You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
California energy companies are asking for permission to take in more revenue. Consumer advocates are having none of it.

There’s a seemingly obvious solution to expensive electricity bills: Cut utility profits.
Investor-owned utilities have to deliver profits to their shareholders to be able to raise capital for grid projects. That profit comes in the form of a markup you and I pay on our electricity bills. State regulators decide how much that mark-up is. What if they made it lower?
A growing body of evidence suggests they should at least consider it. In principle, the rate of return on equity, or ROE, that regulators allow utilities to charge should reflect the risk that equity investors are taking by putting their money in those utilities, but that relationship seems to have gotten out of whack. Among the first to draw attention to the issue was a 2019 paper by Carnegie Mellon researchers which found that since the 1990s, the average “risk premium” exhibited by utility ROEs as compared to relatively risk-free U.S. Treasury bonds has grown from 3% to nearly 8%.
“An error or bias of merely one percentage point in the allowed return would imply tens of billions of dollars in additional cost for ratepayers in the form of higher retail power prices,” the authors wrote.
Subsequent research reproduced and built on those findings, showing that a generous ROE creates a perverse incentive for utilities to increase their capital investments, leading to excess costs for consumers of $3 billion to $11 billion per year. Now, the ex-chief economist of a major U.S. utility company, Mark Ellis, is putting his own analysis out there, arguing that unreasonably high ROEs are costing U.S. energy customers $50 billion per year, or over $300 per household.
Not only does this hurt consumers, it also makes the energy transition more expensive and less politically palatable.
That’s what environmental and consumer advocates are worried about in California, where the Public Utility Commission is currently considering requests by the state’s four largest energy companies to raise each of their ROE. Utilities in the state have reported record profits amid a worsening affordability crisis. On Friday, the commission signaled that it would instead lower the companies’ ROE — although not nearly as much as advocates have recommended. A final decision is expected in December.
“It’s a joke,” Ellis, the former utility executive, told me of the commission proceedings. “If you read the proposed decision, they don’t address any of the facts or evidence in the case at all.” His own analysis, which he submitted to the California commission on behalf of the Sierra Club, proposes that an average ROE of 6%, down from about 10%, would be justified and has the potential to save California energy customers more than $6 billion per year.
Utilities, of course, disagree, and have brought their own analysis and warnings about the risks of lowering their ROE. Regulators are left to sort through it all to figure out the magic number — one large enough to appeal to investors, but not so large as to throw ratepayers under the bus.
How does the ROE work its way into your bill? Let’s say your local utility, The Electric Company, has a regulated return on equity of 10%, and it plans to spend $100 million to build new substations. Utilities typically finance these kinds of capital projects with a mix of debt (loans they will have to pay interest on) and equity (shares sold to investors). Then they recover that money from ratepayers over the course of decades. If The Electric Company raises half of the capital, or $50 million, via equity, an ROE of 10% means it will be able to charge ratepayers $5 million on top of the cost of the project. That additional $5 million is factored into the per-killowatt-hour rates that customers pay. The profit can then be reinvested into future projects, issued to shareholders as dividends, paid out to executives as bonuses — the list goes on.
The energy research group RMI, which agrees that the average utility ROE is much too high, estimates the surcharge currently makes up between 15% and 20%% of the average customer’s utility bill. “Setting ROEs at the right level is necessary to bring forward a rapid, just, and equitable transition,” RMI wrote.
Utilities, however, say the “right level” is likely higher, not lower. They warn that in reality, lowering their ROE would trigger a cascade of negative effects — credit downgrades, higher borrowing costs, lower stock prices, investors taking their money elsewhere — that would push energy rates up, not down. These effects would also make it more difficult for utilities to invest in projects to clean up and expand the electric grid.
Timothy Winter, the portfolio manager of a utility-focused fund at the investment firm Gabelli, told me this “virtuous cycle” runs in both directions. Higher ROEs lead to a lower cost of capital, which leads to more investment, better reliability, and lower rates, he argued. Winter said that if California regulators reduced utility ROEs to 6%, investors would flee the state.
Between growing wildfire risk and the bankruptcy of California’s largest utility, PG&E, California energy providers are too exposed to warrant such low returns, he said. As a comparison, he noted that U.S. Treasury bonds, which are generally viewed as risk-free, yield about 4%. “If it’s a 6% return with an equity risk, they’re not going to do it,” he said of investors.
I probed Winter a bit more on this. Is that really true given that utilities are still, in many ways, the opposite of risky investments? They have captive customers, stable income, and are seeing skyrocketing growth in demand for their product.
This caused him to spiral down into an investor’s worst nightmare scenario. “Yes, there is a risk,” he said. “If a regulator is willing to give a 6% return and they used to give 11%, how do I know they’re not going to decide, okay, rates keep going up, next rate case it’s going to be 4%?” After that, he said, how can investors be sure the government won’t end up taking over the utility altogether?
Travis Miller, a senior equity analyst at Morningstar, was more measured. He hesitated to tell me whether a 6% ROE would hurt utilities’ ability to raise capital. “What usually happens” when regulators lower the ROE, he said, “is the utilities just decide not to invest very much, so then they don’t have to raise capital.” He would expect the California utilities to “invest to maintain reliability and that’s about it,” meaning that “a lot of new data center build that is planned in California would have to go elsewhere.”
Return on equity also isn’t the only thing investors look at, Miller added. They consider the overall regulatory environment. Is it predictable? Is it transparent? He said there have been cases where regulators cut a utility’s ROE but the overall regulatory environment remained strong, and other instances where the cut to ROE was “another sign of a deteriorating relationship” — a phrase that brings to mind Winter’s panic about government takeovers. (I should note, advocates for public takeovers of utilities cite this whole dynamic around the need to woo investors and the perverse incentives it creates as a key justification for their cause. Publicly-owned utilities — which serve about 1 in 7 electricity customers in the U.S., including in large cities like Sacramento, Los Angeles, and Seattle — don’t charge an ROE.)
When I spoke to Ellis about his proposal, I fired off all of the utility arguments I could think of. Won’t utilities stop building stuff and making the investments we need them to make if they can’t earn as much? “They have a legal obligation to continue to invest,” he said. But will they be able to raise equity? They don’t necessarily need to raise new equity, he responded, suggesting that utilities could reinvest more of their profits rather than distributing the money as dividends. This is not how utilities traditionally operate, he admitted, but it’s an option.
Prior to taking up the consumer cause, Ellis spent 15 years in leadership and executive roles at Sempra Energy, the parent company of San Diego Gas and Electric and SoCal Gas — two of the companies that petitioned for higher ROE. “I know how they think about this issue,” he told me, asserting that the arguments the companies make to regulators do not match how they think about ROE internally.
During our interview, Ellis described the current state of utility regulation of ROE in California as “reprehensible,” “egregious,” “heartbreaking,” and “a huge injustice.”
In the analysis he submitted to the utility commission, Ellis not only makes the case that the average U.S. utility’s ROE is much higher than is necessary to attract capital, but also that the potential impacts to consumers of lowering it — i.e. the potential to hurt a utility’s credit rating and increase its cost of debt — would be outweighed by customer savings.
He argues that to justify their requests for higher ROEs, the utilities use forecasts from biased sources, cherry-pick and manipulate data, and make economically impossible assumptions, like that earnings will grow faster than GDP.
Stephen Jarvis, an assistant professor at the London School of Economics who has conducted research on ROE rates, has reached similar conclusions about them being excessively high. Nonetheless, he told me he sympathized with the challenge regulators face. He said there was no “right” answer for how to calculate the appropriate ROE. “Depending on the assumptions that you use, you can come up with quite different numbers for what a fair rate of return should be,” he said.
The sentiment echoes the preliminary decision the California Public Utilities Commission issued last week, when it observed that all of the proposals submitted in the proceeding were “dependent on subjective inputs and assumptions.”
Ellis said the decision contained a “smoking gun,” however, proving that the commission didn’t really do its job. Changes in ROE are supposed to reflect changes to a company’s risk profile, he said. The risk profile for Southern California Edison, which is facing lawsuits related to the Eaton Fire and already paying out hundreds of millions of dollars to survivors, has certainly changed in a different way than its peers. Regardless, the commission made the exact same recommendation for each utility to reduce ROE by 0.35%. “The Commission clearly is not looking at the evidence.”
There is likely some truth to that. “It’s more art than science,” Cliff Rechtschaffen, who served for six years on the California Public Utilities Commission, told me when I asked how the people in those seats attempt to calibrate ROE. He acknowledged there was a self-reinforcing element to the process — regulators look at where investors might go if the rate of return is too low, and use that to determine what the rate should be. “But the rates of return that are set in other jurisdictions are, in turn, influenced by the national utility market, which includes your own utility market,” he said.
Similarly, regulators rely on market analysts, investment advisors, investment bankers, and so on, who have an inherent interest in building up the market and ensuring healthy rates of return, he said. “That makes it harder to discern and do true price discovery.”
Rechtschaffen said he was glad that environmental and consumer advocates were bringing greater scrutiny to ROE, adding that it was the “right time” to do so. “Particularly in this environment where utilities have forecast that they’re going to be spending tens of billions of dollars on capital upgrades, do we need the same rates of return that we’ve seen?”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Microsoft dominated this year.
It’s been a quiet year for carbon dioxide removal, the nascent industry trying to lower the concentration of carbon already trapped in the atmosphere.
After a stretch as the hottest thing in climate tech, the CDR hype cycle has died down. 2025 saw fewer investments and fewer big projects or new companies announced.
This story isn’t immediately apparent if you look at the sales data for carbon removal credits, which paints 2025 as a year of breakout growth. CDR companies sold nearly 30 million tons of carbon removal, according to the leading industry database, CDR.fyi — more than three times the amount sold in 2024. But that topline number hides a more troubling reality — about 90% of those credits were bought by a single company: Microsoft.
If you exclude Microsoft, the total volume of carbon removal purchased this year actually declined by about 100,000 tons. This buyer concentration is the continuation of a trend CDR.fyi observed in its 2024 Year In Review report, although non-Microsoft sales had grown a bit that year compared to 2023.
Trump’s crusade against climate action has likely played a role in the market stasis of this year. Under the Biden administration, federal investment in carbon removal research, development, and deployment grew to new heights. Biden’s Securities and Exchange Commission was also getting ready to require large companies to disclose their greenhouse gas emissions and climate targets, a move that many expected to increase demand for carbon credits. But Trump’s SEC scrapped the rule, and his agency heads have canceled most of the planned investments. (At the time of publication, the two direct air capture projects that Biden’s Department of Energy selected to receive up to $1.2 billion have not yet had their contracts officially terminated, despite both showing up on a leaked list of DOE grant cancellations in October.)
Trump’s overall posture on climate change reduced pressure on companies to act, which probably contributed to there being fewer new buyers entering the carbon removal market, Robert Hoglund, a carbon removal advisor who co-founded CDR.fyi, told me. “I heard several companies say that, yeah, we wouldn't have been able to do this commitment this year. We're glad that we made it several years ago,” he told me.
Kyle Harrison, a carbon markets analyst at BloombergNEF, told me he didn’t view Microsoft’s dominance in the market as a bad sign. In the early days of corporate wind and solar energy contracts, he said, Microsoft, Google, and Amazon were the only ones signing deals, which raised similar questions about the sustainability of the market. “But what it did is it created a blueprint for how you sign these deals and make these nascent technologies more financeable, and then it brings down the cost, and then all of a sudden, you start to get a second generation of companies that start to sign these deals.”
Harrison expects the market to see slower growth in the coming years until either carbon removal companies are able to bring down costs or a more reliable regulatory signal puts pressure on buyers.
Governments in Europe and the United Kingdom introduced a few weak-ish signals this year. The European Union continued to advance a government certification program for carbon removal and expects to finalize methodologies for several CDR methods in 2026. That government stamp of approval may give potential buyers more confidence in the market.
The EU also announced plans to set up a carbon removal “buyers’ club” next year to spur more demand for CDR by pooling and coordinating procurement, although the proposal is light on detail. There were similar developments in the United Kingdom, which announced a new “contract for differences” policy through which the government would finance early-stage direct air capture and bioenergy with carbon capture projects.
A stronger signal, though, could eventually come from places with mandatory emissions cap and trade policies, such as California, Japan, China, the European Union, or the United Kingdom. California already allows companies to use carbon removal credits for compliance with its cap and invest program. The U.K. plans to begin integrating CDR into its scheme in 2029, and the EU and Japan are considering when and how to do the same.
Giana Amador, the executive director of the U.S.-based Carbon Removal Alliance, told me these demand pulls were extremely important. “It tells investors, if you invest in this today, in 10 years, companies will be able to access those markets,” she said.
At the same time, carbon removal companies are not going to be competitive in any of these markets until carbon trades at a substantially higher price, or until companies can make carbon removal less expensive. “We need to both figure out how we can drive down the cost of carbon removal and how to make these carbon removal solutions more effective, and really kind of hone the technology. Those are what is going to unlock demand in the future,” she said.
There’s certainly some progress being made on that front. This year saw more real-world deployments and field tests. Whereas a few years ago, the state of knowledge about various carbon removal methods was based on academic studies of modeling exercises or lab experiments, now there’s starting to be a lot more real-world data. “For me, that is the most important thing that we have seen — continued learning,” Hoglund said.
There’s also been a lot more international interest in the sector. “It feels like there’s this global competition building about what country will be the leader in the industry,” Ben Rubin, the executive director of the Carbon Business Council, told me.
There’s another somewhat deceptive trend in the year’s carbon removal data: The market also appeared to be highly concentrated within one carbon removal method — 75% of Microsoft’s purchases, and 70% of the total sales tracked by CDR.fyi, were credits for bioenergy with carbon capture, where biomass is burned for energy and the resulting emissions are captured and stored. Despite making up the largest volume of credits, however, these were actually just a rare few deals. “It’s the least common method,” Hoglund said.
Companies reported delivering about 450,000 tons of carbon removal this year, according to CDR.fyi’s data, bringing the cumulative total to over 1 million tons to date. Some 80% of the total came from biochar projects, but the remaining deliveries run the gamut of carbon removal methods, including ocean-based techniques and enhanced rock weathering.
Amador predicted that in the near-term, we may see increased buying from the tech sector, as the growth of artificial intelligence and power-hungry data centers sets those companies’ further back on their climate commitments. She’s also optimistic about a growing trend of exploring “industrial integrations” — basically incorporating carbon removal into existing industrial processes such as municipal waste management, agricultural operations, wastewater treatment, mining, and pulp and paper factories. “I think that's something that we'll see a spotlight on next year,” she said.
Another place that may help unlock demand is the Science Based Targets initiative, a nonprofit that develops voluntary standards for corporate climate action. The group has been in the process of revising its Net-Zero Standard, which will give companies more direction about what role carbon removal should play in their sustainability strategies.
The question is whether any of these policy developments will come soon enough or be significant enough to sustain this capital-intensive, immature industry long enough for it to prove its utility. Investment in the industry has been predicated on the idea that demand for carbon removal will grow, Hoglund told me. If growth continues at the pace we saw this year, it’s going to get a lot harder for startups to raise their series B or C.
“When you can't raise that, and you haven't sold enough to keep yourself afloat, then you go out of business,” he said. “I would expect quite a few companies to go out of business in 2026.”
Hoglund was quick to qualify his dire prediction, however, adding that these were normal growing pains for any industry and shouldn’t be viewed as a sign of failure. “It could be interpreted that way, and the vibe may shift, especially if you see a lot of the prolific companies come down,” he said. “But it’s natural. I think that’s something we should be prepared for and not panic about.”
America runs on natural gas.
That’s not an exaggeration. Almost half of home heating is done with natural gas, and around 40% — the plurality — of our electricity is generated with natural gas. Data center developers are pouring billions into natural gas power plants built on-site to feed their need for computational power. In its -260 degree Fahrenheit liquid form, the gas has attracted tens of billions of dollars in investments to export it abroad.
The energy and climate landscape in the United States going into 2026 — and for a long time afterward — will be largely determined by the forces pushing and pulling on natural gas. Those could lead to higher or more volatile prices for electricity and home heating, and even possibly to structural changes in the electricity market.
But first, the weather.
“Heating demand is still the main way gas is used in the U.S.,” longtime natural gas analyst Amber McCullagh explained to me. That makes cold weather — experienced and expected — the main driver of natural gas prices, even with new price pressures from electricity demand.
New sources of demand don’t help, however. While estimates for data center construction are highly speculative, East Daily Analytics figures cited by trade publication Natural Gas Intel puts a ballpark figure of new data center gas demand at 2.5 billion cubic feet per day by the end of next year, compared to 0.8 billion cubic feet per day for the end of this year. By 2030, new demand from data centers could add up to over 6 billion cubic feet per day of natural gas demand, East Daley Analytics projects. That’s roughly in line with the total annual gas production of the Eagle Ford Shale in southwest Texas.
Then there are exports. The U.S. Energy Information Administration expects outbound liquified natural gas shipments to rise to 14.9 billion cubic feet per day this year, and to 16.3 billion cubic feet in 2026. In 2024, by contrast, exports were just under 12 billion cubic feet per day.
“Even as we’ve added demand for data centers, we’re getting close to 20 billion per day of LNG exports,” McCullagh said, putting more pressure on natural gas prices.
That’s had a predictable effect on domestic gas prices. Already, the Henry Hub natural gas benchmark price has risen to above $5 per million British thermal units earlier this month before falling to $3.90, compared to under $3.50 at the end of last year. By contrast, LNG export prices, according to the most recent EIA data, are at around $7 per million BTUs.
This yawning gap between benchmark domestic prices and export prices is precisely why so many billions of dollars are being poured into LNG export capacity — and why some have long been wary of it, including Democratic politicians in the Northeast, which is chronically short of natural gas due to insufficient pipeline infrastructure. A group of progressive Democrats in Congress wrote a letter to Secretary of Energy Chris Wright earlier this year opposing additional licenses for LNG exports, arguing that “LNG exports lead to higher energy prices for both American families and businesses.”
Industry observers agree — or at least agree that LNG exports are likely to pull up domestic prices. “Henry Hub is clearly bullish right now until U.S. gas production catches up,” Ira Joseph, a senior research associate at the Center for Global Energy Policy at Columbia University, told me. “We’re definitely heading towards convergence” between domestic and global natural gas prices.
But while higher natural gas prices may seem like an obvious boon to renewables, the actual effect may be more ambiguous. The EIA expects the Henry Hub benchmark to average $4 per million BTUs for 2026. That’s nothing like the $9 the benchmark hit in August 2022, the result of post-COVID economic restart, supply tightness, and the Russian invasion of Ukraine.
Still, a tighter natural gas market could mean a more volatile electricity and energy sector in 2026. The United States is basically unique globally in having both large-scale domestic production of coal and natural gas that allows its electricity generation to switch between them. When natural gas prices go up, coal burning becomes more economically attractive.
Add to that, the EIA forecasts that electricity generation will have grown 2.4% by the end of 2025, and will grow another 1.7% in 2026, “in contrast to relatively flat generation from 2010 to 2020. That is “primarily driven by increasing demand from large customers, including data centers,” the agency says.
This is the load growth story. With the help of the Trump administration, it’s turning into a coal growth story, too.
Already several coal plants have extended out their retirement dates, either to maintain reliability on local grids or because the Trump administration ordered them to. In America’s largest electricity market, PJM Interconnection, where about a fifth of the installed capacity is coal, diversified energy company Alliance Resource Partners expects 4% to 6% demand growth, meaning it might even be able to increase coal production. Coal consumption has jumped 16% in PJM in the first nine months of 2025, the company’s Chairman Joseph Kraft told analysts.
“The domestic thermal coal market is continuing to experience strong fundamentals, supported by an unprecedented combination of federal energy and environmental policy support plus rapid demand growth,” Kraft said in a statement accompanying the company’s October third quarter earnings report. He pointed specifically to “natural gas pricing dynamics” and “the dramatic load growth required by artificial intelligence.”
Observers are also taking notice. “The key driver for coal prices remains strong natural gas prices,” industry newsletter The Coal Trader wrote.
In its December short term outlook, the EIA said that it expects “coal consumption to increase by 9% in 2025, driven by an 11% increase in coal consumption in the electric power sector this year as both natural gas costs and electricity demand increased,” while falling slightly in 2026 (compared to 2025), leaving coal consumption sill above 2024 levels.
“2025 coal generation will have increased for the first time since the last time gas prices spiked,” McCullagh told me.
Assuming all this comes to pass, the U.S.’s total carbon dioxide emissions will have essentially flattened out at around 4.8 million metric tons. The ultimate cost of higher natural gas prices will likely be felt far beyond the borders of the United States and far past 2026.
Lawmakers today should study the Energy Security Act of 1980.
The past few years have seen wild, rapid swings in energy policy in the United States, from President Biden’s enthusiastic embrace of clean energy to President Trump’s equally enthusiastic re-embrace of fossil fuels.
Where energy industrial policy goes next is less certain than any other moment in recent memory. Regardless of the direction, however, we will need creative and effective policy tools to secure our energy future — especially for those of us who wish to see a cleaner, greener energy system. To meet the moment, we can draw inspiration from a largely forgotten piece of energy industrial policy history: the Energy Security Act of 1980.
After a decade of oil shocks and energy crises spanning three presidencies, President Carter called for — and Congress passed — a new law that would “mobilize American determination and ability to win the energy war.” To meet that challenge, lawmakers declared their intent “to utilize to the fullest extent the constitutional powers of the Congress” to reduce the nation’s dependence on imported oil and shield the economy from future supply shocks. Forty-five years later, that brief moment of determined national mobilization may hold valuable lessons for the next stage of our energy industrial policy.
The 1970s were a decade of energy volatility for Americans, with spiking prices and gasoline shortages, as Middle Eastern fossil fuel-producing countries wielded the “oil weapon” to throttle supply. In his 1979 “Crisis of Confidence” address to the nation, Carter warned that America faced a “clear and present danger” from its reliance on foreign oil and urged domestic producers to mobilize new energy sources, akin to the way industry responded to World War II by building up a domestic synthetic rubber industry.
To develop energy alternatives, Congress passed the Energy Security Act, which created a new government-run corporation dedicated to investing in alternative fuels projects, a solar bank, and programs to promote geothermal, biomass, and renewable energy sources. The law also authorized the president to create a system of five-year national energy targets and ordered one of the federal government’s first studies on the impacts of greenhouse gases from fossil fuels.
Carter saw the ESA as the beginning of an historic national mission. “[T]he Energy Security Act will launch this decade with the greatest outpouring of capital investment, technology, manpower, and resources since the space program,” he said at the signing. “Its scope, in fact, is so great that it will dwarf the combined efforts expended to put Americans on the Moon and to build the entire Interstate Highway System of our country.” The ESA was a recognition that, in a moment of crisis, the federal government could revive the tools it once used in wartime to meet an urgent civilian challenge.
In its pursuit of energy security, the Act deployed several remarkable industrial policy tools, with the Synthetic Fuels Corporation as the centerpiece. The corporation was a government-run investment bank chartered to finance — and in some cases, directly undertake — alternative fuels projects, including those derived from coal, shale, and oil.. Regardless of the desirability or feasibility of synthetic fuels, the SFC as an institution illustrates the type of extraordinary authority Congress was once willing to deploy to address energy security and stand up an entirely new industry. It operated outside of federal agencies, unencumbered by the normal bureaucracy and restrictions that apply to government.
Along with everything else created by the ESA, the Sustainable Fuels Corporation was also financed by a windfall profits tax assessed on oil companies, essentially redistributing income from big oil toward its nascent competition. Both the law and the corporation had huge bipartisan support, to the tune of 317 votes for the ESA in the House compared to 93 against, and 78 to 12 in the Senate.
The Synthetic Fuels Corporation was meant to be a public catalyst where private investment was unlikely to materialize on its own. Investors feared that oil prices could fall, or that OPEC might deliberately flood the market to undercut synthetic fuels before they ever reached scale. Synthetic fuel projects were also technically complex, capital-intensive undertakings, with each plant costing several billion dollars, requiring up to a decade to plan and build.
To address this, Congress equipped the corporation with an unusually broad set of tools. The corporation could offer loans, loan guarantees, price guarantees, purchase agreements, and even enter joint ventures — forms of support meant to make first-of-a-kind projects bankable. It could assemble financing packages that traditional lenders viewed as too risky. And while the corporation was being stood up, the president was temporarily authorized to use Defense Production Act powers to initiate early synthetic fuel projects. Taken together, these authorities amounted to a federal attempt to build an entirely new energy industry.
While the ESA gave the private sector the first shot at creating a synthetic fuels industry, it also created opportunities for the federal government to invest. The law authorized the Synthetic Fuels Corporation to undertake and retain ownership over synthetic fuels construction projects if private investment was insufficient to meet production targets. The SFC was also allowed to impose conditions on loans and financial assistance to private developers that gave it a share of project profits and intellectual property rights arising out of federally-funded projects. Congress was not willing to let the national imperative of energy security rise or fall on the whims of the market, nor to let the private sector reap publicly-funded windfalls.
Employing logic that will be familiar to many today, Carter was particularly concerned that alternative fuel sources would be unduly delayed by permitting rules and proposed an Energy Mobilization Board to streamline the review process for energy projects. Congress ultimately refused to create it, worried it would trample state authority and environmental protections. But the impulse survived elsewhere. At a time when the National Environmental Policy Act was barely 10 years old and had become the central mechanism for scrutinizing major federal actions, Congress provided an exemption for all projects financed by the Synthetic Fuels Corporation, although other technologies supported in the law — like geothermal energy — were still required to go through NEPA review. The contrast is revealing — a reminder that when lawmakers see an energy technology as strategically essential, they have been willing not only to fund it but also to redesign the permitting system around it.
Another forgotten feature of the corporation is how far Congress went to ensure it could actually hire top tier talent. Lawmakers concluded that the federal government’s standard pay scales were too low and too rigid for the kind of financial, engineering, and project development expertise the Synthetic Fuels Corporation needed. So it gave the corporation unusual salary flexibility, allowing it to pay above normal civil service rates to attract people with the skills to evaluate multibillion dollar industrial projects. In today’s debates about whether federal agencies have the capacity to manage complex clean energy investments, this detail is striking. Congress once knew that ambitious industrial policy requires not just money, but people who understand how deals get done.
But the Energy Security Act never had the chance to mature. The corporation was still getting off the ground when Carter lost the 1980 election to Ronald Reagan. Reagan’s advisers viewed the project as a distortion of free enterprise — precisely the kind of government intervention they believed had fueled the broader malaise of the 1970s. While Reagan had campaigned on abolishing the Department of Energy, the corporation proved an easier and more symbolic target. His administration hollowed it out, leaving it an empty shell until Congress defunded it entirely in 1986.
At the same time, the crisis atmosphere that had justified the Energy Security Act began to wane. Oil prices fell nearly 60% during Reagan’s first five years, and with them the political urgency behind alternative fuels. Drained of its economic rationale, the synthetic fuels industry collapsed before it ever had a chance to prove whether it could succeed under more favorable conditions. What had looked like a wartime mobilization suddenly appeared to many lawmakers to be an expensive overreaction to a crisis that had passed.
Yet the ESA’s legacy is more than an artifact of a bygone moment. It offers at least three lessons that remain strikingly relevant today:
As we now scramble to make up for lost time, today’s clean energy push requires institutions that can survive electoral swings. Nearly half a century after the ESA, we must find our way back to that type of institutional imagination to meet the energy challenges we still face.