrogen companies, which is roughly 20% for the average reactor.
Esposito, who has closely analyzed the potential emissions consequences of using existing nuclear plants to power hydrogen production, was not convinced by the safeguards. “I don't love the power price look back,” he told me, “because that's not especially indicative of the future — particularly this high load growth future that we're quickly approaching with data centers and everything. It’s very possible power prices could go up from that, and then all of a sudden, the nuclear plants would have been fine without hydrogen.”
As for the 200 megawatt cap, Esposito said it was better than nothing, but he feels “it's kind of an implicit admission that it's not really, truly clean” to produce hydrogen with the energy from these nuclear plants.
Schneider, on the other hand, said the safeguards for nuclear-powered hydrogen projects were adequate. While a lot of plants are theoretically eligible, not all of their electricity will be eligible, he said.
The rules assert that in states that meet the two criteria of a clean electricity standard and a binding cap on emissions, “any increased electricity load is highly unlikely to cause induced grid emissions.”
But in a paper published in February, Energy Innovation explored the potential consequences of this exemption in California. It found that hydrogen projects could have ripple effects on the cap and trade market, pushing up the state’s carbon price and triggering the release of extra carbon emission allowances. “In other words, the California program is more of a ‘soft’ cap than a binding one — the emissions budget ‘expands or contracts in response to price bounds set by the legislature and [California Air Resources Board],’” the report says.
Esposito thinks the exemption is a risk, but that it requires further analysis and he’s not sounding the alarm just yet. He said it could come down to other factors, including how economical hydrogen production in California ends up being.
Producers are also eligible for the tax credit if they make hydrogen the conventional way, by “reforming” natural gas, but capture the emissions released in the process. For this pathway, the Treasury had to clarify several accounting questions.
First, there’s the question of how producers should account for methane leaked into the atmosphere upstream of the hydrogen plant, such as from wells and pipelines. The proposal had suggested using a national average of 0.9%. But researchers found this would wildly underestimate the true warming impact of hydrogen produced from natural gas. It could also underestimate emissions from natural gas producers that have taken steps to reduce methane leakage. “We branded that as one size fits none,” Schneider told me.
The final rules create a path for producers to use more accurate, project-specific methane emissions rates in the future once the Department of Energy updates a lifecycle emissions tool that companies have to use called the “GREET” model. The Environmental Protection Agency recently passed new methane emissions laws that will enable it to collect better data on leakage, which will help the DOE update the model.
Schneider said that’s a step in the right direction, though it will depend on how quickly the GREET model is updated. His bigger concern is if the Trump administration weakens or eliminates the EPA’s methane emissions regulations.
The Treasury also opened up the potential for companies to produce hydrogen from alternative, cleaner sources of methane, like gas captured from wastewater, animal manure, and coal mines. (The original rule included a pathway for using gas captured from landfills.) In reality, hydrogen plants taking this approach are unlikely to use gas directly from these sources, but rather procure certificates that say they have “booked” this cleaner gas and can “claim” the environmental benefits.
Leading up to the final rule, some climate advocates were concerned that this system would give a boost to methane-based hydrogen production over electricity-based production, as it's cheaper to buy renewable natural gas certificates than it is to split water molecules. Existing markets for these credits also often overestimate their benefits — for example, California’s low carbon fuel system gives biogas captured from dairy farms a negative carbon intensity score, even though these projects don’t literally remove carbon from the atmosphere.
The Treasury tried to improve its emissions estimates for each of these alternative methane sources to make them more accurate, but negative carbon intensity scores are still possible.
The department did make one significant change here, however. It specified that companies can’t just buy a little bit of cleaner methane and then average it with regular fossil-based methane — each must be considered separately for determining tax credit eligibility. Jenkins, of Princeton, told me that without this rule, huge amounts of hydrogen made from regular natural gas could qualify.
Producers also won’t be able to take this “book and claim” approach until markets adapt to the Treasury’s reporting requirements, which isn’t expected until at least 2027.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Deep Fission says that building small reactors underground is both safer and cheaper. Others have their doubts.
In 1981, two years after the accident at Three Mile Island sent fears over the potential risks of atomic energy skyrocketing, Westinghouse looked into what it would take to build a reactor 2,100 feet underground, insulating its radioactive material in an envelope of dirt. The United States’ leading reactor developer wasn’t responsible for the plant that partially melted down in Pennsylvania, but the company was grappling with new regulations that came as a result of the incident. The concept went nowhere.
More than a decade later, the esteemed nuclear physicist Edward Teller resurfaced the idea in a 1995 paper that once again attracted little actual interest from the industry — that is, until 2006, when Lowell Wood, a physicist at the Lawrence Livermore National Laboratory, proposed building an underground reactor to Bill Gates, who considered but ultimately abandoned the design at his nuclear startup, TerraPower.
Now, at last, one company is working to make buried reactors a reality.
Deep Fission proposes digging boreholes 30 inches in diameter and about a mile deep to house each of its 15-megawatt reactors. And it’s making progress. In August, the Department of Energy selected Deep Fission as one of the 10 companies enrolled in the agency’s new reactor pilot program, meant to help next-generation startups split their first atoms by July. In September, the company announced a $30 million reverse merger deal with a blank check firm to make its stock market debut on the lesser-known exchange OTCQB. Last month, Deep Fission chose an industrial park in a rural stretch of southeastern Kansas as the site of its first power plant.
Based in Berkeley, California, the one-time hub of the West Coast’s fading anti-nuclear movement, the company says its design is meant to save money on above-ground infrastructure by letting geology do the work to add “layers of natural containment” to “enhance safety.” By eliminating much of that expensive concrete and steel dome that encases the reactor on the surface, the startup estimates “that our approach removes up to 80% of the construction cost, one of the biggest barriers for nuclear, and enables operation within six months of breaking ground.”
“The primary benefit of placing a reactor a mile deep is cost and speed,” Chloe Frader, Deep Fission’s vice president of strategic affairs, told me. “By using the natural pressure and containment of the Earth, we eliminate the need for the massive, above-ground structures that make traditional nuclear expensive and slow to build.”
“Nuclear power is already the safest energy source in the world. Period,” she said. “Our underground design doesn’t exist because nuclear is unsafe, it exists because we can make something that is already extremely safe even safer, simpler, and more affordable.”
But gaining government recognition, going public, and picking a location for a first power plant may prove the easy part. Convincing others in the industry that its concept is a radical plan to cut construction costs rather than allay the public’s often-outsize fear of a meltdown has turned out to be difficult, to say nothing of what actually building its reactors will entail.
Despite the company’s recent progress, I struggled to find anyone who didn’t have a financial stake in Deep Fission willing to make the case for its buried reactors.
Deep Fission is “solving a problem that doesn't actually exist,” Seth Grae, the chief executive of the nuclear fuel company Lightbridge, told me. In the nearly seven decades since fission started producing commercial electrons on the U.S. grid, no confirmed death has ever come from radiation at a nuclear power station.
“You’re trying to solve a political problem that has literally never hurt anyone in the entire history of our country since this industry started,” he said. “You’re also making your reactors more expensive. In nuclear, as in a lot of other projects, when you build tall or dig deep or lift big and heavy, those steps make the projects much more expensive.”
Frader told me that subterranean rock structures would serve “as natural containment, which also enhances safety.” That’s true to some extent. Making use of existing formations “could simplify surface infrastructure and streamline construction,” Leslie Dewan, a nuclear engineer who previously led a next-generation small modular reactor startup, told IEEE Spectrum.
If everything pans out, that could justify Deep Fission’s estimate that its levelized cost of electricity — not the most dependable metric, but one frequently used by solar and wind advocates — would be between $50 and $70 per megawatt-hour, lower than other SMR developers’ projections. But that’s only if a lot of things go right.
“A design that relies on the surrounding geology for safety and containment needs to demonstrate a deep understanding of subsurface behavior, including the stability of the rock formations, groundwater movement, heat transfer, and long-term site stability,” Dewan said. “There are also operational considerations around monitoring, access, and decommissioning. But none of these are necessarily showstoppers: They’re all areas that can be addressed through rigorous engineering and thoughtful planning.”
As anyone in the geothermal industry can tell you, digging a borehole costs a lot of money. Drilling equipment comes at a high price. Underground geology complicates a route going down one mile straight. And not every hole that’s started ends up panning out, meaning the process must be repeated over and over again.
For Deep Fission, drilling lots of holes is part of the process. Given the size of its reactor, to reach a gigawatt — the output of one of Westinghouse’s flagship AP1000s, the only new type of commercial reactor successfully built from scratch in the U.S. this century — Deep Fission would need to build 67 of its own microreactors. That’s a lot of digging, considering that the diameters of the company’s boreholes are on average nearly three times wider than those drilled for harvesting natural gas or geothermal.
The company isn’t just distinguished by its unique approach. Deep Fission has a sister company, Deep Isolation, that proposes burying spent nuclear fuel in boreholes. In April, the two startups officially partnered in a deal that “enables Deep Fission to offer an end-to-end solution that includes both energy generation and long-term waste management.”
In theory, that combination could offer the company a greater social license among environmental skeptics who take issue with the waste generated from a nuclear plant.
In 1982, Congress passed a landmark law making the federal government responsible for the disposal of all spent fuel and high-level radioactive waste in the country. The plan centered on building a giant repository to permanently entomb the material where it could remain undisturbed for thousands of years. The law designated Yucca Mountain, a rural site in southwestern Nevada near the California border, as the exclusive location for the debut repository.
Construction took years to start. After initial work got underway during the Bush administration, Obama took office and promptly slashed all funding for the effort, which was opposed by then-Senate Majority Leader Harry Reid of Nevada; the nonpartisan Government Accountability Office clocked the move as a purely political decision. Regardless of the motivation, the cancellation threw the U.S. waste disposal strategy into limbo because the law requires the federal government to complete Yucca Mountain before moving on to other potential storage sites. Until that law changes, the U.S. effort to find a permanent solution to nuclear waste remains in limbo, with virtually all the spent fuel accumulated over the years kept in intermediate storage vessels on site at power plants.
Finland finished work on the world’s first such repository in 2024. Sweden and Canada are considering similar facilities. But in the U.S., the industry is moving beyond seeing its spent fuel as waste, as more companies look to start up a recycling industry akin to those in Russia, Japan, and France to reprocess old uranium into new pellets for new reactors. President Donald Trump has backed the effort. The energy still stored in nuclear waste just in this country is sufficient to power the U.S. for more than a century.
Even if Americans want an answer to the nuclear waste problem, there isn’t much evidence to suggest they want to see the material stored near their homes. New Mexico, for example, passed a law barring construction of an intermediate storage site in 2023. Texas attempted to do the same, but the Supreme Court found the state’s legislation to be in violation of the federal jurisdiction over waste.
While Deep Fission’s reactors would be “so far removed from the biosphere” that the company seems to think the NRC will just “hand out licenses and the public won’t worry,” said Nick Touran, a veteran engineer whose consultancy, What Is Nuclear, catalogs reactor designs and documents from the industry’s history.
“The assumption that it’ll be easy and cheap to site and license this kind of facility is going to be found to be mistaken,” he told me.
The problem with nuclear power isn’t the technology, Brett Rampal, a nuclear expert at the consultancy Veriten, told me. “Nuclear has not been suffering from a technological issue. The technology works great. People do amazing things with it, from curing cancer to all kinds of almost magical energy production,” he told me. “What we need is business models and deployment models.”
Digging a 30-inch borehole a mile deep would be expensive enough, but Rampal also pointed out that lining those shafts with nuclear-grade steel and equipping them with cables would likely pencil out to a higher price than building an AP1000 — but with one one-hundredth of the power output.
Deep Fission insists that isn’t the case, and that the natural geology “removes the need for complex, costly pressure vessels and large engineered structures” on the surface.
“We still use steel and engineered components where necessary, but the total material requirements are a fraction of those used in a traditional large-scale plant,” Frader said.
Ultimately, burying reactors is about quieting concerns that should be debunked head on, Emmet Penney, a historian of the industry and a senior fellow at the Foundation for American Innovation, a right-leaning think tank that advocates building more reactors in the U.S., told me.
“Investors need to wake up and realize that nuclear is one of the safest power sources on the planet,” Penney said. “Otherwise, goofy companies will continue to snow them with slick slide decks about solving non-issues.”
On energy efficiency rules, Chinese nuclear, and Japan’s first offshore wind
Current conditions: Warm air headed northward up the East Coast is set to collide with cold air headed southward over the Great Lakes and Northeast, bringing snowfall followed by higher temperatures later in the week • A cold front is stirring up a dense fog in northwest India • Unusually frigid Arctic air in Europe is causing temperatures across northwest Africa to plunge to double-digit degrees below seasonal norms, with Algiers at just over 50 degrees Fahrenheit this week.

Oil prices largely fell throughout 2025, capping off December at their lowest level all year. Spot market prices for Brent crude, the leading global benchmark for oil, dropped to $63 per barrel last month. The reason, according to the latest analysis of the full year by the Energy Information Administration, is oversupply in the market. China’s push to fill its storage tanks kept prices from declining further. Israel’s June 13 strikes on Iran and attacks on oil infrastructure between Russia and Ukraine briefly raised prices throughout the year. But the year-end average price still came in at $69 per barrel, the lowest since 2020, even when adjusted for inflation.

The price drop bodes poorly for reviving Venezuela’s oil industry in the wake of the U.S. raid on Caracas and arrest of the South American country’s President Nicolás Maduro. At such low levels, investments in new infrastructure are difficult to justify. “This is a moment where there’s oversupply,” oil analyst Rory Johnston told my colleague Matthew Zeitlin yesterday. “Prices are down. It’s not the moment that you’re like, I’m going to go on a lark and invest in Venezuela.”
The Energy Department granted a Texas company known for recycling defunct tools from oil and gas drilling an $11.5 million grant to fund an expansion of its existing facility in a rural county between San Antonio and Dallas. The company, Amermin, said the funding will allow it to increase its output of tungsten carbide by 300%, “reducing our reliance on foreign nations like China, which produces 83%” of the world’s supply of the metal used in all kinds of defense, energy, and hardware applications. “Our country cannot afford to rely on our adversaries for the resources that power our energy industry,” Representative August Pfluger, a Texas Republican, said in a statement. “This investment strengthens our district’s role in American energy leadership while providing good paying jobs to Texas families.”
That wasn’t the agency’s only big funding announcement. The Energy Department gave out $2.7 billion in contracts for enriched uranium, with $900 million each to Maryland-based Centrus Energy, the French producer Orano, and the California-headquartered General Matter. “President Trump is catalyzing a resurgence in the nation’s nuclear energy sector to strengthen American security and prosperity,” Secretary of Energy Chris Wright said in a press release. “Today’s awards show that this Administration is committed to restoring a secure domestic nuclear fuel supply chain capable of producing the nuclear fuels needed to power the reactors of today and the advanced reactors of tomorrow.”
Low-income households in the United States pay roughly 30% more for energy per square foot than households who haven’t faced trouble paying for electricity and heat in the past, federal data shows. Part of the problem is that the national efficiency standards for one of the most affordable types of housing in the nation, manufactured homes, haven’t been updated since 1994. Congress finally passed a law in 2007 directing the Department of Energy to raise standards for insulation, and in 2022, the Biden administration proposed new rules to increase insulation and reduce air leaks. But the regulations had yet to take effect when President Donald Trump returned to office last year. Now the House of Representatives is prepared to vote on legislation to nullify the rules outright, preserving the standards set more than three decades ago. The House Committee on Rules is set to vote on advancing the bill as early as Tuesday night, with a full floor vote likely later in the week. “You’re just locking in higher bills for years to come if you give manufacturers this green light to build the homes with minimal insulation,” Mark Kresowik, senior policy director of the American Council for an Energy-Efficient Economy, told me.
Sign up to receive Heatmap AM in your inbox every morning:
The newest reactor at the Zhangzhou nuclear station in Fujian Province has officially started up commercial operation as China’s buildout of new atomic power infrastructure picks up pace this year. The 1,136-megawatt Hualong One represents China’s leading indigenous reactor design. Where once Beijing preferred the top U.S. technology for large-scale reactors, the Westinghouse AP1000, the Hualong One’s entirely domestic supply chain and design that borrows from the American standard has made China’s own model the new leader.
In a sign of just how many reactors China is building — at least 35 underway nationwide, as I noted in yesterday’s newsletter — the country started construction on two more the same week the latest Hualong One came online. World Nuclear News reported that first concrete has been poured for a pair of CAP1000 reactors, the official Chinese version of the Westinghouse AP1000, at two separate plants in southern China.
Back in October, when Japan elected Sanae Takaichi as its first female prime minister, I told you about how the arch-conservative leader of the Liberal Democratic Party planned to refocus the country’s energy plans on reviving the nuclear industry. But don’t count out offshore wind. Unlike Europe’s North Sea or the American East Coast, the sharp continental drop in Japan’s ocean makes rooting giant turbines to the sea floor impossible along much of its shoreline. But the Goto Floating Wind Farm — employing floating technology under consideration on the U.S. West Coast, too — announced the start of commercial operations this week, pumping nearly 17 megawatts of power onto the Japanese grid. Japanese officials last year raised the country’s goal for installed capacity of offshore wind to 10 gigawatts by 2030 and 45 gigawatts by 2040, Power magazine noted, so the industry still has a long way to go.
Beavers may be the trick to heal nature’s burn scars after a wildfire. A team of scientists at the U.S. Forest Service and Colorado State University are building fake beaver dams in scorched areas to study how wetlands created by the dams impact the restoration of the ecosystem and water quality after a blaze. “It’s kind of a brave new world for us with this type of work,” Tim Fegel, a doctoral candidate at Colorado State, who led the research, said in a press release.
Rob talks about the removal of Venezuela’s Nicolás Maduro with Commodity Context’s Rory Johnston.
Over the weekend, the U.S. military entered Venezuela and captured its president, Nicolás Maduro, and his wife. Maduro will now face drug and gun charges in New York, and some members of the Trump administration have described the operation as a law enforcement mission.
President Donald Trump has taken a different tack. He has justified the operation by asserting that America is going to “take over” Venezuela’s oil reserves, even suggesting that oil companies might foot the bill for the broader occupation and rebuilding effort. Trump officials have told oil companies that the U.S. might not help them recover lost assets unless they fund the American effort now, according to Politico.
Such a move seems openly imperialistic, ill-advised, and unethical — to say the least. But is it even possible? On this week’s episode of Shift Key, Rob talks to Rory Johnston, a Toronto-based oil markets analyst and the founder of Commodity Context. They discuss the current status of the Venezuelan oil industry, what a rebuilding effort would cost, and whether a reopened Venezuelan oil industry could change U.S. energy politics — or even, as some fear, bring about a new age of cheap fossil fuels.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: First of all, does Venezuela have the world’s largest hydrocarbon reserves — like, proven hydrocarbon reserves? And number two, let’s say that Trump has made some backdoor deal with the existing regime, that these existing issues are ironed ou to actually use those reserves. What kind of investment are we talking about on that end?
Rory Johnston: The mucky answer to this largest reserve question is, there’s lots of debate. I will say there’s a reasonable claim that at one point Venezuela — Venezuela has a lot of oil. Let’s just say it that way: Venezuela has a lot of oil, particularly the Orinoco Belt, which, again, similar to the oil sands we’re talking about —
Meyer: This is the Orinoco flow. We’re going to call this the Orinoco flow question.
Johnston: Yeah, exactly, that. Similar to the Canadian oil sands, we’re talking about more than a trillion barrels of oil in place, the actual resource in the ground. But then from there you get to this question of what is technically recoverable. Then from there, what is economically recoverable? The explosion in, again, both Venezuelan and Canadian reserve estimates occurred during that massive boom in oil prices in the mid-2000s. And that created the justification for booking those as reserves rather than just resources.
So I think that there is ample — in the same way, like, Russia and the United States don’t actually have super impressive-looking reserves on paper, but they do a lot with them, and I think in actuality that matters a lot more than the amount of technical reserves you have in the ground. Because as we’ve seen, Venezuela hasn’t been able to do much with those reserves.
So in order to, how to actually get that operating, this is where we get back to the — we’re talking tens, hundreds of billions of dollars, and a lot of time. And these companies are not going to do that without seeing a track record of whatever government replaces the current. The current vice president, his acting president — which I should also note, vice president and oil minister, which I think is particularly relevant here — so I think there’s lots that needs to happen. But companies are not going to trip over themselves to expose themselves to this risk. We still don’t know what the future is going to look like for Venezuela.
Mentioned:
The 4 Things Standing Between the U.S. and Venezuela’s Oil
Trump admin sends tough private message to oil companies on Venezuela
Previously on Shift Key: The Trump Policy That Would Be Really Bad for Oil Companies
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.