You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
See also: federal policy, batteries, and electricity demand.

The clean energy industry is beginning to report to investors and the public on its first brush with Donald Trump’s trade policy. While earnings season has only just begun, already some broad themes are emerging across the sector: Tariffs hurt. Batteries are getting more expensive. And there’s big demand for power, especially natural gas.
Four big clean energy companies that have reported results so far — inverter and battery maker Enphase, turbine manufacturer GE Vernova, electric vehicle giant Tesla, and developer and utility NextEra — mentioned tariffs prominently in either their earnings reports or their analyst calls. GE Vernova said that tariffs would result in $300 million to $400 million of additional costs. Enphase said that tariffs would take off two percentage points from its margin in the second quarter and six to eight points of gross margin in the third quarter. Tesla said that “increasing tariffs may cause market volatility and near-term impacts to supply and demand.”
Tesla’s executives — including chief executive Elon Musk — expanded on that market volatility later in a call with investors and analysts, with Musk saying that he was an “advocate of predictable tariff structures, free trade, and lower tariffs.” Musk added that economic uncertainty could continue to weigh on Tesla’s auto sales, which notably declined in the first three months of the year. “When there is economic uncertainty, people generally want to pause on doing a major capital purchase like a car,” he observed.
NextEra chief executive John Ketchum said the company had “dramatically diversified where we source our solar panels” and was not affected by the recent announcement of high tariff rates on solar panels from Southeast Asia. He also specified to analysts that “we source our wind turbines from the U.S., with manufacturing in Florida.” The company estimated that it has “$150 million in tariff exposure through 2028, on over $75 billion in expected capital spend,” Ketchum said.
Enphase chief executive Badri Kothandaraman attempted to tread delicately on the tariff issue. “While the global policy environment remains fluid with tariffs, with interest rates and subsidies constantly evolving, we are moving quickly to realign our supply chain to minimize downside across a range of scenarios,” he said. “While we cannot control the macroeconomic conditions, we can absolutely control our response.” GE Vernova chief financial officer Ken Parks described tariffs as a “continued increase in the cost base,” and said that the combined tariffs on steel plus various imports from Canada, Mexico, China — which is facing import duties of 145% or more, depending on the product — affect about a quarter of its spending.
A lot of that tariff impact comes from the battery supply chain, which China dominates. For Tesla, that means its fast growing energy storage business is particularly at risk. While the company has made some efforts to onshore stationary storage battery production, its chief financial officer, Vaibhav Taneja, said that domestic production would ultimately account for only a “fraction” of its battery needs, and even that would “take time.”
Enphase was similarly upfront about the impact on its battery supplies. “We are no exception. We use Chinese sources for the cell packs,” Kothandaraman said. He explained that thanks to the tariffs, making batteries domestically with Chinese cells “therefore turns out for us that whether we make it domestically or whether we make it outside the U.S., our costs are becoming approximately the same. And the cost impact is significant.” In other words, the tariffs make domestic battery production less appealing than it was before. Kothandaraman said that the company is working on establishing a non-Chinese supply chain, which will take six to nine months.
NextEra’s Ketchum said that the company had made “arrangements” to buy batteries made in the U.S. “for a significant portion of our backlog,” and that its contracts for non-Chinese-sourced batteries required the supplier to cover any tariff-related costs. Ketchum did say that the domestic batteries meet local content requirements for tax subsidies under the Inflation Reduction Act, however “there are certain components that come in from outside the United States.” Overall, Ketchum said, “our tariff exposure on batteries is expected to be negligible.”
All four companies are heavily exposed to various energy regulatory and subsidy plans that may or may not survive the double-whammy of the congressional Republicans’ budget-making priorities and the Trump administration’s desire to roll back environmental regulations.
Tesla’s revenue from emissions credits that other carmakers buy to comply with California’s fleet emissions standards was $595 million in the first quarter of this year, compared to $409 million of net income — implying that the company would have lost money if not for the credits. This Trump administration has already attempted to take away California’s ability to set emissions standards, as it did the first time around. Then it was not successful, and this time it might not have to be — the Supreme Court on Wednesday indicated that it would be open to a lawsuit from the fossil fuel industry challenging California’s limits.
Kothandaraman said that “the lack of certainty” around the fate of the Inflation Reduction Act, which is currently being hashed out in Congress, “is definitely a factor” in explaining what one analyst described as “a bit of paralysis on the customer side.” He was hopeful that “demand will be unlocked” once there’s “clarity” on IRA tax credits.
Meanwhile, GE Vernova said that offshore wind orders had fallen by 43%, “as a result of ongoing U.S. policy uncertainty and permitting delays.” It also took a $70 million charge related to the cancellation of a deal to supply 18-megawatt turbines in New York.
Musk bragged that Tesla’s Megapack utility storage system “enables utility companies to output far more total energy than would otherwise be the case,” and that “utility companies are beginning to realize this and are buying in our Megapacks at scale.” While the company deployed almost 40 gigawatt-hours of battery storage in the past 12 months — an impressive amount based on the current level of grid battery storage in the U.S. — Musk predicted that Tesla could end up deploying “terawatts” of storage on an annual basis.
NextEra has a large renewables development business, and Ketchum sees the uptick in demand for electricity as a boon: “When I look at the demand and the outlook in the renewable sector going … we just continue to see strong demand across the board, with hyperscalers being a nice sized part of that.”
GE Vernova competed with NextEra for the most investor-friendly demand growth story — though its is not a particularly climate-friendly one. The company says it has a backlog of 29 gigawatts of natural gas turbine orders, with an additional 21 gigawatts of reservations that will turn into future production. Its earnings before interest, taxes, depreciation, and amortization for its power business jumped from $345 million in the first quarter of last year to $508 million in the first quarter of this year, while its margins grew from 8.6% to 11.5%.
About a third of its reservations for turbines are for data centers, Scott Strazik, the company’s chief executive said. Some more were to provide baseload power. And the rest? “A healthy amount of these are also F-class gas turbines to just strengthen the durability and the resiliency on the grid,” he said.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.
The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.
But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.
This weekend, some 200 million Americans will be cranking up the thermostats in their natural-gas-heated homes, firing up their propane generators, or hitting icy roads in their combustion-engine cars as a major winter storm brings record-low temperatures to 35 states, knocks out power, and grinds air travel to a halt.
Climate change deniers love to use major winter storms as “proof” that global warming isn’t real. But in the case of this weekend’s polar vortex, there is evidence that Arctic warming is responsible for the record cold temperature projections across the United States.
“In the Arctic, in the winter, the ocean is much, much warmer than the atmosphere,” Judah Cohen, a climatologist at MIT and the author of a 2021 paper linking Arctic variability to extreme weather in the U.S., told me. Sea ice acts as an insulating layer separating the warmer ocean water from the frigid air. But as it melts — as it is doing every month of the year — “all of this heat can now be extracted out of the ocean.” The reduced temperature difference between the ocean and atmosphere creates wavy high-pressure ridges and low-pressure troughs that are favorable to the formation of polar vortices, which can funnel extreme cold air down over North America, as they seemingly did over Texas in 2021’s Winter Storm Uri, when 246 people died.
The exact mechanisms and interactions of this phenomenon are still up for debate. “I am in the minority that argues that there is causal link between a warm Arctic and cold continents,” Cohen added to me via email. “Most others argue that it is a coincidental relationship.” Still, scientists generally agree that extreme cold events will persist in a warming world; they’ll just become rarer.
Cold kills more people in the United States than heat, but curiously, warmer winters aren’t likely to significantly reduce these seasonal deaths. That’s because about half of the cases of excess mortality in winter are from cardiovascular diseases, which are, by nature, “highly seasonal,” Kristie Ebi, a professor of global health at the University of Washington, told me. “Since people began studying these, there are more of them in the winter than there are in the summer.” Researchers still aren’t sure why that is — though since the 1940s, we’ve known that people’s blood pressure, cholesterol, and even blood viscosity go up during the colder and darker months, perhaps due to changes in diet or exercise. That also appears to be the case regardless of climate or temperature, holding true whether you’re in Yellowknife or Miami.
In other words, “if seasonal factors other than temperature are mainly responsible for winter excess mortality, then climate warming might have little benefit,” Patrick Kinney, the director of Columbia University’s Climate and Health Program, wrote in Environmental Research Letters back in 2015. Extreme heat-related deaths, by contrast, have no ceiling, meaning global warming will result in more temperature-related deaths than it will prevent.
Our anthropogenically warmer winters could even prove to be more deadly in certain ways. Dana Tobin is a researcher at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder who studies how weather affects traffic accidents. She’s found that driving in freezing rain is more dangerous than driving in snow “because of the ice glaze that it can produce on surfaces, especially those that are untreated,” she told me. As winters become warmer, there will, counterintuitively, be more ice on roads in many places, since freezing rain requires a bit of warm air before it hits the ground and becomes black ice.
Researchers working in Scandinavia have similarly found that as the atmosphere warms and more days hover around freezing, “there is a higher risk of icy conditions … which may lead to a predisposition to falls and road traffic accidents.” (As I’ve previously reported, milder winters might also make us even more depressed than very cold ones.)
There is something slightly karmic about the fact that cars become increasingly unsafe as the planet, warmed by their emissions, becomes more hazardous. But this connection gets even bleaker when carbon monoxide poisoning is factored in.
On Thursday, the North American Electric Reliability Corporation issued a statement warning that “much of North America is at an elevated risk of having insufficient energy supplies to meet demand in extreme operating conditions,” including “advancing winter weatherization of power plants and fuel acquisition to enable operations during cold temperatures.” Heavy ice can also snap branches above power lines, causing local outages.
When the power goes out or the gas lines freeze, desperate people will do anything to stay warm. That includes, in tragic cases, running improperly vented generators or plugging in propane heaters indoors, which can produce odorless and colorless CO — instead of the usual water and carbon dioxide — when fossil fuels don’t burn correctly. Accidental carbon monoxide poisoning is on the rise in the United States due to the proliferation of such appliances amid increasingly frequent extreme weather events, jumping 86% between 2012 and 2022. That’s even as, worldwide, carbon monoxide poisoning is decreasing.
Snow and ice are among the most dangerous weather conditions in the U.S., and people should take warnings of “life-threatening conditions” at face value. Tobin, the traffic researcher, stressed that one of the best protections from winter weather hazards is knowledge alone. “I believe the best thing that we can do when it comes to messaging to protect drivers from hazards is to empower motorists to make educated and informed decisions for their own safety and the safety of others,” she told me.
Winter storms highlight the entangled nature of our dependence on fossil fuels. We can’t separate extreme weather events from the energy required to survive them. But the dark irony is that, as the planet becomes more volatile, the most dangerous fossil fuels might be the ones meant to keep us warm and get us back home.
The cloak-and-dagger approach is turning the business into a bogeyman.
It’s time to call it like it is: Many data center developers seem to be moving too fast to build trust in the communities where they’re siting projects.
One of the chief complaints raised by data center opponents across the country is that companies aren’t transparent about their plans, which often becomes the original sin that makes winning debates over energy or water use near-impossible. In too many cases, towns and cities neighboring a proposed data center won’t know who will wind up using the project, either because a tech giant is behind it and keeping plans secret or a real estate firm refuses to disclose to them which company it’ll be sold to.
Making matters worse, developers large and small are requiring city and county officials to be tight-lipped through non-disclosure agreements. It’s safe to say these secrecy contracts betray a basic sense of public transparency Americans expect from their elected representatives and they become a core problem that lets activists critical of the data center boom fill in gaps for the public. I mean, why trust facts and figures about energy and water if the corporations won’t be up front about their plans?
“When a developer comes in and there’s going to be a project that has a huge impact on a community and the environment – a place they call home – and you’re not getting any kind of answers, you can tell they’re not being transparent with you,” Ginny Marcille-Kerslake, an organizer for Food and Water Watch in Pennsylvania, told me in an interview this week. “There’s an automatic lack of trust there. And then that extends to their own government.”
Let’s break down an example Marcille-Kerslake pointed me to, where the utility Talen Energy is seeking to rezone hundreds of acres of agricultural land in Montour County, Pennsylvania, for industrial facilities. Montour County is already a high risk area for any kind of energy or data center development, ranking in the 86th percentile nationally for withdrawn renewable energy projects (more than 10 solar facilities have been canceled here for various reasons). So it didn’t help when individuals living in the area began questioning if this was for Amazon Web Services, similar to other nearby Talen-powered data center projects in the area?
Officials wouldn’t – or couldn’t – say if the project was for Amazon, in part because one of the county commissioners signed a non-disclosure agreement binding them to silence. Subsequently, a Facebook video from an activist fighting the rezoning went viral, using emails he claimed were obtained through public records requests to declare Amazon “is likely behind the scenes” of the zoning request.
Amazon did not respond to my requests for comment. But this is a very familiar pattern to us now. Heatmap Pro data shows that a lack of transparency consistently ranks in the top five concerns people raise when they oppose data center projects, regardless of whether they are approved or canceled. Heatmap researcher Charlie Clynes explained to me that the issue routinely crops up in the myriad projects he’s tracked, down to the first data center ever logged into the platform – a $100 million proposal by a startup in Hood County, Oregon, that was pulled after a community uproar.
“At a high level, I have seen a lack of transparency become more of an issue.t makes people angry in a very unique way that other issues don’t. Not only will they think a project is going to be bad for a community, but you’re not even telling them, the key stakeholder, what is going on,” Clynes said. “It’s not a matter of, are data centers good or bad necessarily, but whether people feel like they’re being heard and considered. And transparency issues make that much more difficult..”
My interview with Marcille-Kerslake exemplified this situation. Her organization is opposed to the current rapid pace of data center build-out and is supporting opposition in various localities. When we spoke, her arguments felt archetypal and representative of how easily those who fight projects can turn secrecy into a cudgel. After addressing the trust issues with me, she immediately pivoted to saying that those exist because “at the root of it, this lack of transparency to the community” comes from “the fact that what they have planned, people don’t want.”
“The answer isn’t for these developers to come in and be fully transparent in what they want to do, which is what you’d see with other kinds of developments in your community. That doesn’t help them because what they’re building is not wanted.”
I’m not entirely convinced by her point, that the only reason data center developers are staying quiet is because of a likelihood of community opposition. In fairness, the tech sector has long operated with a “move fast, break things” approach, and Silicon Valley companies long worked in privacy in order to closely guard trade secrets in a competitive marketplace. I also know from my previous reporting that before AI, data center developers were simply focused on building projects with easy access to cheap energy.
However, in fairness to opponents, I’m also not convinced the industry is adequately addressing its trust deficit with the public. Last week, I asked Data Center Coalition vice president of state policy Dan Diorio if there was a set of “best practices” that his large data center trade organization is pointing to for community relations and transparency. His answer? People are certainly trying their best as they move quickly to build out infrastructure for AI, but no, there is no standard for such a thing.
“Each developer is different. Each company is different. There’s different sizes, different structures,” he said. “There’s common themes of open and public meetings, sharing information about water use in particular, helping put it in the proper context as well.”
He added: “I wouldn’t categorize that as industry best practice, [but] I think you’re seeing common themes emerge in developments around the country.”
Plus more of the week’s biggest renewable energy fights.
Cole County, Missouri – The Show Me State may be on the precipice of enacting the first state-wide solar moratorium.
Clark County, Ohio – This county has now voted to oppose Invenergy’s Sloopy Solar facility, passing a resolution of disapproval that usually has at least some influence over state regulator decision-making.
Millard County, Utah – Here we have a case of folks upset about solar projects specifically tied to large data centers.
Orange County, California – Compass Energy’s large battery project in San Juan Capistrano has finally died after a yearslong bout with local opposition.
Hillsdale County, Michigan – Here’s a new one: Two county commissioners here are stepping back from any decision on a solar project because they have signed agreements with the developer.