Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

How to Fix Electricity Bills in America

Inside episode 19 of Shift Key.

Solar panel installation.
Heatmap Illustration/Getty Images

Have you looked at your power bill — like, really looked at it? If you’re anything like Rob, you pay whatever number appears at the bottom every month and drop it in the recycling. But how everyone’s power bill is calculated — in wonk terms, the “electricity rate design” — turns out to be surprisingly important and could be a big driver of decarbonization.

On this week’s episode of Shift Key, Rob and Jesse talk about why power bills matter, how Jesse would design electricity rates if he was king of the world, and how to fix rooftop solar in America. This is the finale of our recent series of episodes on rooftop solar and rate design. If you’d like to catch up, you can listen to our previous episodes featuring Sunrun CEO Mary Powell, the University of California, Berkeley’s Severin Borenstein, and Heatmap’s own Emily Pontecorvo.

Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Robinson Meyer: There’s other issues we could talk about electricity rate design, and I want to come back to them in a second. But let’s say you were made Grand Vizier of all public utility commissions across the country. How would you fix this? Like, what do we need to do?

Jesse Jenkins: I think there’s basically two options that we have, here — and this is, you know, a reflection of the fact that there is no one unified electricity market structure in the U.S. We have a bunch of different ways that we do things. And so I’ll just sketch two kind of classic examples of that. There are lots of little gradations in between.

One is a kind of traditional regulated market where you get your power from a regulated or publicly owned utility, like a municipal utility, or a rural utility district, or an investor-owned utility. It’s regulated by the state, and you buy power at whatever the regulated rate is. And so, if that’s the case, we need to get those rates right. And by that I mean: There are multiple things you’re paying for when you’re paying for your bill. You’re paying for the actual energy you’re consuming, and that is a kind of volumetric thing — you know, you should pay more the more you consume, all else equal.

But the interesting feature of electricity pricing is that it varies from hour to hour because of the fact that demand is changing all the time and renewable energy availability is changing all the time. And so the actual marginal cost of generating electricity depends on this intersection of how much you demand and what the available supply is. And if you have a lot of cheap renewables, for example, flooding the grid, that price could be very low. It could even be zero — when you’re curtailing solar or wind, you have excess free power, effectively. And at other times it can be very expensive when you’re running diesel generators or inefficient gas turbines to meet this sort of peak demand requirements. Electricity prices could be several hundred dollars a megawatt-hour.

And so we have a very wide range of pricing and we don’t communicate that at all to people today. And I think we have to restore that, in some way — to let people understand that if you consume more energy during the middle of the day when there’s lots of solar available, even if you don’t have solar on your roof, it’s coming from your neighbor or utility-scale solar farm far away, that’s the cheapest, best time to consume electricity. And if you’re consuming when fossil power plants are producing expensive power, you should think about how to reduce that consumption. So it’s really important that we get that kind of time dynamic rate right for the energy component.

Robinson Meyer: So you would expose people to prices. I mean, that’s kind of your basic answer is that you would expose people to these time-of-day prices even if — and I just want to be clear, here. You’re talking about folks who live in Washington, D.C., who live in New York, who live in Philadelphia, who live in San Francisco, who live in Atlanta …

Jesse Jenkins: All over. Yeah, everywhere.

This episode of Shift Key is sponsored by…

Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.

As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

A New Green Hydrogen Partnership? In This Economy?

Ecolectro, a maker of electrolyzers, has a new manufacturing deal with Re:Build.

Electrolyzers.
Heatmap Illustration/Ecolectro, Getty Images

By all outward appearances, the green hydrogen industry is in a state of arrested development. The hype cycle of project announcements stemming from Biden-era policies crashed after those policies took too long to implement. A number of high profile clean hydrogen projects have fallen apart since the start of the year, and deep uncertainty remains about whether the Trump administration will go to bat for the industry or further cripple it.

The picture may not be as bleak as it seems, however. On Wednesday, the green hydrogen startup Ecolectro, which has been quietly developing its technology for more than a decade, came out with a new plan to bring the tech to market. The company announced a partnership with Re:Build Manufacturing, a sort of manufacturing incubator that helps startups optimize their products for U.S. fabrication, to build their first units, design their assembly lines, and eventually begin producing at a commercial scale in a Re:Build-owned factory.

Keep reading...Show less
Green
Climate

AM Briefing: The ‘Low-Hanging Fruit’ of Emissions

On coal mines, Energy Star, and the EV tax credit

Coal Overlooked as Methane Emitter, IEA Says
Heatmap Illustration/Getty Images

Current conditions: Storms continue to roll through North Texas today, where a home caught fire from a lightning strike earlier this weekWarm, dry days ahead may hinder hotshot crews’ attempts to contain the 1,500-acre Sawlog fire, burning about 40 miles west of Butte, MontanaSevere thunderstorms could move through Rome today on the first day of the papal conclave.

THE TOP FIVE

1. Coal mines emitted more methane than the gas sector last year: report

The International Energy Agency published its annual Global Methane Tracker report on Wednesday morning, finding that over 120 million tons of the potent greenhouse gas were emitted by oil, gas, and coal in 2024, close to the record high in 2019. In particular, the research found that coal mines were the second-largest energy sector methane emitter after oil, at 40 million tons — about equivalent to India’s annual carbon dioxide emissions. Abandoned coal mines alone emitted nearly 5 million tons of methane, more than abandoned oil and gas wells at 3 million tons.

Keep reading...Show less
Yellow
Podcast

Spain’s Blackout and the Miracle of the Modern Power Grid

Rob and Jesse go deep on the electricity machine.

The blackout in Spain.
Heatmap Illustration/Getty Images

Last week, more than 50 million people across mainland Spain and Portugal suffered a blackout that lasted more than 10 hours and shuttered stores, halted trains, and dealt more than $1 billion in economic damage. At least eight deaths have been attributed to the power outage.

Almost immediately, some commentators blamed the blackout on the large share of renewables on the Iberian peninsula’s power grid. Are they right? How does the number of big, heavy, spinning objects on the grid affect grid operators’ ability to keep the lights on?

Keep reading...Show less
Blue