You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Maybe you’ve never heard of it. Maybe you know it too well. But to a certain type of clean energy wonk, it amounts to perhaps the three most dreaded words in climate policy: the interconnection queue.
The queue is the process by which utilities decide which wind and solar farms get to hook up to the power grid in the United States. Across much of the country, it has become so badly broken and clogged that it can take more than a decade for a given project to navigate.
On this week’s episode of Shift Key, Jesse and Rob speak with two experts about how to understand — and how to fix — what is perhaps the biggest obstacle to deploying more renewables on the U.S. power grid. Tyler Norris is a doctoral student at Duke University’s Nicholas School of the Environment. He was formerly vice president of development at Cypress Creek Renewables, and he served on North Carolina Governor Roy Cooper’s Carbon Policy Working Group. Claire Wayner is a senior associate at RMI’s carbon-free electricity program, where she works on the clean and competitive grids team. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Can I interject and just ask why, over the past decade, the interconnection queue got much longer — but also over the past decade, 15 years, the U.S. grid did change in character and in fuel type a lot, right? We went from burning a lot of coal to a lot of natural gas. And that transition is often cited as one of the model transitions, one of the few energy transitions to happen globally that happened at the speed with which we would need to decarbonize. Obviously, switching coal to gas is not decarbonizing, but it is a model — it happened fast enough that it is a good model for what decarbonizing would look like in order to meet climate goals.
Evidently, that did not run into these kind of same interconnection queue problems. Why is that? Is that because we were swapping in within individual power plants? We were just changing the furnace from a coal furnace to a gas furnace? Is that because these were larger projects and so it didn’t back up in the queue in the same way that a lot of smaller solar or wind farms do?
Claire Wayner: I would say all the reasons you just gave are valid, yeah. The coal to gas transition involved, likely, a lot of similar geographic locations. With wind and solar, we’re seeing them wanting to build on the grid and in a lot of cases in new, rather remote locations that are going to require new types of grid upgrades that the coal to gas transition just doesn’t have.
Jesse Jenkins: Maybe it is — to use a metaphor here — it’s a little bit like traffic congestion. If you add a generator to the grid, it’s trying to ship its power through the grid, and that decision to add your power mix to the grid combines with everyone else that’s also generating and consuming power to drive traffic jams or congestion in different parts of the grid, just like your decision to hop in the car and drive to work or to go into the city for the weekend to see a show or whatever you’re doing. It’s not just your decision. It’s everyone’s combined decisions that affects travel times on the grid.
Now, the big difference between the grid and travel on roads or most other forms of networks we’re used to is that you don’t get to choose which path to go down. If you’re sending electricity to the grid, electricity flows with physics down the path of least resistance or impedance, which is the alternating current equivalent of resistance. And so it’s a lot more like rivers flowing downhill from gravity, right? You don’t get to choose which branch of the river you go down. It’s just, you know, gravity will take you. And so you adding your power flows to the grid creates complicated flows based on the physics of this mesh network that spans a continent and interacts with everyone else on the grid.
And so when you’re going from probably a few dozen large natural gas generators added that operate very similarly to the plants that they’re replacing to hundreds of gigawatts across thousands of projects scattered all over the grid with very complicated generation profiles because they’re weather-dependent renewables, it’s just a completely different challenge for the utilities.
So the process that the regional grid operators developed in the 2000s, when they were restructuring and taking over that role of regional grid operator, it’s just not fit for purpose at all for what we face today. And I want to highlight another thing you mentioned, which is the software piece of it, too. These processes, they are using software and corporate processes that were also developed 10 or 20 years ago. And we all know that software and computing techniques have gotten quite a bit better over a decade or two. And rarely have utilities and grid operators really kept pace with those capabilities.
Wayner: Can I just say, I’ve heard that in some regions, interconnection consists of still sending back and forth Excel files. To Tyler’s point earlier that we only just now are getting data on the interconnection queue nationwide and how it stands, that’s one challenge that developers are facing is a lack of data transparency and rapid processing from the transmission providers and the grid operators.
And so, to use an analogy that my colleague Sarah Toth uses a lot, which I really love: Imagine if we had a Domino’s pizza tracker for the interconnection queue, and that developers could just log on and see how their projects are doing in many, if not most regions. They don’t even have that visibility. They don’t know when their pizza is going to get delivered, or if it’s in the oven.
This episode of Shift Key is sponsored by …
Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.
As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.
Antenna Group helps you connect with customers, policymakers, investors, and strategic partners to influence markets and accelerate adoption. Visit antennagroup.com to learn more.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A conversation with Mary King, a vice president handling venture strategy at Aligned Capital
Today’s conversation is with Mary King, a vice president handling venture strategy at Aligned Capital, which has invested in developers like Summit Ridge and Brightnight. I reached out to Mary as a part of the broader range of conversations I’ve had with industry professionals since it has become clear Republicans in Congress will be taking a chainsaw to the Inflation Reduction Act. I wanted to ask her about investment philosophies in this trying time and how the landscape for putting capital into renewable energy has shifted. But Mary’s quite open with her view: these technologies aren’t going anywhere.
The following conversation has been lightly edited and abridged for clarity.
How do you approach working in this field given all the macro uncertainties?
It’s a really fair question. One, macro uncertainties aside, when you look at the levelized cost of energy report Lazard releases it is clear that there are forms of clean energy that are by far the cheapest to deploy. There are all kinds of reasons to do decarbonizing projects that aren’t clean energy generation: storage, resiliency, energy efficiency – this is massively cost saving. Like, a lot of the methane industry [exists] because there’s value in not leaking methane. There’s all sorts of stuff you can do that you don’t need policy incentives for.
That said, the policy questions are unavoidable. You can’t really ignore them and I don’t want to say they don’t matter to the industry – they do. It’s just, my belief in this being an investable asset class and incredibly important from a humanity perspective is unwavering. That’s the perspective I’ve been taking. This maybe isn’t going to be the most fun market, investing in decarbonizing things, but the sense of purpose and the belief in the underlying drivers of the industry outweigh that.
With respect to clean energy development, and the investment class working in development, how have things changed since January and the introduction of these bills that would pare back the IRA?
Both investors and companies are worried. There’s a lot more political and policy engagement. We’re seeing a lot of firms and organizations getting involved. I think companies are really trying to find ways to structure around the incentives. Companies and developers, I think everybody is trying to – for lack of a better term – future-proof themselves against the worst eventuality.
One of the things I’ve been personally thinking about is that the way developers generally make money is, you have a financier that’s going to buy a project from them, and the financier is going to have a certain investment rate of return, or IRR. So ITC [investment tax credit] or no ITC, that IRR is going to be the same. And the developer captures the difference.
My guess – and I’m not incredibly confident yet – but I think the industry just focuses on being less ITC dependent. Finding the projects that are juicier regardless of the ITC.
The other thing is that as drafts come out for what we’re expecting to see, it’s gone from bad to terrible to a little bit better. We’ll see what else happens as we see other iterations.
How are you evaluating companies and projects differently today, compared to how you were maybe before it was clear the IRA would be targeted?
Let’s say that we’re looking at a project developer and they have a series of projects. Right now we’re thinking about a few things. First, what assets are these? It’s not all ITC and PTC. A lot of it is other credits. Going through and asking, how at risk are these credits? And then, once we know how at risk those credits are we apply it at a project level.
This also raises a question of whether you’re going to be able to find as many projects. Is there going to be as much demand if you’re not able to get to an IRR? Is the industry going to pay that?
What gives you optimism in this moment?
I’ll just look at the levelized cost of energy and looking at the unsubsidized tables say these are the projects that make sense and will still get built. Utility-scale solar? Really attractive. Some of these next-gen geothermal projects, I think those are going to be cost effective.
The other thing is that the cost of battery storage is just declining so rapidly and it’s continuing to decline. We are as a country expected to compare the current price of these technologies in perpetuity to the current price of oil and gas, which is challenging and where the technologies have not changed materially. So we’re not going to see the cost decline we’re going to see in renewables.
And more news around renewable energy conflicts.
1. Nantucket County, Massachusetts – The SouthCoast offshore wind project will be forced to abandon its existing power purchase agreements with Massachusetts and Rhode Island if the Trump administration’s wind permitting freeze continues, according to court filings submitted last week.
2. Tippacanoe County, Indiana – This county has now passed a full solar moratorium but is looking at grandfathering one large utility-scale project: RWE and Geenex’s Rainbow Trout solar farm.
3. Columbia County, Wisconsin – An Alliant wind farm named after this county is facing its own pushback as the developer begins the state permitting process and is seeking community buy-in through public info hearings.
4. Washington County, Arkansas – It turns out even mere exploration for a wind project out in this stretch of northwest Arkansas can get you in trouble with locals.
5. Wagoner County, Oklahoma – A large NextEra solar project has been blocked by county officials despite support from some Republican politicians in the Sooner state.
6. Skagit County, Washington – If you’re looking for a ray of developer sunshine on a cloudy day, look no further than this Washington State county that’s bucking opposition to a BESS facility.
7. Orange County, California – A progressive Democratic congressman is now opposing a large battery storage project in his district and talking about battery fire risks, the latest sign of a populist revolt in California against BESS facilities.
Permitting delays and missed deadlines are bedeviling solar developers and activist groups alike. What’s going on?
It’s no longer possible to say the Trump administration is moving solar projects along as one of the nation’s largest solar farms is being quietly delayed and even observers fighting the project aren’t sure why.
Months ago, it looked like Trump was going to start greenlighting large-scale solar with an emphasis out West. Agency spokespeople told me Trump’s 60-day pause on permitting solar projects had been lifted and then the Bureau of Land Management formally approved its first utility-scale project under this administration, Leeward Renewable Energy’s Elisabeth solar project in Arizona, and BLM also unveiled other solar projects it “reasonably” expected would be developed in the area surrounding Elisabeth.
But the biggest indicator of Trump’s thinking on solar out west was Esmeralda 7, a compilation of solar project proposals in western Nevada from NextEra, Invenergy, Arevia, ConnectGen, and other developers that would, if constructed, produce at least 6 gigawatts of power. My colleague Matthew Zeitlin was first to report that BLM officials updated the timetable for fully permitting the expansive project to say it would complete its environmental review by late April and be completely finished with the federal bureaucratic process by mid-July. BLM told Matthew that the final environmental impact statement – the official study completing the environmental review – would be published “in the coming days or week or so.”
More than two months later, it’s crickets from BLM on Esmeralda 7. BLM never released the study that its website as of today still says should’ve come out in late April. I asked BLM for comment on this and a spokesperson simply told me the agency “does not have any updates to share on this project at this time.”
This state of quiet stasis is not unique to Esmeralda; for example, Leeward has yet to receive a final environmental impact statement for its 700 mega-watt Copper Rays solar project in Nevada’s Pahrump Valley that BLM records state was to be published in early May. Earlier this month, BLM updated the project timeline for another Nevada solar project – EDF’s Bonanza – to say it would come out imminently, too, but nothing’s been released.
Delays happen in the federal government and timelines aren’t always met. But on its face, it is hard for stakeholders I speak with out in Nevada to take these months-long stutters as simply good faith bureaucratic hold-ups. And it’s even making work fighting solar for activists out in the desert much more confusing.
For Shaaron Netherton, executive director of the conservation group Friends of the Nevada Wilderness, these solar project permitting delays mean an uncertain future. Friends of the Nevada Wilderness is a volunteer group of ecology protection activists that is opposing Esmeralda 7 and filed its first lawsuit against Greenlink West, a transmission project that will connect the massive solar constellation to the energy grid. Netherton told me her group may sue against the approval of Esmeralda 7… but that the next phase of their battle against the project is a hazy unknown.
“It’s just kind of a black hole,” she told me of the Esmeralda 7 permitting process. “We will litigate Esmeralda 7 if we have to, and we were hoping that with this administration there would be a little bit of a pause. There may be. That’s still up in the air.”
I’d like to note that Netherton’s organization has different reasons for opposition than I normally write about in The Fight. Instead of concerns about property values or conspiracies about battery fires, her organization and a multitude of other desert ecosystem advocates are trying to avoid a future where large industries of any type harm or damage one of the nation’s most biodiverse and undeveloped areas.
This concern for nature has historically motivated environmental activism. But it’s also precisely the sort of advocacy that Trump officials have opposed tooth-and-nail, dating back to the president’s previous term, when advocates successfully opposed his rewrite of Endangered Species Act regulations. This reason – a motivation to hippie-punch, so to speak – is a reason why I hardly expect species protection to be enough of a concern to stop solar projects in their tracks under Trump, at least for now. There’s also the whole “energy dominance” thing, though Trump has been wishy-washy on adhering to that goal.
Patrick Donnelly, great basin director at the Center for Biological Diversity, agrees that this is a period of confusion but not necessarily an end to solar permitting on BLM land.
“[Solar] is moving a lot slower than it was six months ago, when it was coming at a breakneck pace,” said Patrick Donnelly of the Center for Biological Diversity. “How much of that is ideological versus 15-20% of the agencies taking early retirement and utter chaos inside the agencies? I’m not sure. But my feeling is it’s less ideological. I really don’t think Trump’s going to just start saying no to these energy projects.”