You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Counties that veered from Obama in 2008 to Trump in 2016 are more likely to oppose renewables development.
In Texas, the Oak Run Solar Project would have been a slam dunk.
Developers would install 800 megawatts of solar panels — enough to power 800,000 homes — across nine square miles of unused land. It would devote some of its acreage to new farming practices that incorporate solar panels. And it would sell its electricity cheaply — and profitably — because it was near the state capital and because it could take advantage of a pre-existing onsite connection to the regional power grid.
But Oak Run wasn’t proposed in Texas. It was proposed in Ohio, and that means it has faced enormous opposition. Ohio has some of the country’s strictest restrictions on solar development, and 10 counties have blocked solar development outright.
Although Madison County, where Oak Run was proposed, is not one of them, the blowback to the project cost a local Republican county commissioner his job. Oak Run was eventually approved by the state’s power siting board earlier this year, but its opponents are now appealing that decision in the state’s Supreme Court.
Madison County, Ohio, also illustrates the political transformation that has revolutionized the upper Midwest. The predominantly rural county near the state’s capital, Columbus, has favored Republicans since the 1960s. But in recent decades it has swung hard to the right. In 2008, Barack Obama won nearly 40% of the county’s vote. Eight years later, Hillary Clinton picked up just 27%.
These two facts may seem like they have little to do with each other. But they point to one of the biggest trends in clean energy development across the country: The counties that voted for Barack Obama in 2008 and then Donald Trump in 2016 are some of the worst places in the country to permit and build renewable projects.
The size of a county’s swing from 2008 to 2016 is one of the biggest predictors of whether a proposed wind or solar project will be contested or blocked, according to a new Heatmap Pro analysis of more than 8,500 projects and local policies around the country.
The magnitude of that swing is by far the most important political variable to emerge from Heatmap Pro’s analysis of more than 60 risk factors influencing community support or opposition to renewable projects. It is more strongly associated with a given project’s success than whether a county votes for Democratic or Republican candidates overall.
The only variables that are more closely correlated than the 2008-to-2016 swing are fundamental measures of a region’s population or local economy, such as its median income, racial demographics, or dominant industries. Towns and regions that heavily depend on farming, for instance, have become particularly reluctant to accept new solar projects in recent years.
Heatmap Pro’s analysis focused not only on whether a county’s residents support wind or solar projects in theory, but also on whether renewable projects proposed in the area are canceled, contested, or exposed to political turbulence. It surveyed more than 7,000 wind and solar projects proposed and built across the United States since the 1990s.
Many of the counties with the largest Obama-to-Trump swings have passed proposals meant to limit renewable development. Vermillion County in Indiana — where more than a quarter of voters swung from Obama to Trump — has an extensive set of restrictions on new solar projects. Solar projects in Elk County, Pennsylvania, which saw a similar swing, have also turned out against solar projects using up “prime farmland.”
There are a few reasons why the Obama-to-Trump swing might be associated with more opposition to renewables.
In 2008, solar and wind were still frontier technologies and were not price-competitive with fossil fuels. Although vaguely associated with Democrats, politicians on both sides of the aisles championed wind and solar so as to wean the country off foreign oil.
But in the following decade, the U.S. increased its solar capacity by roughly 100-fold, while it has more than doubled its installed wind capacity.. Today, solar and wind energy are major features of the electricity system, and many Republicans have openly embraced fossil fuels and cast doubt on the value of cleaner alternatives.
To be sure, the Obama-to-Trump swing was influenced by other social and economic factors, as well as a state’s specific political environment. Leah Stokes, a UC Santa Barbara political scientist who has studied the growing local opposition to wind farms, told me that the correlation with Obama-Trump voters may originate from Trump’s dominance of the upper Midwest in 2016. Because a small group of anti-renewable advocates can change an entire region’s policies, that could lead to more opposition to renewables in one part of the country or another.
“Is there a person, or a network of people, who are going place by place pushing these anti-solar and wind local laws? That would lead to a geographic concentration,” she said.
Even within individual counties, the electorate wasn’t the same in 2016 as it was in 2008. Throughout the 2010s, tens of millions of Americans moved around the country, with the largest net change moving from the Northeast to the South. Cities became younger on average, while rural areas and suburbs became older.
Even within counties, a different set of voters showed up to the polls in each election. One reason why the 2012 election might not be correlated with opposition to renewables is that many voters who voted for Obama in 2008 skipped the next cycle. Those same voters — many of whom were white and working class — showed back up in 2016 and backed Trump.
What is driving the opposition to renewables? Perhaps a county’s swing against renewable energy is happening precisely because voters there are persuadable. From 2008 to 2016, many voters in these counties changed their minds about which candidate or political party to support. As they shifted their stance to the right, they also adopted more seemingly Republican views about wind and solar development. Donald Trump has distinguished himself by his embrace of fossil fuels and climate change skepticism — perhaps as voters come to support him, they also adopt his positions.
What’s interesting, however, is that deep red counties that have not seen a political shift — places that backed, say, McCain and Romney by roughly the same margin as they backed Trump in 2016 — continue to build wind and solar at a good clip. Texas, for instance, is the No. 1 state for renewable deployment. A county’s partisanship, in other words, is not as good a predictor of its opposition to renewables as its swinginess.
Edgar Virguez, an energy systems engineer at the Carnegie Institution for Science at Stanford University, has studied what drives opposition to renewables in North Carolina. He told me that some of the same factors that predict a county’s Trump support — such as its population density and education level — also predict whether that county has enacted a local restriction on renewable energy.
When he and his colleagues studied local policies in North Carolina, they found that lower density and less educated counties “had significantly higher reductions in the land available for solar development” when compared with denser or more educated counties, he said. Once a county has fewer than 35 people per square mile, or when less than 20% of the population has a bachelor’s degree, the number of restrictions on local land use shot up. That’s a problem for decarbonization, he added, because less dense counties also usually have the best and most affordable land available for solar development.
That finding may not hold true in other states. Heatmap, for instance, has found that whiter and more educated counties are more likely to oppose renewables. And to some degree, less dense counties are exactly where you’d expect to see more solar and wind projects get built — and thus more local policies restricting them pop up. But it is nonetheless not great news for advocates, given that a couple of America’s political institutions — namely, the Senate and the Electoral College — favor rural voters or Midwestern states. If the trend takes root, then it could eventually curtail renewable development across the country. That question — and many others — will partly be decided in this week’s presidential election.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Jesse teaches Rob the basics of energy, power, and what it all has to do with the grid.
What is the difference between energy and power? How does the power grid work? And what’s the difference between a megawatt and a megawatt-hour?
On this week’s episode, we answer those questions and many, many more. This is the start of a new series: Shift Key Summer School. It’s a series of introductory “lecture conversations” meant to cover the basics of energy and the power grid for listeners of every experience level and background. In less than an hour, we try to get you up to speed on how to think about energy, power, horsepower, volts, amps, and what uses (approximately) 1 watt-hour, 1 kilowatt-hour, 1 megawatt-hour, and 1 gigawatt-hour.
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jesse Jenkins: Let’s start with the joule. The joule is the SI unit for both work and energy. And the basic definition of energy is the ability to do work — not work in a job, but like work in the physics sense, meaning we are moving or displacing an object around. So a joule is defined as 1 newton-meter, among other things. It has an electrical equivalent, too. A newton is a unit of force, and force is accelerating a mass, from basic physics, over some distance in this case. So 1 meter of distance.
So we can break that down further, right? And we can describe the newton as 1 kilogram accelerated at 1 meter per second, squared. And then the work part is over a distance of one meter. So that kind of gives us a sense of something you feel. A kilogram, right, that’s 2.2 pounds. I don’t know, it’s like … I’m trying to think of something in my life that weighs a kilogram. Rob, can you think of something? A couple pounds of food, I guess. A liter of water weighs a kilogram by definition, as well. So if you’ve got like a liter bottle of soda, there’s your kilogram.
Then I want to move it over a meter. So I have a distance I’m displacing it. And then the question is, how fast do I want to do that? How quickly do I want to accelerate that movement? And that’s the acceleration part. And so from there, you kind of get a physical sense of this. If something requires more energy, if I’m moving more mass around, or if I’m moving that mass over a longer distance — 1 meter versus 100 meters versus a kilometer, right? — or if I want to accelerate that mass faster over that distance, so zero to 60 in three seconds versus zero to 60 in 10 seconds in your car, that’s going to take more energy.
Robinson Meyer: I am looking up what weighs … Oh, here we go: A 13-inch MacBook Air weighs about, a little more than a kilogram.
Jenkins: So your laptop. If you want to throw your laptop over a meter, accelerating at a pace of 1 meter per second, squared …
Meyer: That’s about a joule.
Jenkins: … that’s about a joule.
Mentioned:
This episode of Shift Key is sponsored by …
The Yale Center for Business and the Environment’s online clean energy programs equip you with tangible skills and powerful networks—and you can continue working while learning. In just five hours a week, propel your career and make a difference.
Music for Shift Key is by Adam Kromelow.
If the Senate reconciliation bill gets enacted as written, you’ve got about 92 days left to seal the deal.
If you were thinking about buying or leasing an electric vehicle at some point, you should probably get on it like, right now. Because while it is not guaranteed that the House will approve the budget reconciliation bill that cleared the Senate Tuesday, it is highly likely. Assuming the bill as it’s currently written becomes law, EV tax credits will be gone as of October 1.
The Senate bill guts the subsidies for consumer purchases of electric vehicles, a longstanding goal of the Trump administration. Specifically, it would scrap the 30D tax credit by September 30 of this year, a harsher cut-off than the version of the bill that passed the House, which would have axed the credit by the end of 2025 except for automakers that had sold fewer than 200,000 electric vehicles. The credit as it exists now is worth up to $7,500 for cars with an MSRP below $55,000 (and trucks and sports utility vehicles under $80,000), and, under the Inflation Reduction Act, would have lasted through the end of 2032. The Senate bill also axes the $4,000 used EV tax credit at the end of September.
“Long story short, the credits under the current legislation are only going to be on the books through the end of September,” Corey Cantor, the research director of the Zero Emission Transportation Association, told me. “Now is definitely a good time, if you’re interested in an EV, to look at the market.”
The Senate applied the same strict timeline to credits for clean commercial vehicles, both new and used. For home EV chargers, the tax credit will now expire at the end of June next year.
While EVs were on the road well before the 2022 passage of the Inflation Reduction Act, what the new tax credit did was help build out a truly domestic electric vehicle market, Cantor said. “You have a bunch of refreshed EV models from major automakers,” Cantor told me, including “more affordable models in different segments, and many of them qualify for the credit.”
These include cars produceddomestically by Kia,Hyundai, and Chevrolet. But of course, the biggest winner from the credit is Tesla, whose Model Y was the best-selling car in the world in 2023.
Tesla shares were down over 5.5% in Tuesday afternoon trading, though not just because of Congress. JPMorgan also released an analyst report Monday arguing that the decline in sales seen in the first quarter would accelerate in the second quarter. President Trump, with whom Tesla CEO Elon Musk had an extremely public falling out last month, suggested on social media Monday night that the government efficiency department Musk himself formerly led should “take a good, hard, look” at the subsidies Musk receives across his many businesses. Trump also said that he would “take a look” at Musk’s United States citizenship in response to reporters’ questions about it.
Cantor told me that he expects a surge of consumer attention to the EV market if the bill passes in its current form. “You’ve seen more customers pull their purchase ahead” when subsidies cut-offs are imminent, he said.
But overall, the end of the subsidy is likely to reduce EV sales from their previously expected levels.
Harvard researchers have estimated that the termination of the EV tax credit “would cut the EV share of new vehicle sales in 2030 by 6.0 percentage points,” from 48% of new sales by 2030 to 42%. Combined with other Trump initiatives such as terminating the National Electric Vehicle Infrastructure program for publicly funded chargers (currently being litigated) and eliminating California’s waiver under the Clean Air Act that allowed it to set tighter vehicle emissions standards, the share of new car sales that are electric could fall to 32% in 2030.
But not all government support for electric vehicles will end by October 1, even if the bill gets the president’s signature in its current form.
“It’s important for consumers to know there are many states that offer subsidies, such as New York, and Colorado,” Cantor told me. That also goes for California, New Jersey, Nevada, and New Mexico. You can find the full list here.
Editor’s note: This story has been edited to include a higher cost limit for trucks and SUVs.
Excise tax is out, foreign sourcing rules are in.
After more than three days of stops and starts on the Senate floor, Congress’ upper chamber finally passed its version of Trump’s One Big Beautiful Bill Act Tuesday morning, sending the tax package back to the House in hopes of delivering it to Trump by the July 4 holiday, as promised.
An amendment brought by Senators Joni Ernst and Chuck Grassley of Iowa and Lisa Murkowski of Alaska that would have more gradually phased down the tax credits for wind and solar rather than abruptly cutting them off was never brought to the floor. Instead, Murkowski struck a deal with the Senate leadership designed to secure her vote that accomplished some of her other priorities, including funding for rural hospitals, while also killing an excise tax on renewables that had only just been stuffed into the bill over the weekend.
The new tax on wind and solar would have driven up development costs by as much as 20% — a prospect that industry groups said would “kill” investment altogether. But even without the tax, the Senate’s bill would gum up the works for clean energy projects across the spectrum due to new phase-out schedules for tax credits and fast-approaching deadlines to meet complex foreign sourcing rules. While more projects will likely be built under this version than the previous one, the basic outcomes haven’t changed: higher energy costs, project delays, lost jobs, and ceding leadership in artificial intelligence and manufacturing to China.
"This bill will hit Americans hard, terminating credits that have helped families lower their energy and transportation costs, shrinking demand for American-made advanced energy technologies, and squeezing new domestic energy production at a time of rising demand and prices,” Heather O’Neill, the CEO and president of the trade group Advanced Energy United, said in a statement Tuesday. “The advanced energy industry will endure, but the downstream effects of these rollbacks and punitive policies will be felt by American families and businesses for years to come.”
Here’s what’s in the final Senate bill.
The final Senate bill bifurcates the previously technology-neutral tax credits for clean electricity into two categories with entirely different rules and timelines — wind and solar versus everything else.
Tax credits for wind and solar farms would end abruptly with no phase-out period, but the bill includes a significant safe harbor for projects that are already under construction or close to breaking ground. As long as a project starts construction within 12 months of the bill’s passage, it will be able to claim the tax credits as originally laid out in the Inflation Reduction Act. All other projects must be “placed in service,” i.e. begin operating, by the start of 2028 to qualify.
That means if Trump signs the bill into law on July 4, wind and solar developers will have until July 4 of 2026 to “start construction.” Otherwise, they will have less than a year and a half to bring their projects online and still qualify for the credits.
Meanwhile, all other sources of zero-emissions electricity, including batteries, advanced nuclear, geothermal, and hydropower, will be able to continue claiming the tax credits for nearly a decade. The credits would start phasing down for projects that start construction in 2034 and terminate in 2036.
While there are some potential wins in the bill for clean energy development, many of the safe harbored projects will still be subject to complex foreign sourcing rules that may prove too much of a burden to meet.
The bill requires that any zero-emissions electricity or advanced manufacturing project that starts construction after December of this year abide by strict new “foreign entities of concern,” or FEOC rules in order to be eligible for tax credits. The rules penalize companies for having financial or material connections to people or businesses that are “owned by, controlled by, or subject to the jurisdiction or direction of” any of four countries — Russia, Iran, North Korea, and most importantly for clean energy technology, China.
As with the text that came out of the Senate Finance committee, the text in the final bill would phase in supply chain restrictions, requiring project developers and manufacturers to use fewer and fewer Chinese-sourced inputs over time. For clean electricity projects starting construction next year, 40% of the value of the materials used in the project must be free of ties to a FEOC. By 2030, the threshold would rise to 60%. Energy storage facilities are subject to a more aggressive timeline and would be required to prove that 55% of the project materials are non-FEOC in 2026, rising to 75% by 2030. Each covered advanced manufacturing technology gets its own specific FEOC benchmarks.
Unlike the text from the Finance Committee, however, the final text includes a clear exception for developers who already have procurement contracts in place prior to the bill’s enactment. If a solar developer has already signed a contract to get its cells from a Chinese company, for example, it could exempt that cost from the calculation. That would make it easier for companies further along in the development process to comply with the eligibility rules.
That said, these materials sourcing rules come on top of strict ownership and licensing rules likely to block more than 100 existing and planned solar and battery factories with partial Chinese ownership or licensing deals with Chinese firms from receiving the tax credits, per a BloombergNEF analysis I reported on previously.
Once again, the details of how any of this will work — and whether it will, in fact, be “workable” — will depend heavily on guidance written by the Treasury department. That not only gives the Trump administration significant discretion over the rules, it also assumes that the Treasury department, which is now severely understaffed after Trump’s efficiency department cleaned house earlier this year, will actually have the bandwidth to write them. Without Treasury guidance, developers may not have the cost certainty they need to continue moving forward on projects.
Up until today, the Senate and House looked poised to destroy the business model for companies like Sunrun that lease rooftop solar installations to homeowners and businesses by cutting them off from the investment tax credit, which can bring down the cost of a solar array by as much as 70%. The final Senate bill, however, got rid of this provision and replaced it with a much more narrow version.
Now, the only “leasing” schemes that are barred from claiming tax credits are those for solar water heaters and small wind installations. Companies that lease solar panels, batteries, fuel cells, and geothermal heating equipment are still eligible. SunRun’s stock jumped nearly 10% on Tuesday.
Other than the new FEOC rules, which will have truly existential consequences for a great many projects, there aren’t many changes to the advanced manufacturing tax credit, or 45X, than in previous versions of the bill. The OBBBA would create a new phase-out schedule for critical mineral producers claiming the tax credit that begins in 2031. Previously, critical minerals were set to be eligible indefinitely. It would also terminate the credit for wind energy components early, in 2028.
One significant change from the Senate Finance text is that the bill would allow vertically integrated companies to stack the tax credit for multiple components.
But perhaps the biggest change, which was introduced last weekend, is a twisted new definition of “critical mineral” that allows metallurgical coal — the type of coal used in steelmaking — to qualify for the tax credit. As my colleague Matthew Zeitlin wrote, most of the metallurgical coal the U.S. produces is exported, meaning this subsidy will mostly help other countries produce cheaper steel.
It looks like the hydrogen industry’s intense lobbying efforts finally paid off: The final Senate bill is the first text we’ve seen since this process began in May that would extend the lifespan of the tax credit for clean hydrogen production. Now, projects that begin construction before January 1, 2028 will still qualify for the credit. This is shorter than the Inflation Reduction Act’s 2033 cut-off, but much longer than the end-of-year cliff earlier versions of the bill would have imposed.
The tax credits for electric vehicles and energy efficiency building improvements would end almost immediately. Consumers will have to purchase or lease a new or used EV before September 30, 2025, in order to benefit. There would be a slightly longer lead time to get an EV charger installed, but that credit (30C) would expire on June 30, 2026.
Meanwhile, energy efficiency upgrades such as installing a heat pump or better-insulated windows and doors would have to be completed by the end of this year in order to qualify. Same goes for self-financed rooftop solar. The tax credit for newly built energy efficiency homes would expire on June 30, 2026.
The bill would make similar changes to the carbon sequestration (45Q) and clean fuels (45Z) tax credits as previous versions, boosting the credit amount for carbon capture projects that do enhanced oil recovery, and extending the clean fuels credit to corn ethanol producers.
The House Rules Committee met on Tuesday afternoon shortly after the Senate vote to deliberate on whether to send it to the House floor, and is still debating as of press time. As of this writing, Rules members Ralph Norman and Chip Roy have said they’ll vote against it.