You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
And made Helene so much worse, according to new reports from Climate Central and World Weather Attribution.
Contrary to recent rumor, the U.S. government cannot direct major hurricanes like Helene and Milton toward red states. According to two new rapid attribution studies by World Weather Attribution and Climate Central, however, human actors almost certainly made the storms a lot worse through the burning of fossil fuels.
A storm like Hurricane Helene, which has killed at least 227 people so far and caused close to $50 billion in estimated property losses across the southeast, is about two-and-a-half times more likely in the region today compared to what would be expected in a “cooler pre-industrial climate,” WWA found. That means Helene, the kind of storm one would expect to see once every 130 years on average, is now expected to develop at a rate of about once every 53 years. Additionally, WWA researchers determined that extreme rainfall from Helene was 70% more likely and 10% heavier in the Appalachians and about 40% more likely in the southern Appalachian region, where many of the deaths occurred, due to climate change.
“Americans shouldn’t have to fear hurricanes more violent than Helene — we have all the knowledge and technology needed to lower demand and replace oil, gas, and coal with renewable energy,” Friederike Otto, the lead of WWA and a senior lecturer in climate science at Imperial College London, said in a statement. “But vitally, we need the political will.” Alarmingly, the attribution study found that storms could drop an additional 10% or more rain on average as soon as the 2050s if warming reaches 2 degrees Celsius.
WWA’s study is not the first to be released on Hurricane Helene, but it was still produced incredibly quickly and has not been peer reviewed. Just a few weeks ago, the group issued a correction on a report estimating the contribution of climate change to recent flooding in Europe.
Separately, Climate Central looked at Hurricane Milton, which already has the distinction of being the fifth strongest Atlantic storm on record. The nonprofit’s findings show that Milton’s rapid intensification — one of the fastest and most powerful instances of the phenomenon in history — is primarily due to high sea surface temperatures in the weeks before Milton developed, which was made at least 400 times more likely by climate change and up to 800 times more likely. (WWA relied on Climate Central’s Climate Shift Index for oceans for its research, but found “climate change made the unusually hot sea surface temperature about 200-500 times more likely.”)
Attribution science is incredibly tricky, especially for a storm system like a hurricane that has variables ranging from wind shear to the El Niño–Southern Oscillation to ocean temperatures and jet stream variations. When I spoke to a member of the WWA team earlier this year, I was told the organization specifically avoids attributing the intensification of any individual hurricane — in theory, one of the more straightforward relationships — to climate change because of the relatively limited historical modeling available. Even something like rainfall “is not necessarily correlated to the magnitude of the floods that you see because there are other factors,” WWA’s Clair Barnes previously told me — for example, the steep-sided mountains and hollows of western North Carolina, which served as funnels for rainfall to an especially devastating effect.
But regarding the relationship between hurricanes and climate change more generally, “We’re relatively confident that storms will get more intense” in a warming world, Gabriel Vecchi, a Princeton geoscientist, explained on a recent episode of Heatmap’s Shift Key podcast. “And we’re really confident that storms will get wetter.”
Helene and Milton hammer that point home: once-in-a-generation storms can now arrive on back-to-back weekends. You can almost understand the impulse to devise a zany explanation as to why. Only, the truth is far simpler than cloud seeding or space lasers: a warmer atmosphere makes for warmer oceans, which make for wetter, more intense storms. And while hurricane seasons eventually end, global temperatures haven’t stopped going up. That, perhaps, is the more terrifying subtext of the attribution studies: There will be more Miltons and Helenes.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
SpaceX has also now been dragged into the fight.
The value of Tesla shares went into freefall Thursday as its chief executive Elon Musk traded insults with President Donald Trump. The war of tweets (and Truths) began with Musk’s criticism of the budget reconciliation bill passed by the House of Representatives and has escalated to Musk accusing Trump of being “in the Epstein files,” a reference to the well-connected financier Jeffrey Epstein, who died in federal detention in 2019 while awaiting trial on sex trafficking charges.
The conflict had been escalating steadily in the week since Musk formally departed the Trump administration with what was essentially a goodbye party in the Oval Office, during which Musk was given a “key” to the White House.
Musk has since criticized the reconciliation bill for not cutting spending enough, and for slashing credits for electric vehicles and renewable energy while not touching subsidies for oil and gas. “Keep the EV/solar incentive cuts in the bill, even though no oil & gas subsidies are touched (very unfair!!), but ditch the MOUNTAIN of DISGUSTING PORK in the bill,” Musk wrote on X Thursday afternoon. He later posted a poll asking “Is it time to create a new political party in America that actually represents the 80% in the middle?”
Tesla shares were down around 5% early in the day but recovered somewhat by noon, only to nosedive again when Trump criticized Musk during a media availability. The shares had fallen a total of 14% from the previous day’s close by the end of trading on Thursday, evaporating some $150 billion worth of Tesla’s market capitalization.
As Musk has criticized Trump’s bill, Trump and his allies have accused him of being sore over the removal of tax credits for the purchase of electric vehicles. On Tuesday, Speaker of the House Mike Johnson described Musk’s criticism of the bill as “very disappointing,” and said the electric vehicle policies were “very important to him.”
“I know that has an effect on his business, and I lament that,” Johnson said.
Trump echoed that criticism Thursday afternoon on Truth Social, writing, “Elon was ‘wearing thin,’ I asked him to leave, I took away his EV Mandate that forced everyone to buy Electric Cars that nobody else wanted (that he knew for months I was going to do!), and he just went CRAZY!” He added, “The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Governmental Subsidies and Contracts. I was always surprised that Biden didn’t do it!”
“In light of the President’s statement about cancellation of my government contracts, @SpaceX will begin decommissioning its Dragon spacecraft immediately,” Musk replied, referring to the vehicles NASA uses to ferry personnel and supplies to and from the International Space Station.
The company will use the seed funding to bring on more engineers — and customers.
As extreme weather becomes the norm, utilities are scrambling to improve the grid’s resilience, aiming to prevent the types of outages and infrastructure damage that often magnify the impact of already disastrous weather events. Those events cost the U.S. $182 billion in damages last year alone.
With the intensity of storms, heat waves, droughts, and wildfires growing every year, some utilities are now turning to artificial intelligence in their quest to adapt to new climate realities. Rhizome, which just announced a $6.5 million seed round, uses AI to help assess and prevent climate change-induced grid infrastructure vulnerabilities. It’s already working with utilities such as Avangrid, Seattle City Light, and Vermont Electric Power Company to do so.
“With a combination of utility system data and historical weather and hazard information, and then climate projection information, we can build a full profile of likelihood and consequence of failure at a very high resolution,” Rhizome co-founder and CEO Mish Thadani told me.
While utilities often have lots of data about the history of their assets and the surrounding landscape, there’s no real holistic system to bring together these disparate datasets and provide a simple overview of systemic risk across a range of different scenarios. Utilities usually rely on historical data to make decisions about their assets — a practice that’s increasingly unhelpful as climate change makes previously rare extreme weather events more likely.
Rhizome aims to solve both problems, serving as an integrated platform for risk assessment and mitigation that incorporates forward-looking climate modeling into its projections. The company measures its success against modeled counterfactuals that determine avoided power outages and the economic losses associated with these hypothetical blackouts. “So we can say the anticipated failure rate across the system for a Category 1 hurricane was X, and after you invest in the system, it will be Y,” Thadani told me. “Or if you’ve made a bunch of investments in the system, and you do experience a Category 1 hurricane, what would have been the failure rate had those investments not been made?”
This allows utilities to provide regulators with much more robust data to back up their funding requests. So while Thadani expects electricity prices to continue to rise and ratepayers to bear the burden, he told me that Rhizome can ultimately help regulators and utilities keep costs in check by making sure that every dollar spent on risk mitigation goes as far as possible.
Rhizome’s seed round, which came in oversubscribed, was led by the early-stage tech-focused venture firm Base10 Partners, which aims to automate traditional sectors of the economy. Additional funders include climate investors MCJ and CLAI, as well as the wildfire-focused venture firm Convective Capital. In addition to its standard risk assessment system, Rhizome has also developed a wildfire-specific risk mitigation tool. This quantifies not only how likely a hazard is to occur and its potential impact on utility infrastructure, but also the probability that an equipment failure would spark a wildfire, based on the geography of the area and historical ignition data.
Thadani told me that he considers evaluating wildfire risk “to be the next step in a sequence” as a utility evaluates the threats to its system overall. So while customers can choose to adopt either the standard product or the wildfire-specific product, many could gain utility from both, he said. The company has also developed a third offering specifically tailored for municipal and cooperative utilities. This more affordable system doesn’t provide the same machine learning-powered cost-benefit metrics, but can still help these smaller entities evaluate their infrastructure’s vulnerability.
Right now, Rhizome has a “lean and mighty” team of just 11 people, Thadani told me. With this latest raise, he said that the company will immediately hire five or six engineers, primarily to do further research and development. As Rhizome looks to onboard more and larger customers, it’s planning to incorporate more advanced modeling features into its platform and operate it increasingly autonomously, such that the model can retrain itself as new weather, climate, and utility data becomes available.
The company is out of the pilot phase with most of its customers, Thadani said, having signed multiple enterprise software contracts. That’s big, as utilities have gained a reputation for showing an initial appetite for testing innovative technologies, only to balk at the cost of full-scale deployment. Thadani told me Rhizome has been able to avoid this so-called “pilot purgatory” by making a point to engage with senior-level stakeholders at utilities — not just the innovation teams — to “graduate from that pilot ecosystem more quickly.”
Add it to the evidence that China’s greenhouse gas emissions may be peaking, if they haven’t already.
Exactly where China is in its energy transition remains somewhat fuzzy. Has the world’s largest emitter of greenhouse gases already hit peak emissions? Will it in 2025? That remains to be seen. But its import data for this year suggests an economy that’s in a rapid transition.
According to government trade data, in the first fourth months of this year, China imported $12.1 billion of coal, $100.4 billion of crude oil, and $18 billion of natural gas. In terms of value, that’s a 27% year over year decline in coal, a 8.5% decline in oil, and a 15.7% decline in natural gas. In terms of volume, it was a 5.3% decline, a slight 0.5% increase, and a 9.2% decline, respectively.
“Fossil fuel demand still trends down,” Lauri Myllyvirta, the co-founder of the Centre for Research on Energy and Clean Air, wrote on X in response to the news.
Morgan Stanley analysts predicted Friday in a note to clients that this “weak downstream demand” for coal in China would “continue to hinder coal import volume.”
Another piece of China’s emissions and coal usage puzzle came from Indonesia, which is a major coal exporter. Citing data from trade data service Kpler, Reuters reported Friday that Indonesia’s thermal coal exports “have dropped to their lowest in three years” thanks to “weak demand in China and India,” the world’s two biggest coal importers. Indonesia’s thermal coal exports dropped 12% annually to 150 million tons in the first third of the year, Reuters reported.
China’s official goal is to hit peak emissions by 2030 and reach “carbon neutrality” by 2060. The country’s electricity grid is largely fueled by coal (with hydropower coming in at number two), as is its prolific production of steel and cement, which is energy and, specifically, coal-intensive. For a few years in the 2010s, more cement was poured in China than in the whole 20th century in the United States. China also accounts for about half of the world’s steel production.
At the same time, China’s electricity demand growth is being largely met by renewables, implying that China can expand its economy without its economy-wide, annual emissions going up. This is in part due to a massive deployment of renewables. In 2023, China installed enough non-carbon-emitting electricity generation to meet the total electricity demand of all of France.
China’s productive capacity has shifted in a way that’s less carbon intensive, experts on the Chinese energy system and economy have told Heatmap. The economy isshifting more toward manufacturing and away from the steel-and-cement intensive breakneck urbanization of the past few decades, thanks to a dramatically slowing homebuilding sector.
Chinese urban residential construction was using almost 300 million tons of steel per year at its peak in 2019, according to research by the Reserve Bank of Australia, about a third of the country’s total steel usage. (Steel consumption for residential construction would fall by about half by 2023.) By contrast, the whole United States economy consumes less than 100 million tons of steel per year.
To the extent the overall Chinese economy slows down due to the trade war with the United States, coal usage — and thus greenhouse gas emissions — would slow as well. Although that hasn’t happened yet — China also released export data on Friday that showed sustained growth, in spite of the tariff barriers thrown up by the Trump administration.