You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Ways and Means Committee released its proposed budget language, and it’s not pretty for clean energy.

The House Ways and Means Committee, which oversees tax policy, released its initial proposal to overhaul the nation’s clean energy tax credits on Monday afternoon. These are separate and in addition to the extensive cuts to Inflation Reduction Act grant programs proposed by the Energy and Commerce Committee, Transportation Committee, and Natural Resources Committee in the past few weeks.
Here’s a rundown of the tax credit proposal, which, at first glance, appears to amount to a back-door full repeal of the climate law. There’s a lot that could change before we get to a final budget, let alone have a text head to the Senate. We’ll have more analysis on what these changes would mean in the days and weeks to come.
The text proposes ending the tax credit for new EVs (that is, 30D) on December 31, 2025 — with one exception. The credit would remain in effect for one year, through the end of 2026, for vehicles produced by automakers that have sold fewer than 200,000 tax credit-qualified cars between 2010 and the end of this year. That means that no Teslas would qualify for the tax credit next year, as the company has sold far more than 200,000 tax credit-eligible vehicles. A new entrant to EVs, like Honda with its Prologue model, will likely still qualify.
The committee also proposes ending the tax credit for used EVs (25E) and commercial EVs (45W) by the end of this year. This would effectively end the “leasing loophole” that allowed Americans to redeem the tax credit on vehicles that didn’t qualify for 30D because they didn’t meet domestic content requirements, meaning consumers could get discounts on leases of a wide range of makes and models.
Lastly, the draft proposes terminating the tax credit for residential EV chargers (30C) at the end of this year.
The GOP has proposed an early phase-out of the technology-neutral production and investment tax credits, which subsidize zero-emissions power generation projects including wind, solar, energy storage, advanced nuclear, and geothermal. It also proposed significant changes for the years they remain in effect.
Currently, new clean electricity projects can earn a 2.75 cents for every kilowatt-hour they produce for the first 10 years under section 45Y of the tax code. Alternatively, project developers can get a 30% investment tax credit (48E) on new projects. The Inflation Reduction Act scheduled both of these programs to phase out beginning in 2032, and expire at the end of 2035. It included a major caveat, however: that this phase-out would only happen if greenhouse gas emissions from U.S. power generation fell below 25% of 2022 levels. Otherwise, the tax credits would be maintained at their initial amounts until this target was met.
Under the GOP proposal, both credits would start to phase down in 2029, and new projects would no longer be eligible for either credit beginning in 2032. The proposal also cuts out a key provision that would have grandfathered many more projects into the tax credit. Under current law, a project only has to start construction within a certain year to qualify for that year’s tax credit amount. The draft text changes this, requiring a project to be “placed in service” before 2032 in order to qualify.
A separate tax credit for existing nuclear power generation (45U) would also phase down on the same timeline, despite Trump and other Republicans’ interest in boosting nuclear energy.
“Transferability” supercharged the nation’s clean energy tax credits by allowing project developers with low tax liability to sell their credits to another entity that stood to benefit from them. Previously, developers could only monetize their unusable tax credits through complicated tax equity deals.
Recipients of a wide range of tax credits, including those for clean manufacturing, clean fuels, carbon capture, nuclear power, and hydrogen, can all take advantage of transferability. The provision channeled new capital into the climate economy as corporations looking to reduce their tax liability began scooping up tax credits, indirectly helping to finance clean energy projects. It also helped lower the cost of wind and solar, as developers could earn a premium on tax credits compared to what they got for tax equity transfers, because the whole transaction was cheaper to do.
The proposal would get rid of this option across all of the tax credits beginning in 2028.
The proposal would also impose new sourcing requirements across all of the tax credits, prohibiting developers from using components, subcomponents, or critical minerals sourced from “foreign entities of concern,” a term that applies to companies based in China, Russia, North Korea, or Iran. The consequences would be huge, as China dominates global markets for refined lithium, cobalt, graphite, and rare earths — key materials used in clean energy technologies.
The draft text would also terminate the clean manufacturing credit (45X) in 2032 — one year earlier than under existing law. Wind energy components such as blades, towers, and gearboxes would lose their eligibility sooner, in 2028.
The text proposes repealing three tax credits for residential energy efficiency improvements at the end of 2025. Starting next year, homeowners would no longer be able to claim the Energy Efficiency Home Improvement Credit (25C), which provides up to $3,200 per year for home energy audits, energy-saving windows and doors, air sealing and insulation, heat pumps, and new electrical panels.
It also proposes killing the Residential Clean Energy Credit (25D), which offered homeowners 30% off the cost of solar panels and battery systems to store energy from those solar panels. This credit also subsidizes geothermal home heating systems.
Both of these tax credits have existed in some form since the Energy Policy Act of 2005.
The third credit that would end this year is an up to $5,000 subsidy for contractors who construct new, energy efficient homes (45L).
The proposal would not repeal the energy efficiency tax deduction for improvements made to commercial buildings (179D).
The Inflation Reduction Act created a technology-neutral tax credit for low-carbon transportation fuels, like sustainable aviation fuel and biodiesel (45Z). It operates on a sliding scale, depending on how carbon-intensive the fuel is. The credit is set to expire after 2027, however the GOP proposal would extend it for four years, through the end of 2031.
That said, it would also make a significant change to how the credit is calculated, making it much easier for projects with questionable emissions benefits to qualify. Under the Biden administration, the Treasury Department issued rules that said producers had to account for the emissions tied to indirect land use changes resulting from fuel production. That meant that corn ethanol producers, for example, had to account for the expansion of croplands resulting from the increase of biofuel production and use — which would, in most cases, disqualify corn ethanol from claiming the tax credit. But under the GOP proposal, producers would explicitly not have to account for indirect land use changes.
The GOP proposal would deal a rapid and ruthless death blow to the 45V clean hydrogen production tax credit, requiring developers to begin construction before the end of this year if they want to claim it.
Other than ending transferability, the text makes no changes to the 45Q carbon capture and sequestration tax credit.
Most of the tax credits have provisions that allow project developers to qualify for higher amounts if they pay prevailing wages, hire apprentices, build in a qualified “energy community” or a low-income community, or use a certain percentage of domestically-produced materials. This initial draft from the GOP would not change any of those provisions.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.
The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.
But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.
Then there’s Japan, which has been operating its own high-temperature gas-cooled reactor for 27 years at a government research site in Ibaraki Prefecture, about 90 minutes north of Tokyo by train. Unlike China’s design, it’s not a commercial power reactor. Also unlike China’s design, it’s coming to America.
Heatmap has learned that ZettaJoule, an American-Japanese startup led by engineers who worked on that reactor, is now coming out of stealth and laying plans to build its first plant in Texas.
For months, the company has quietly staffed up its team of American and Japanese executives, including a former U.S. Nuclear Regulatory Commission official and a high-ranking ex-administrator from the industrial giant Mitsubishi. It’s now preparing to decamp from its initial home base in Rockville, Maryland, to the Lone Star State as it prepares to announce its debut project at an as-yet-unnamed university in Texas.
“We haven’t built a nuclear reactor in many, many decades, so you have only a handful of people who experienced the full cycle from design to operations,” Mitsuo Shimofuji, ZettaJoule’s chief executive, told me. “We need to complete this before they retire.”
That’s where the company sees its advantage over rivals in the race to build the West’s first commercial high-temperature gas reactor, such as Amazon-backed X-energy or Canada’s StarCore nuclear. ZettaJoule’s chief nuclear office, Kazuhiko Kunitomi, oversaw the construction of Japan’s research reactor in the 1990s. He’s considered Japan’s leading expert in high-temperature gas reactors.
“Our chief nuclear officer and some of our engineers are the only people in the Western world who have experience of the whole cycle from design to construction to operation of a high temperature gas reactor,” Shimofuji said.
Like X-energy’s reactor, ZettaJoule’s design is a small modular reactor. With a capacity of 30 megawatts of thermal output and 12 megawatts of electricity, the ZettaJoule reactor qualifies as a microreactor, a subcategory of SMR that includes anything 20 megawatts of electricity or less. Both companies’ reactors will also run on TRISO, a special kind of enriched uranium with cladding on each pellet that makes the fuel safer and more efficient at higher temperatures.
While X-energy’s debut project that Amazon is financing in Washington State is a nearly 1-gigawatt power station made up of at least a dozen of the American startup’s 80-megawatt reactors, ZettaJoule isn’t looking to generate electricity.
The first new reactor in Texas will be a research reactor, but the company’s focus is on producing heat. The reactor already working in Japan, which produces heat, demonstrates that the design can reach 950 degrees Celsius, roughly 25% higher than the operating temperature of China’s reactor.
The potential for use in industrial applications has begun to attract corporate partners. In a letter sent Monday to Ted Garrish, the U.S. assistant secretary of energy in charge of nuclear power — a copy of which I obtained — the U.S. subsidiary of the Saudi Arabian oil goliath Aramco urged the Trump administration to support ZettaJoule, and said that it would “consider their application to our operations” as the technology matures. ZettaJoule is in talks with at least two other multinational corporations.
The first new reactor ZettaJoule builds won’t be identical to the unit in Japan, Shimofuji said.
“We are going to modernize this reactor together with the Japanese and U.S. engineering partners,” he said. “The research reactor is robust and solid, but it’s over-engineered. What we want to do is use the safety basis but to make it more economic and competitive.”
Once ZettaJoule proves its ability to build and operate a new unit in Texas, the company will start exporting the technology back to Japan. The microreactor will be its first product line.
“But in the future, we can scale up to 20 times bigger,” Shimofuji said. “We can do 600 megawatts thermal and 300 megawatts electric.”
Another benefit ZettaJoule can tap into is the sweeping deal President Donald Trump brokered with Japanese Prime Minister Sanae Takaichi in October, which included hundreds of billions of dollars for new reactors of varying sizes, including the large-scale Westinghouse AP1000. That included financing to build GE Vernova Hitachi Nuclear Energy’s 300-megawatt BWRX-300, one of the West’s leading third-generation SMRs, which uses a traditional water-cooled design.
Unlike that unit, however, ZettaJoule’s micro-reactor is not a first-of-a-kind technology, said Chris Gadomski, the lead nuclear analyst at the consultancy BloombergNEF.
“It’s operated in Japan for a long, long time,” he told me. “So that second-of-a-kind is an attractive feature. Some of these companies have never operated a reactor. This one has done that.”
A similar dynamic almost played out with large-scale reactors more than two decades ago. In the late 1990s, Japanese developers built four of GE and Hitachi’s ABWR reactor, a large-scale unit with some of the key safety features that make the AP1000 stand out compared to its first- and second-generation predecessors. In the mid 2000s, the U.S. certified the design and planned to build a pair in South Texas. But the project never materialized, and America instead put its resources into Westinghouse’s design.
But the market is different today. Electricity demand is surging in the near term from data centers and in the long term from electrification of cars and industry. The need to curb fossil fuel consumption in the face of worsening climate change is more widely accepted than ever. And China’s growing dominance over nuclear energy has rattled officials from Tokyo to Washington.
“We need to deploy this as soon as possible to not lose the experienced people in Japan and the U.S.,” Shimofuji said. “In two or three years time, we will get a construction permit ideally. We are targeting the early 2030s.”
If every company publicly holding itself to that timeline is successful, the nuclear industry will be a crowded field. But as history shows, those with the experience to actually take a reactor from paper to concrete may have an advantage.
It’s now clear that 2026 will be big for American energy, but it’s going to be incredibly tense.
Over the past 365 days, we at The Fight have closely monitored numerous conflicts over siting and permitting for renewable energy and battery storage projects. As we’ve done so, the data center boom has come into full view, igniting a tinderbox of resentment over land use, local governance and, well, lots more. The future of the U.S. economy and the energy grid may well ride on the outcomes of the very same city council and board of commissioners meetings I’ve been reporting on every day. It’s a scary yet exciting prospect.
To bring us into the new year, I wanted to try something a little different. Readers ask me all the time for advice with questions like, What should I be thinking about right now? And, How do I get this community to support my project? Or my favorite: When will people finally just shut up and let us build things? To try and answer these questions and more, I wanted to give you the top five trends in energy development (and data centers) I’ll be watching next year.
The best thing going for American renewable energy right now is the AI data center boom. But the backlash against developing these projects is spreading incredibly fast.
Do you remember last week when I told you about a national environmental group calling for data center moratoria across the country? On Wednesday, Senator Bernie Sanders called for a nationwide halt to data center construction until regulations are put in place. The next day, the Working Families Party – a progressive third party that fields candidates all over the country for all levels of government – called for its candidates to run in opposition to new data center construction.
On the other end of the political spectrum, major figures in the American right wing have become AI skeptics critical of the nascent data center buildout, including Florida Governor Ron DeSantis, Missouri Senator Josh Hawley, and former Trump adviser Steve Bannon. These figures are clearly following the signals amidst the noise; I have watched in recent months as anti-data center fervor has spread across Facebook, with local community pages and groups once focused on solar and wind projects pivoting instead to focus on data centers in development near them.
In other words, I predicted just one month ago, an anti-data center political movement is forming across the country and quickly gaining steam (ironically aided by the internet and algorithms powered by server farms).
I often hear from the clean energy sector that the data center boom will be a boon for new projects. Renewable energy is the fastest to scale and construct, the thinking goes, and therefore will be the quickest, easiest, and most cost effective way to meet the projected spike in energy demand.
I’m not convinced yet that this line of thinking is correct. But I’m definitely sure that no matter the fuel type, we can expect a lot more transmission development, and nothing sparks a land use fight more easily than new wires.
Past is prologue here. One must look no further than the years-long fight over the Piedmont Reliability Project, a proposed line that would connect a nuclear power plant in Pennsylvania to data centers in Virginia by crossing a large swathe of Maryland agricultural land. I’ve been covering it closely since we put the project in our inaugural list of the most at-risk projects, and the conflict is now a clear blueprint.
In Wisconsin, a billion-dollar transmission project is proving this thesis true. I highly recommend readers pay close attention to Port Washington, where the release of fresh transmission line routes for a massive new data center this week has aided an effort to recall the city’s mayor for supporting the project. And this isn’t even an interstate project like Piedmont.
While I may not be sure of the renewable energy sector’s longer-term benefits from data center development, I’m far more confident that this Big Tech land use backlash is hitting projects right now.
The short-term issue for renewables developers is that opponents of data centers use arguments and tactics similar to those deployed by anti-solar and anti-wind advocates. Everyone fighting data centers is talking about ending development on farmland, avoiding changes to property values, stopping excess noise and water use, and halting irreparable changes to their ways of life.
Only one factor distinguishes data center fights from renewable energy fights: building the former potentially raises energy bills, while the latter will lower energy costs.
I do fear that as data center fights intensify nationwide, communities will not ban or hyper-regulate the server farms in particular, but rather will pass general bans that also block the energy projects that could potentially power them. Rural counties are already enacting moratoria on solar and wind in tandem with data centers – this is not new. But the problem will worsen as conflicts spread, and it will be incumbent upon the myriad environmentalists boosting data center opponents to not accidentally aid those fighting zero-carbon energy.
This week, the Bureau of Land Management approved its first solar project in months: the Libra facility in Nevada. When this happened, I received a flood of enthusiastic and optimistic emails and texts from sources.
We do not yet know whether the Libra approval is a signal of a thaw inside the Trump administration. The Interior Department’s freeze on renewables permitting decisions continues mostly unabated, and I have seen nothing to indicate that more decisions like this are coming down the pike. What we do know is that ahead of a difficult midterm election, the Trump administration faces outsized pressure to do more to address “affordability,” Democrats plan to go after Republicans for effectively repealing the Inflation Reduction Act and halting permits for solar and wind projects, and there’s a grand bargain to be made in Congress over permitting reform that rides on an end to the permitting freeze.
I anticipate that ahead of the election and further permitting talks in Congress, the Trump administration will mildly ease its chokehold on solar and wind permits because that is the most logical option in front of them. I do not think this will change the circumstances for more than a small handful of projects sited on federal lands that were already deep in the permitting process when Trump took power.
It’s impossible to conclude a conversation about next year’s project fights without ending on the theme that defined 2025: battery fire fears are ablaze, and they’ll only intensify as data centers demand excess energy storage capacity.
The January Moss Landing fire incident was a defining moment for an energy sector struggling to grapple with the effects of the Internet age. Despite bearing little resemblance to the litany of BESS proposals across the country, that one hunk of burning battery wreckage in California inspired countless communities nationwide to ban new battery storage outright.
There is no sign this trend will end any time soon. I expect data centers to only accelerate these concerns, as these facilities can also catch fire in ways that are challenging to address.
Plus a resolution for Vineyard Wind and more of the week’s big renewables fights.
1. Hopkins County, Texas – A Dallas-area data center fight pitting developer Vistra against Texas attorney general Ken Paxton has exploded into a full-blown political controversy as the power company now argues the project’s developer had an improper romance with a city official for the host community.
2. La Plata County, Colorado – This county has just voted to extend its moratorium on battery energy storage facilities over fire fears.
3. Dane County, Wisconsin – The city of Madison appears poised to ban data centers for at least a year.
4. Goodhue County, Minnesota – The Minnesota Center for Environmental Advocacy, a large environmentalist organization in the state, is suing to block a data center project in the small city of Pine Island.
5. Hall County, Georgia – A data center has been stopped down South, at least for now.
6. Dukes County, Massachusetts – The fight between Vineyard Wind and the town of Nantucket seems to be over.