You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Biden administration is hoping they’ll be a starting gun for the industry. The industry may or may not be fully satisfied.

In one of the Biden administration’s final acts to advance decarbonization, and after more than two years of deliberation and heated debate, the Treasury Department issued the final requirements governing eligibility for the clean hydrogen tax credit on Friday.
At up to $3 per kilogram of clean hydrogen produced, this was the most generous subsidy in the 2022 Inflation Reduction Act, and it came with significant risks if the Treasury did not get the rules right. Hydrogen could be an important tool to help decarbonize the economy. But without adequate guardrails, the tax credit could turn it into a shovel that digs the U.S. deeper into a warming hole by paying out billions of dollars to projects that increase emissions rather than reducing them.
In the final guidelines, the Biden administration recognized the severity of this risk. It maintained key safeguards from the rules proposed in 2023, while also making a number of changes, exceptions, and other “flexibilities” — in the preferred parlance of the Treasury Department — that sacrifice rigorous emissions accounting in favor of making the program easier to administer and take advantage of.
For example, it kept a set of requirements for hydrogen made from water and electricity known as the “three pillars.” Broadly, they compel producers to match every hour of their operation with simultaneous clean energy generation, buy this energy from newly built sources, and ensure those sources are in the same general region as the hydrogen plant. Hydrogen production is extremely energy-intensive, and the pillars were designed to ensure that it doesn’t end up causing coal and natural gas plants to run more. But the final rules are less strict than the proposal. For example, the hourly matching requirement doesn’t apply until 2030, and existing nuclear plants count as new zero-emissions energy if they are considered to be at risk of retirement.
Finding a balance between limiting emissions and ensuring that the tax credit unlocks development of this entirely new industry was a monumental challenge. The Treasury Department received more than 30,000 comments on the proposed rule, compared to about 2,000 for the clean electricity tax credit, and just 89 for the electric vehicle tax credit. Senior administration officials told me this may have been the most complicated of all of the provisions in the IRA. In October, the department assured me that the rules would be finished by the end of the year.
Energy experts, environmental groups, and industry are still digesting the rule, and I’ll be looking out for future analyses of the department’s attempt at compromise. But initial reactions have been cautiously optimistic.
On the environmental side, Dan Esposito from the research nonprofit Energy Innovation told me his first impression was that the final rule was “a clear win for the climate” and illustrated “overwhelming, irrefutable evidence” in favor of the three pillars approach, though he did have concerns about a few specific elements that I’ll get to in a moment. Likewise, Conrad Schneider, the U.S. senior director at the Clean Air Task Force, told me that with the exception of a few caveats, “we want to give this final rule a thumbs up.”
Princeton University researcher Jesse Jenkins, a co-host of Heatmap’s Shift Key podcast and a vocal advocate for the three pillars approach, told me by email that, “Overall, Treasury’s final rules represent a reasonable compromise between competing priorities and will provide much-needed certainty and a solid foundation for the growth of a domestic clean hydrogen industry.”
On the industry side, the Fuel Cell and Hydrogen Energy Association put out a somewhat cryptic statement. CEO Frank Wolak applauded the administration for making “significant improvements” but warned that the rules were “still extremely complex” and contain several open-ended parts that will be subject to interpretation by the incoming Trump-Vance administration.
“This issuance of Final Rules closes a long chapter, and now the industry can look forward to conversations with the new Congress and new Administration regarding how federal tax and energy policy can most effectively advance the development of hydrogen in the U.S.,” Wolak said.
Constellation Energy, the country’s biggest supplier of nuclear power, was among the most vocal critics of the proposed rule and had threatened to sue the government if it did not create a pathway for hydrogen plants that are powered by existing nuclear plants to claim the credit. In response to the final rule, CEO and President Joe Dominguez said he was “pleased” that the Treasury changed course on this and that the final rule was “an important step in the right direction.”
The California governor’s office, which had criticized the proposed rule, was also swayed. “The final rules create the certainty needed for developers to invest in and build clean, renewable hydrogen production projects in states like California,” Dee Dee Myers, the director of the Governor’s Office of Business and Economic Development, said in a statement. The state has plans to build a $12.6 billion hub for producing and using clean hydrogen.
Part of the reason the Treasury needed to find a Goldilocks compromise that pleased as many stakeholders as possible was to protect the rule from future lawsuits and lobbying. But not everyone got what they wanted. For example, the energy developer NextEra, pushed the administration to get rid of the hourly matching provision, which though delayed remained essentially untouched. NextEra did not respond to a request for comment.
Companies that fall on the wrong side of the final rules may still decide to challenge them in court. The next Congress could also make revisions to the underlying tax code, or the incoming Trump administration could change the rules to perhaps make them more favorable to hydrogen made from fossil fuels. But all of this would take time — a rule change, for example, would trigger a whole new notice and comment process. Though the one thing I’ve heard over and over is that the industry wants certainty, which the final rule provides, it’s not yet clear whether that will outweigh any remaining gripes.
In the meantime, it's off to the races for the nascent clean hydrogen industry. Between having clarity on the tax credit, the Department of Energy’s $7 billion hydrogen hubs grant program, and additional federal grants to drive down the cost of clean hydrogen, companies now have numerous incentives to start building the hydrogen economy that has received much hype but has yet to prove its viability. The biggest question now is whether producers will find any buyers for their clean hydrogen.
Below is a more extensive accounting of where the Treasury landed in the final rules.
Get our best story in your inbox every day:
On “deliverability,” or the requirement to procure clean energy from the same region, the rules are largely unchanged, although they do allow for some flexibility on regional boundaries.
As I explained above, the Treasury Department also kept the hourly matching requirement, but delayed it by two years until 2030 to give the market more time to set up systems to achieve it — a change Schneider said was “really disappointing” due to the potential emissions consequences. Until then, companies only have to match their operations with clean energy on an annual basis, which is a common practice today. The new deadline is strict, and those that start operations before 2030 will not be grandfathered in — that is, they’ll have to switch to hourly matching once that extended clock runs out. In spite of that, the final rules also ensure that producers won’t be penalized if they are not able to procure clean energy for every single hour their plant operates, an update several groups applauded.
On the requirement to procure clean power from newly built sources, also known as “incrementality,” the department made much bigger changes. It kept an overarching definition that “incremental” generators are those built within three years of the hydrogen plant coming into service, but added three major exceptions:
1. If the hydrogen facility buys power from an existing nuclear plant that’s at risk of retirement.
2. If the hydrogen facility is in a state that has both a robust clean electricity standard and a broad, binding, greenhouse gas cap, such as a cap and trade system. Currently, only California and Washington pass this test.
3. If the hydrogen facility buys power from an existing natural gas or coal plant that has added new carbon capture and storage capacity within three years of the hydrogen project coming into service.
The hydrogen tax credit is so lucrative that environmental groups and energy analysts were concerned it would drive companies like Constellation to start selling all their nuclear power to hydrogen plants instead of to regular energy consumers, which could drive up prices and induce more fossil fuel emissions.
The final rules try to limit this possibility by only allowing existing reactors that are at risk of retirement to qualify. But the definition of “at risk of retirement” is loose. It includes “merchant” nuclear power plants — those that sell at least half their power on the wholesale electricity market rather than to regulated utilities — as well as plants that have just a single reactor, which the rules note have lower or more uncertain revenue and higher operational costs. Looking at the Nuclear Energy Institute’s list of plants, merchant plants make up roughly 40% of the total. All of Constellation Energy’s plants are merchant plants.
There are additional tests — the plant has to have had average annual gross receipts of less than 4.375 cents per kilowatt hour for at least two calendar years between 2017 and 2021. It also has to obtain a minimum 10-year power purchase agreement with the hydrogen company. Beyond that, the reactors that meet this definition are limited to selling no more than 200 megawatts to hydrogen companies, which is roughly 20% for the average reactor.
Esposito, who has closely analyzed the potential emissions consequences of using existing nuclear plants to power hydrogen production, was not convinced by the safeguards. “I don't love the power price look back,” he told me, “because that's not especially indicative of the future — particularly this high load growth future that we're quickly approaching with data centers and everything. It’s very possible power prices could go up from that, and then all of a sudden, the nuclear plants would have been fine without hydrogen.”
As for the 200 megawatt cap, Esposito said it was better than nothing, but he feels “it's kind of an implicit admission that it's not really, truly clean” to produce hydrogen with the energy from these nuclear plants.
Schneider, on the other hand, said the safeguards for nuclear-powered hydrogen projects were adequate. While a lot of plants are theoretically eligible, not all of their electricity will be eligible, he said.
The rules assert that in states that meet the two criteria of a clean electricity standard and a binding cap on emissions, “any increased electricity load is highly unlikely to cause induced grid emissions.”
But in a paper published in February, Energy Innovation explored the potential consequences of this exemption in California. It found that hydrogen projects could have ripple effects on the cap and trade market, pushing up the state’s carbon price and triggering the release of extra carbon emission allowances. “In other words, the California program is more of a ‘soft’ cap than a binding one — the emissions budget ‘expands or contracts in response to price bounds set by the legislature and [California Air Resources Board],’” the report says.
Esposito thinks the exemption is a risk, but that it requires further analysis and he’s not sounding the alarm just yet. He said it could come down to other factors, including how economical hydrogen production in California ends up being.
Producers are also eligible for the tax credit if they make hydrogen the conventional way, by “reforming” natural gas, but capture the emissions released in the process. For this pathway, the Treasury had to clarify several accounting questions.
First, there’s the question of how producers should account for methane leaked into the atmosphere upstream of the hydrogen plant, such as from wells and pipelines. The proposal had suggested using a national average of 0.9%. But researchers found this would wildly underestimate the true warming impact of hydrogen produced from natural gas. It could also underestimate emissions from natural gas producers that have taken steps to reduce methane leakage. “We branded that as one size fits none,” Schneider told me.
The final rules create a path for producers to use more accurate, project-specific methane emissions rates in the future once the Department of Energy updates a lifecycle emissions tool that companies have to use called the “GREET” model. The Environmental Protection Agency recently passed new methane emissions laws that will enable it to collect better data on leakage, which will help the DOE update the model.
Schneider said that’s a step in the right direction, though it will depend on how quickly the GREET model is updated. His bigger concern is if the Trump administration weakens or eliminates the EPA’s methane emissions regulations.
The Treasury also opened up the potential for companies to produce hydrogen from alternative, cleaner sources of methane, like gas captured from wastewater, animal manure, and coal mines. (The original rule included a pathway for using gas captured from landfills.) In reality, hydrogen plants taking this approach are unlikely to use gas directly from these sources, but rather procure certificates that say they have “booked” this cleaner gas and can “claim” the environmental benefits.
Leading up to the final rule, some climate advocates were concerned that this system would give a boost to methane-based hydrogen production over electricity-based production, as it's cheaper to buy renewable natural gas certificates than it is to split water molecules. Existing markets for these credits also often overestimate their benefits — for example, California’s low carbon fuel system gives biogas captured from dairy farms a negative carbon intensity score, even though these projects don’t literally remove carbon from the atmosphere.
The Treasury tried to improve its emissions estimates for each of these alternative methane sources to make them more accurate, but negative carbon intensity scores are still possible.
The department did make one significant change here, however. It specified that companies can’t just buy a little bit of cleaner methane and then average it with regular fossil-based methane — each must be considered separately for determining tax credit eligibility. Jenkins, of Princeton, told me that without this rule, huge amounts of hydrogen made from regular natural gas could qualify.
Producers also won’t be able to take this “book and claim” approach until markets adapt to the Treasury’s reporting requirements, which isn’t expected until at least 2027.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The electric vehicle-maker’s newly unveiled, lidar-equipped, autonomy-enabled R2 is scheduled to hit the road next year.
When Rivian revealed the R2 back in the spring of 2024, the compelling part of the electric SUV was price. The vehicle looked almost exactly like the huge R1S that helped launch the brand, but scaled down to a true two-row, five-seat ride that would start at $45,000. That’s not exactly cheap, but it would create a Rivian for lots of drivers who admired the company’s sleek adventure EV but couldn’t afford to spend nearly a hundred grand on a vehicle.
But at the company’s “Autonomy and AI Day,” held on Thursday at Rivian’s Palo Alto office in the heart of Silicon Valley, company leaders raised the expectations for their next vehicle. R2 wouldn’t just be the more affordable Rivian — it would be the AI-defined car that vaults them into the race to develop truly self-driving cars.
First, the hardware. Rivian said that the R2 will come with 11 camera and five radar units spread around the vehicle to improve the car’s ability to comprehend the world around it. But the crucial, headline-grabbing addition is a lidar, or light-based radar, unit. Lidar shoots laser pulses and measures the time it takes for the reflected light to return, thereby building a three-dimensional picture of the environment it surveys.
Those twirling bobs you might have seen on the top of Waymo’s driverless cars as they roam the streets, mapping the world around them, are lidar. The technology’s ability to see the world in detail across distances is necessary for the upper levels of automotive autonomy — the ones where the car can basically do it all and the humans can take their hands off the wheel and their eyes off the road.
Lidar units to date have been large and expensive, which is one reason they’re seen in pods that protrude from the top of a vehicle. Rivian, however, figured out how to mount one within the vehicle, in the area at the top of the front windshield near the rear-view mirror. The forward-facing lidar gives the vehicle 300 meters of forward vision. Demos the company showed during autonomy day revealed just how much more a constellation of cameras, radar, and lidar can see than a system without lidar, especially in dark or foggy conditions.
The other “wow” reveal on Thursday was that the R2 will process all that camera data on a chip that Rivian built from scratch to handle the AI and autonomous driving workload of its vehicles, rather than sourcing chips from some other tech company. CEO R.J. Scaringe said during his presentation to open the event that this kind of vertical integration was meant to allow the company to keep pace with the AI race as opposed to having to work with whatever third-party components it could get.
The result is a leap forward in capability over what Rivian offered with the R1S SUV and R1T pickup truck. Those vehicles had a hand-free system that let the EVs drive themselves with minimal human oversight on a little more than 100,000 miles of roads that were well-marked and well-mapped. James Philbin, the vice president of autonomy and AI, promised on Thursday that the lidar and processing improvements would allow hands-free driving on more than 3 million miles of roads — basically anywhere that the lines on the highway are clear enough for the R2’s cameras to see. And what’s next, Rivian promises, is true autonomy. The SUV will drive itself entirely from point to point when the conditions allow, and as the AI continuously improves over time, you might eventually see driverless Rivians out there competing with the likes of Waymo.
All this stuff costs money, of course. The Rivian Autonomy+ package would add $2,500 or a monthly fee of $50 to the purchase price. But the fact that this tech is coming to a car that starts in the $40,000s is telling. It is how many people will get their first taste of true vehicle autonomy.
Thursday’s event wasn’t all about self-driving, either. Rivian also built an AI software assistant for the cabin that can be summoned with a “Hey Rivian” and perform all kinds of in-car functions, such as changing the driving mode or adjusting the climate control. The achievement here is one of natural language. In Rivian’s demos, the assistant could ably fulfill the driver’s wishes with a command like “make it a little toastier in here” as opposed to formal instructional language like “turn the driver’s temperature to 70 degrees and set the seat heater to level one.”
At times this feels unnecessary, like AI looking for something to do to justify its existence. It doesn’t take that many button-pushes to alter the climate, after all. I admit, though, that having test-driven Rivians on road trips this summer, one of their weak points is my struggle to remember exactly which menu contains which controls. AI, in a way, helpfully solves a problem created by the modern EV that has amazing capability, but routes that capability through a large touchscreen that’s annoying (and dangerous) to navigate while driving.
Rivian is playing catch up with Tesla when it comes to autonomy, of course, as Elon Musk’s company has been touting its Full Self Driving feature for years and is now building the Cybercab, which is meant to be a car that humans will never drive. But Tesla has struggled to meet its timelines and targets for autonomous systems, giving rivals like Rivian a window to develop their own technology.
And so, what’s clear after Rivian’s event is that car companies, especially EV makers, are going to be key players in this autonomy and AI age. Nowhere was it written that electric vehicles had to be synonymous with self-driving vehicles. Battery-powered cars could be dumb and not smart, ruled by buttons instead of touchscreens. It just so happens that EVs are finally coming of age during the simultaneous ascent of artificial intelligence — and that the leading EV-only startups are Silicon Valley tech companies, or at least started out that way.
Tesla has forgotten about acting like a car company and staked its future on being the one that will crack true self-driving and reap the windfall. Rivian, which hadn’t made nearly as much noise about AI and autonomy before this week, has put forth a compelling case for its in-house autonomous systems and AI models, ones that will continue to improve as they’re trained on data provided by thousands of R2s hitting the road starting in 2026.
The market is reeling from a trio of worrisome data center announcements.
The AI industry coughed and the power industry is getting a cold.
The S&P 500 hit a record high on Thursday afternoon, but in the cold light of Friday, several artificial intelligence-related companies are feeling a chill. A trio of stories in the data center and semiconductor industry revealed dented market optimism, driving the tech-heavy NASDAQ 100 down almost 2% in Friday afternoon trading, and several energy-related stocks are down even more.
Here’s what’s happening:
Taken together, the three stories look like an AI slowdown, at least compared to the most optimistic forecasts for growth. If so, expectations of how much power these data centers need will also have to come down a bit. That has led to notable stock dips for companies across the power sector, especially independent power producers that own power plants, many of whose shares have risen sharply in the past year or two.
Shares in NRG were down around 4.5% on the day on Friday afternoon; nuclear-heavy Constellation Energy was down over 6%; Talen Energy, which owns a portfolio of nuclear and fossil fuel plants, was down almost 3% and Vistra was down 2%. Shares in GE Vernova, which is expanding its gas turbine manufacturing capacity to meet high expected demand for power, were down over 3.5%.
It’s not just traditional power companies that are catching this AI chill — renewables are shivering, as well. American solar manufacturer First Solar is down over 5%, while solar manufacturing and development company Canadian Solar is down over almost 9%.
Shares of Blue Owl, the investment firm that is helping to fund the big tech data center buildout, were down almost 4%.
The fates of all these companies are deeply intertwined. As Heatmap contributor Advait Arun wrote recently, ”The commercial potential of next-generation energy technologies such as advanced nuclear, batteries, and grid-enhancing applications now hinge on the speed and scale of the AI buildout.” Many AI-related companies are either invested in or lend to each other, meaning that a stumble that looks small initially could quickly cascade.
The power industry has seen these types of AI-optimism hiccups before, however. In January, several power companies swooned after Chinese AI company DeepSeek released an open source, compute-efficient large language model comparable to the most advanced models developed by U.S. labs.
Constellation’s stock price, for example, fell as much as 20% in response to the “DeepSeek Moment,” but are up over 45% this year, even factoring in today’s fall. GE Vernova shares have doubled in value this year.
So it looks like the power sector will still have something to celebrate at the end of this year, even if the celebrations are slightly less warm than they might have been.
Activists are suing for records on three projects in Wyoming.
Three wind projects in Wyoming are stuck in the middle of a widening legal battle between local wildlife conservation activists and the Trump administration over eagle death records.
The rural Wyoming bird advocacy group Albany County Conservancy filed a federal lawsuit last week against the Trump administration seeking to compel the government to release reams of information about how it records deaths from three facilities owned and operated by the utility PacifiCorp: Dunlap Wind, Ekola Flats, and Seven Mile Hill. The group filed its lawsuit under the Freedom of Information Act, the national public records disclosure law, and accused the Fish and Wildlife Service of unlawfully withholding evidence related to whether the three wind farms were fully compliant with the Bald and Golden Eagle Protection Act.
I’m eyeing this case closely because it suggests these wind farms may fall under future scrutiny from the Fish and Wildlife Service, either for prospective fines or far worse, as the agency continues a sweeping review of wind projects’ compliance with BGEPA, a statute anti-wind advocates have made clear they seek to use as a cudgel against operating facilities. It’s especially noteworthy that a year into Trump’s term, his promises to go after wind projects have not really touched onshore, primarily offshore. (The exception, of course, being Lava Ridge.)
Violating the eagle protection statute has significant penalties. For each eagle death beyond what FWS has permitted, a company is subject to at least $100,000 in fines or a year in prison. These penalties go up if a company is knowingly violating the law repeatedly. In August, the Service sent letters to wind developers and utilities across the country requesting records demonstrating compliance with BGEPA as part of a crackdown on wind energy writ large.
This brings us back to the lawsuit. Crucial to this case is the work of a former Fish and Wildlife Service biologist Mike Lockhart, whom intrepid readers of The Fight may remember for telling me that he’s been submitting evidence of excessive golden eagle deaths to Fish and Wildlife for years. Along with its legal complaint, the Conservancy filed a detailed breakdown of its back-and-forth with Fish and Wildlife over an initial public records request. Per those records, the agency has failed to produce any evidence that it received Lockhart’s proof of bird deaths – ones that he asserts occurred because of these wind farms.
“By refusing to even identify, let alone disclose, obviously responsive but nonexempt records the Conservancy knows to be in the Department’s possession and/or control, the Department leaves open serious questions about the integrity of its administration of BGEPA,” the lawsuit alleges.
The Fish and Wildlife Service did not respond to a request for comment on the case, though it’s worth noting that agencies rarely comment on pending litigation. PacifiCorp did not immediately respond to a request either. I will keep you posted as this progresses.