You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Maybe you’re reading this in a downpour. Perhaps you’re reading it because you have questions about the upcoming hurricane season. Or maybe you’re reading it because you’re one of the 150 million Americans enduring record-breaking temperatures in this week’s heat dome.
Whatever the reason, you have a question: Is this climate change?
There’s an old maxim — that, like many things, is often dubiously attributed to Mark Twain — that goes something like, “Climate is what you expect and weather is what you get.” Weather refers to the event itself, while climate refers to the trends (averaged over 30 years or more, usually) that might make such an event more or less likely.
Climate change is almost always an exacerbating factor in the case of something like a heat wave or a heat dome. In other situations, the picture is far more complicated and uncertain. It can take years to understand if and how climate change made an extreme weather event more likely, and while organizations like World Weather Attribution work hard to provide quick and accurate estimations, getting the science wrong can fuel climate skepticism and bolster deniers’ arguments. While it might be tempting to pin all extreme weather on climate change, the truth is, not all of it is.
Still, we do know a lot about how climate change influences the weather — and we’re always learning more. While this guide is far from the be-all and end-all of attribution and should be referred to with caveats, here is what we know about how climate change is shaping the extreme weather we see today.
“When you’re looking at heat extremes, there is almost always a climate change signal,” Clair Barnes, a research associate with World Weather Attribution, told me. “I don’t think there’s ever not been a climate change signal since I’ve been doing it in the last couple of years.”
As the planet warms, local temperatures respond everywhere. There are not as many complicating variables in this relationship as there are with something like drought. “With heat waves, it’s the same answer every time: It got hotter because it’s got hotter,” Barnes said.
The Intergovernmental Panel on Climate Change has found that the kind of heat waves that would have occurred once in a decade before the Industrial Revolution now occur almost three times more frequently and are 1.2 degrees Celsius (or 2.2 degrees Fahrenheit) warmer. The most extreme examples — like the 2021 heat dome over the Pacific Northwest — appear to have been possible only because of warming caused by greenhouse gas emissions. Additionally, about 37% of global heat-related deaths, which amount to tens of thousands of deaths per year, are attributable to climate change.
There have, of course, always been heat waves. But it is with high confidence that scientists say they are hotter and last longer now than they would otherwise because of climate change.
Did climate change do it? It is “virtually certain” that heat waves are more frequent and hotter than they otherwise would be because of climate change.
WWA doesn’t specifically study wildfires since they aren’t technically “weather” (though once they form, they can make their own). Instead, the organization studies the conditions that make a fire more likely. In the American West, this deadly combo usually involves high pressure, extremely dry air, and some wind.
Globally, burned areas decreased between 1998 and 2015, but that isn’t because fire-weather conditions are improving — rather, regional leaders have gotten better at things like land use and fire management. Fire weather, meanwhile, is increasing and lasting longer due to climate change. In particular, hotter temperatures — especially hotter overnight temperatures — make it more difficult to combat the fires that do ignite. (Most fires in the U.S. start due to human negligence or arson, rather than by natural causes such as lightning strikes.)
This is especially the case in California, where 10 of the state’s largest fires have occurred in the past two decades, with five in 2020 alone; a 2023 National Integrated Drought Information System-funded study further found a 320% increase in burned areas in the state between 1996 and 2021 due to contributions of human-caused climate change, with that number expected to grow in the coming decades.
On average, wildfire weather season lengthened by two weeks around the globe from 1979 to 2019. The IPCC has medium confidence in the claim that fire weather has become more probable in the U.S., Europe, Australia, and parts of Europe over the past century, and high confidence that fire weather will increase regionally due to global warming in the coming years.
Did climate change do it? Climate change has almost certainly exacerbated the heat, humidity, and drought conditions necessary for wildfires to start. The actual ignition of the fire is frequently human-caused, however, and complicating variables such as local vegetation, forest management, and land use can also muddle the picture.
Tropical cyclones are large and complicated storm systems. Ocean temperatures, the El Niño-Southern Oscillation, wind shear, barometric pressure, atmospheric moisture, the shape of the continental shelf, emergency preparedness measures, and pure luck all affect how destructive a given storm might be — when or if it makes landfall. Climate change can put a thumb on the scale, but it is far from a lone actor.
Hurricanes — the strongest manifestation of a tropical cyclone — essentially work by transferring heat from the ocean into wind energy. Because the ocean absorbs excess heat from the warming atmosphere, scientists expect to see more “major” hurricanes of Category 3 or above in the coming years.
The storms aren’t just getting more powerful, though. Because of the interaction between ocean heat and energy in a hurricane, the storms also intensify more rapidly and are “more than twice as likely to strengthen from a weak Category 1 hurricane to a major Category 3 or stronger hurricane in a 24-hour period than they were between 1970 and 1990,” according to new research published last year.
WWA says it cannot attribute the intensification of any individual storm to climate change due to relatively limited modeling so far, so the organization instead looks at how climate change may have amplified associated rainfall and storm surges. Rainfall and flooding are, in fact, more deadly than high wind speeds in hurricanes, and both are understood to be increasing because of climate change. Put simply, a warmer atmosphere can hold more water, which means worse deluges. Researchers linked extreme rainfall during Hurricanes Katrina, Maria, and Irma to climate change; Hurricane Harvey, which flooded up to 50% of the properties in Harris County, Texas, when it made landfall in 2017, had a rainfall total 15% to 38% greater than it would have been in a pre-industrial world, researchers found. Additionally, rising sea levels caused by climate change will worsen coastal flooding during such events.
However, “trends indicate no significant change in the frequency of tropical cyclones globally,” according to the IPCC. That is, there aren’t more hurricanes; the ones that form are just more likely to become major hurricanes. Scientists understand far less about what climate change means for the smaller Category 1 or 2 storms, or if it will impact the diameter of the storms that do form.
Did climate change do it? The greenhouse effect is making the atmosphere warmer, and in a warmer climate, we’d expect to see more major hurricanes of Category 3 and above. Evidence also points to hurricanes intensifying much more rapidly in today’s climate than in the past. Climate does not seem to play a role in the overall number of storms, though, and other critical factors like the path of a storm and the emergency preparedness of a given community have a significant impact on the potential loss of life but aren’t linked to a warmer atmosphere. Hurricanes are complicated events and there is still much more research to be done in understanding how exactly they’re impacted by climate change.
In the winter, your skin might feel dry, and your lips might chap; in the summer, many parts of the country feel sticky and swampy. This is simple, observable physics: Cold air holds less moisture, and warm air holds more. The “Clausius-Clapeyron” relation, as it is known, tells us that in 1 degree C warmer air, there is 7% more moisture. All that moisture has to go somewhere, so quite literally, when it rains, it pours. (That is, when and where it rains: WWA notes that “an attribution study in northern Europe found that human influence has so far had little effect on the atmospheric circulation that caused a severe rainfall event.”)
Like heat, the relationship between warm air and rainfall is well understood, which is why the IPCC is highly confident in the attributable influence of climate change on extreme rain. While it may seem confusing that both droughts and intense rainfall are symptoms of climate change, the warming atmosphere seems to increase precipitation variability, making events on the extreme margins more likely and more frequent.
Increased precipitation can have counterintuitive results, though. Rain occurring over fewer overall days due to bursts of extreme rainfall, for example, can actually worsen droughts. And while it might seem like more water in the atmosphere would mean snowier winters, that’s only true in certain places. Because it’s also warmer, snowfall is declining globally while winters are getting wetter — and as a result, probably more miserable.
But what does “more rain” really mean? Rain on its own isn’t necessarily bad, but when it overwhelms urban infrastructure or threatens roads and houses, it can quickly become deadly. Flooding, of course, is often the result of extreme rain, but “the signal in the rainfall is not necessarily correlated to the magnitude of the floods because there are other factors that turn rain into a flood,” Barnes, the research associate with WWA, told me, citing variables such as land use, water management, urban drainage, and other physical elements of a landscape.
Landslides, likewise, are caused by everything from volcanic eruptions to human construction, but rain is often a factor (climate-linked phenomena like wildfires and thawing permafrost also contribute to landslides). The IPCC writes with “high confidence” that landslides, along with floods and water availability, “have the potential to lead to severe consequences for people, infrastructure, and the economy in most mountain regions.”
Did climate change do it? More extreme rainfall is consistent with our understanding of climate change’s effects. Many other local, physical factors can compound or mitigate disasters like floods and mudslides, however.
When I spoke with Barnes, of WWA, she told me, “It’s really easy to define a heat wave. You just go, ‘It was hot.’” Droughts, not so much. For one thing, you have to define the time span you’re looking at. There are also different kinds of drought: meteorological, when there hasn’t been enough rain; hydrological, when rivers are low possibly because something else is diverting water from the natural cycle; and agricultural, when there is not enough water specifically for crops. Like flooding, many different infrastructural and physical factors go into exacerbating or even creating various kinds of droughts.
Drought as we mean it here, though, is a question of soil moisture, Barnes told me. “That’s really hard to get data on,” she said, “and we don’t necessarily understand the feedback mechanisms affecting that as well as we understand heat waves.” As recently as 2013, the IPCC had only low confidence that trends in drought could be attributed to climate change.
We have a better understanding of how drought and climate change interact now, including how higher temperatures drive evaporation and cut into snowpack, leading to less meltwater in rivers. The IPCC’s most recent report concluded that “even relatively small incremental increases in global warming (+0.5C) cause a worsening of droughts in some regions.” The IPCC also has high confidence that “more regions are affected by increases in agricultural and ecological droughts with increasing global warming.”
WWA’s attribution studies have, however, found examples of droughts that have no connection to climate change. The organization flags that it has the highest confidence in the climate affecting droughts in the Mediterranean, southern Africa, central and eastern Asia, southern Australia, and western North America and lower confidence in central and west Africa, western and central Europe, northeast South America, and New Zealand.
Did climate change do it? Maybe. Some droughts have a strong climate signal — California’s, for example. Still, researchers remain cautious about attribution for these complicated events due in part to their significant regional variability.
Tornadoes are extremely difficult to study. Compared to droughts, which can last years, tornadoes occupy a teeny tiny area and last for just a blip in time. They “wouldn’t even register” on the models WWA uses for its attribution studies, Barnes said. “It would probably look like a slightly raised average wind speed.” The IPCC, for its part, has only “low confidence” in a connection between climate change and “severe convective storms” like tornadoes, in part due to the “short length of high-quality data records.”
But we are learning more every day. This spring, researchers posited that Tornado Alley is moving east and “away from the warm season, especially the summer, and toward the cold season.” Though it’s not entirely clear why this is happening, one theory is that it relates to how climate change is affecting regional seasonality: winters and nights are becoming warmer in certain areas, and thus more conducive to tornado formation, while others are becoming too hot for storms to form during the normal season.
Did climate change do it? Researchers aren’t entirely sure but there doesn’t appear to be a correlation between tornado formation and climate change. Still, warmer temperatures potentially make certain areas more or less prone to tornadoes than they were in the past.
We say “it was a dark and stormy night” because “it was a severe convective storm” doesn’t have the same ring. But an SCS — which forms when warm, moist air rises into colder air — is the most common and most damaging weather phenomenon in the United States. You probably just call it a thunderstorm.
Severe convective storms cause many localized events that we think of as “weather,” including heavy rainfall, high winds, tornadoes, hail, thunder, and lightning. Because heat and moisture are necessary ingredients for these kinds of storms, and because the atmosphere is getting both warmer and wetter, climate models “consistently” and confidently predict an “increase in the frequency of severe thunderstorms,” the IPCC notes — but, “there is low confidence in the details of the projected increase.” Trends remain poorly studied and highly regionally dependent; in the United States, for example, there is still no evidence of a “significant increase in convective storms, and hail and severe thunderstorms.” Still, other research suggests that for every 1.8 degree F of warming, the conditions favorable to severe convective storms will increase in frequency by up to 20%.
Hail forms during severe convective storms when the hot, moist air rises to a region of the atmosphere where it is cold enough to freeze. Like thunderstorms more generally, data is fairly limited on hail, making it difficult to study long-term trends (most climate models also do not look directly at hail, studying convective storms more broadly instead). However, it’s been hypothesized that climate change could create larger and more destructive hail in the future; if thunderstorm updrafts grow stronger, as projected, then they could hold hail at freezing high altitudes for longer, allowing individual hailstones to grow larger before falling back to Earth. One study even suggested that with continued warming, there could be a 145% increase in “significant severe hail” measuring at least 2 inches in diameter — that is, a little smaller than a tennis ball.
Did climate change do it? Everything we know about thunderstorms suggests that a warmer, wetter atmosphere will mean severe convection storms become both more frequent and more intense. But there is still very little available data to track the long-term trends, so attributing any one storm to climate change would be nearly impossible.
Just as virtually all heat waves worldwide are worsened by climate change, “nearly every instance of extreme cold across the world has decreased in likelihood,” according to the WWA. While the organization has run attribution studies on “a few” heavy snowfall events, it has either found no link to climate change or has been unable to state a conclusion confidently. On the other hand, the loss of snow cover, permafrost, Arctic sea ice, and glaciers has a high-confidence link to human-caused climate change in the IPCC report.
Just because climate change makes extreme cold and snowstorms less likely does not mean they won’t happen. Research published in Nature earlier this year suggests climate change could bring more snow to certain places, as extremely cold parts of the world warm to snow-friendly temperatures, and increased precipitation from a warmer atmosphere results in more flurries. Parts of Siberia and the northern Great Plains are even experiencing a deepening snowpack.
Did climate change do it? Probably not — though there are notable exceptions.
An earthquake is usually caused by the release of energy when two tectonic plates suddenly slip past each other (though they can also be caused by fossil fuel extraction). But before you dismiss earthquakes as having no connection to climate change, there is one place where there could be a link: water.
As Emily Pontecorvo wrote for Heatmap this spring, “Changes in surface water, whether because of heavy rain, snow, or drought, could either increase or relieve stress on geologic faults, causing them to shift.” Admittedly, even if there is a relationship between climate change, water, and earthquakes, it appears to be small — so small that humans probably can’t feel any resulting quakes.
Did climate change do it? It’s highly unlikely.
Earlier this year, extreme turbulence on a Singapore-bound flight from London killed one person and injured at least 20 others. While such events remain rare — the U.S. National Transportation Safety Board recorded just 101 serious injuries caused by turbulence on millions of flights between 2013 and 2022 — extreme turbulence appears to be increasing, potentially because of climate change.
According to one study, severe turbulence is up 55% between 1979 and 2020, seemingly due to an increase in wind shear at high altitudes caused by the temperature contrast between the equator and the North Pole. (This relationship is a little bit complicated, but essentially, at higher altitudes, the temperature over the pole has been declining due to rapid Arctic temperature changes even as it’s increased at the equator; lower in the troposphere, the opposite is happening). Other studies have similarly shown that doubling the concentration of carbon dioxide in the atmosphere could increase moderate-to-severe turbulence by as much as 127%.
Data, however, is limited and fairly subjective, leading to some skepticism in the scientific community and inaccurate dismissals by climate-change deniers. As with many complex weather phenomena, our understanding of how climate change interacts with turbulence will likely grow in the coming years as the field of research develops.
Did climate change do it? Potentially in some cases, but there is still much to learn about the connection between the two.
Desertification differs from drought in that it describes a decline in soil fertility, water, and plant life to the point of total “land degradation.” (In contrast, land can become productive again after a drought.) Like other compound disasters, desertification results from natural processes, climatic conditions, and land management practices such as grazing and deforestation.
According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, land degradation is “almost always” the result of these “multiple interacting causes,” and the warming climate certainly isn’t helping. Heat stress can kill off vegetation, making landscapes more prone to desertification, as well as drive aridification.
In the resulting drylands — which comprise about 46% of global land area — you can expect dust storms (also known as haboobs), and sand storms resulting from the wind kicking up loose soils. While there have always been sand storms, one study suggests that climate change is one of the critical drivers of global annual dust emissions increasing by 25% between the late 19th century and today.
However, “climate change impacts on dust and sand storm activity remain a critical gap,” writes the IPCC, and more research is desperately needed to address this. By the UN’s estimate, dust storms were associated with the deaths of 402,000 people in 2005. As many as 951 million people, mainly in South Asia, Central Asia, West Africa, and East Asia, could be vulnerable to the impacts of desertification if climate change continues.
Did climate change do it? It was potentially a factor, but we have lots more to learn.
Are locust swarms technically “weather”? Not really. But so long as we’re on the topic of weather events of Biblical proportions, locust swarms might as well be addressed, too.
And the answer may surprise you: Climate appears to be a driver of locust swarms, which threaten food security and exacerbate famines throughout Africa, the Middle East, and South Asia. Locusts prefer “arid areas punched by extreme rainfall,” according to one study that looked at the connection between swarms and climate change, and while much of that pattern is fixed in the natural El Niño–Southern Oscillation cycle, a warming climate will also “lead to widespread increases in locust outbreaks with emerging hotspots in west central Asia.” In particular, the research found that in a low-emissions scenario, locust habitat could increase by 5%, while in a high-emissions scenario, it could increase by 13% to 25% between 2065 and 2100.
Did climate change do it? It’d likely be tricky to attribute any one locust swarm to climate change, but as with many other natural phenomena, climate likely plays a compounding factor.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A trio of powerful climate hawks are throwing their weight against the SPEED Act.
Key Senate Democrats are opposing a GOP-led permitting deal to overhaul federal environmental reviews without assurances that clean energy projects will be able to reap the benefits. Winning these lawmakers’ support will require major concessions to build new transmission infrastructure and greater permitting assistance for renewable energy projects.
In an exclusive joint statement provided Tuesday to Heatmap News, Senate Energy and Natural Resources ranking member Martin Heinrich, Environment and Public Works ranking member Sheldon Whitehouse, and Hawaii senator Brian Schatz came out against passing the SPEED Act, a bill that would change the National Environmental Policy Act, citing concerns about how it would apply to renewable energy and transmission development priorities.
“We are committed to streamlining the permitting process — but only if it ensures we can build out transmission and cheap, clean energy. While the SPEED Act does not meet that standard, we will continue working to pass comprehensive permitting reform that takes real steps to bring down electricity costs,” the statement read.
As I wrote weeks ago, there’s very little chance the SPEED Act could become law without addressing Senate climate hawks’ longstanding policy preferences. Although the SPEED Act was voted out of committee in the House two weeks ago with support from a handful of Democratic lawmakers, it has yet to win support from even moderate energy wonks in that legislative body, including Representative Scott Peters, one of the Democratic House negotiators in bipartisan permitting talks. Peters told me he would need to see more assurances dealing with the renewables permitting freeze, for example, in order for him to support the bill.
Observers had initially expected a full House vote on the SPEED Act as soon as this week, but an additional hurdle arose in recent days in the form of opposition from House conservative Republicans, led by Representative Chip Roy. The congressman from Texas had requested additional federal actions targeting renewables projects in exchange for passage of the One Big Beautiful Bill Act, which effectively repealed the Inflation Reduction Act. What followed was a set of directives from the Interior Department that all but halted federal solar and wind permitting. Roy’s frustration with the SPEED Act concerns a relatively milquetoast nod to renewables permitting problems that would block presidents from rescinding already issued permits. This upset appears to have delayed a vote on the bill in the House.
There’s an eerie familiarity to this moment: Almost exactly one year ago, the last major attempt at a permitting deal, authored by Senators Joe Manchin and John Barrasso, died when then-Majority Leader Chuck Schumer declined to bring it up for a vote in the face of opposition from the House. Unlike the SPEED Act, that bill offered changes to transmission siting policy that even conservative estimates said would’ve hastened the pace of national decarbonization.
Having Schatz, Heinrich, and Whitehouse — the three most powerful climate hawks in Congress — throw their weight against the SPEED Act casts serious doubt on the prospects for that legislation becoming the permitting deal this Congress. It also exposes an intra-energy world conflict, as it appears to position these lawmakers in opposition to American Clean Power, an energy trade group that represents a swath of diversified energy companies and utilities, as well as solar, wind, and battery storage developers.
Last week, ACP joined with the American Petroleum Institute and gas pipeline advocacy organizations to urge Congress to pass the SPEED Act. In a letter to House Speaker Mike Johnson and Minority Leader Hakeem Jeffries, ACP and the fossil fuel industry trade groups said that the legislation “directly addresses” the challenges facing their interests and “represents meaningful bipartisan progress toward a more stable and dependable permitting framework.” The only reference to potential additions came in a single, vague line: “While the SPEED Act makes important progress, there are additional ways Congress can facilitate the development of reliable and affordable energy infrastructure as part of a broader permitting package.”
This letter was taken by some backers of the renewable energy industry to be an endorsement without concessions. It was also a surprise because just days earlier, American Clean Power responded to the bill’s passage with a vaguely supportive statement that declared “additional efforts” were needed for “transmission infrastructure,” without which “energy prices will spike and system reliability will be threatened.” (It’s worth noting that the committee behind the SPEED Act, House Natural Resources, has no authority over transmission siting. No other proposal has yet emerged from Republicans in that chamber for Republicans to address the issue, either.)
One of the renewables backers taken aback was Schatz, who took to X to sound off against the organization. “Congratulations to ‘American Clean Power’ for cutting a deal with the American Petroleum Institute, but to enact a law both the house and the Senate have to agree, and Senators are finding out about this for the first time,” Schatz wrote in a post, which Whitehouse retweeted from one of his official X accounts.
In a subsequent post, Schatz said: “I am not finding out about the bill’s existence for the first time, I am tracking it all very closely. I am finding out that ACP endorsed it as is without anything on transmission, for the first time.”
By contrast, the statement from the three senators aligns them with the Solar Energy Industries Association, which sent a letter from more than 140 solar companies to top congressional leaders requesting direct action to fix a bureaucratic freeze on permit-related activity that has already helped kill large projects, including Esmeralda 7, which was the largest solar mega-farm in the United States.
In its message to Congress, the trade association made plain that while the SPEED Act was a welcome form of permitting changes, it was nowhere close to dealing with Trumpian chicanery on the group’s priority list.
We’ll have more on this unfolding drama in the days to come.
One longtime analyst has an idea to keep prices predictable for U.S. businesses.
What if we treated lithium like oil? A commodity so valuable to the functioning of the American economy that the U.S. government has to step in not only to make it available, but also to make sure its price stays in a “sweet spot” for production and consumption?
That was what industry stalwart Howard Klein, founder and chief executive of the advisory firm RK Equities, had in mind when he came up with his idea for a strategic lithium reserve, modeled on the existing Strategic Petroleum Reserve.
Klein published a 10-page white paper on the idea Monday, outlining an expansive way to leverage private companies and capital markets to develop a non-Chinese lithium industry without the risk and concentrated expense of selecting specific projects and companies.
The lithium challenge, Klein and other industry analysts and executives have long said, is that China’s whip hand over the industry allows it to manipulate prices up and down in order to throttle non-Chinese production. When investment in lithium ramps up outside of China, Chinese production ramps up too, choking off future investment by crashing prices.
Recognizing the dangers stemming from dysfunction in the global lithium market constitutes a rare area of agreement between both parties in Washington and across the Biden and Trump administrations. Last year, a Biden State Department official told reporters that China “engage[s] in predatory pricing” and will “lower the price until competition disappears.”
A bipartisan investigation released last month by the House of Representatives’ Select Committee on Strategic Competition between the United States and the Chinese Communist Party found that “the PRC engaged in a whole‐of‐government effort to dominate global lithium production,” and that “starting in 2021, the PRC government engaged in a coordinated effort to artificially depress global lithium prices that had the effect of preventing the emergence of an America‐focused supply chain.”
Klein thinks he’s figured out a way to deal with this problem
“They manipulated and they crushed prices through oversupply to prevent us from having our own supply chains,” he told me.
It’s not just that China can keep prices low through overproduction, it’s also that the country’s enormous market power can make prices volatile, Klein said, which scares off private sector investment in mining and processing. “You have two years, up two years down, two years up, two years down,” he told me. “That’s the problem we’re trying to solve.
His proposal is to establish “a large, rules-based buffer of lithium carbonate — purchased when prices are depressed due to Chinese oversupply, and released during price spikes, shortages, or export restrictions.”
This reserve, he said, would be more than just a stockpile from which lithium could be released as needed. It would also help to shape the market for lithium, keeping prices roughly in the range of $20,000 per ton (when prices fall below that, the reserve would buy) and $40,000 to $50,000 per ton, when the reserve would sell. The idea is to keep the price of lithium carbonate — which can be processed as a material for batteries with a wide range of defense (e.g. drones) and transportation (e.g. electric vehicles) applications — within a range that’s reasonable for investors and businesses to plan around.
“Lithium has swung from like $6,000 [per ton] to $80,000, back down to $9,000, and now it’s at $11,000 or $12,000,” Klein told me. “But $11,000 or $12,000 is not a high enough price for a company to build a plan that’s going to take three to five years. They need $20,000 to $25,000 now as a minimum for them to make a $2 billion dollar investment.” When prices for lithium get up to “$50,000, $60,000, or $70,000, then it becomes a problem because battery makers can’t make money.”
Both the Biden and Trump administrations have taken more active steps to secure a U.S. or allied supply chain for valuable inputs, including rare earth metals. But Klein’s proposed reserve looks to balance government intervention with a diverse, private-sector led industry.
The reserve would be more broad-based than price floor schemes, where a major buyer like the Defense Department guarantees a minimum price for the output from a mine or refining facility. This is what the federal government did in its deal with MP Materials, the rare earths miner and refiner, which secured a multifaceted deal with the federal government earlier this year.
Klein estimates that the cost in the first year of the strategic lithium reserve could be a few billion dollars — on the scale of the nearly $2.3 billion loan provided by the Department of Energy for the Thacker Pass mine in Nevada, which also saw the federal government take an equity stake in the miner, Lithium Americas.
Ideally, Klein told me, “there’s a competition of projects that are being presented to prospective funders of those projects, and I want private market actors to decide, should we build more Thacker Passes or should we do the Smackover?” referring to a geologic formation centered in Arkansas with potentially millions of tons of lithium reserves.
Klein told me that he’s trying to circulate the proposal among industry and policy officials. His hoped is that as the government attempts to come up with a solution to Chinese dominance of the lithium industry, “people are talking about this idea and they’re saying, Oh, that’s actually a pretty good idea.”
Current conditions: After a two-inch dusting over the weekend, Virginia is bracing for up to 8 inches of snow • The Bulahdelah bushfire in New South Wales that killed a firefighter on Sunday is flaring up again • The death toll from South and Southeast Asia’s recent floods has crossed 1,750.

President Donald Trump’s Day One executive order directing agencies to stop approving permitting for wind energy projects is illegal, a federal judge ruled Monday evening. In a 47-page ruling against the president in the U.S. District Court for the District of Massachusetts, Judge Patti B. Saris found that the states led by New York who sued the White House had “produced ample evidence demonstrating that they face ongoing or imminent injuries due to the Wind Order,” including project delays that “reduce or defer tax revenue and returns on the State Plaintiffs’ investments in wind energy developments.” The judge vacated the order entirely.
Trump’s “total war on wind” may have shocked the industry with its fury, but the ruling is a sign that momentum may be shifting. Wind developers have gathered unusual allies. As I wrote here in October, big oil companies balked at Trump’s treatment of the wind industry, warning the precedents Republican leaders set would be used by Democrats against fossil fuels in the future. Just last week, as I reported here, the National Petroleum Council advised the Department of Energy to back a national permitting reform proposal that would strip the White House of the power to rescind already-granted licenses.
Back in October, I told you about how the head of the world’s biggest metal trading house warned that the West was getting the critical mineral problem wrong, focusing too much on mining and not enough on refining. Now the Energy Department is making $134 million available to projects that demonstrate commercially viable ways of recovering and refining rare earths from mining waste, old electronics, and other discarded materials, Utility Dive reported. “We have these resources here at home, but years of complacency ceded America’s mining and industrial base to other nations,” Secretary of Energy Chris Wright said in a statement.
If you read yesterday’s newsletter, you may recall that the move comes as the Trump administration signals its plans to take more equity stakes in mining companies, following on the quasi-nationalization spree started over the summer when the U.S. military became the largest shareholder in MP Materials, the country’s only active rare earths miner, in a move Heatmap's Matthew Zeitlin noted made Biden-era officials jealous.
NextEra Energy is planning to develop data centers across the U.S. for Google-owner Alphabet as the utility giant pivots from its status as the nation’s biggest renewable power developer to the natural gas preferred by the Trump administration. The Florida-based company already had a deal to provide 2.5 gigawatts of clean energy capacity to Facebook-owner Meta Platforms, and also plans gas plants for oil giant Exxon Mobil Corp. and gas producer Comstock Resources. Still, NextEra’s stock dropped by more than 3% as investors questioned whether the company’s skills with solar and wind can be translated to gas. “They’ve been top-notch, best-in-class renewable developers,” Morningstar analyst Andy Bischof told Bloomberg. “Now investors have to get their head around whether that can translate to best-in-class gas developer.”
Sign up to receive Heatmap AM in your inbox every morning:
In October, Google backed construction of the first U.S. commercial installation of a gas plant built from the ground up with carbon capture. The project, which Matthew wrote about here, had the trappings to work where other experiments in carbon capture failed. The location selected for the plant already had an ethanol facility with carbon capture, and access to wells to store the sequestered gas. Now the U.S. could have another plant. In a press release Monday, the industrial giant Babcock and Wilcox announced a deal with an unnamed company to supply carbon capture equipment to an existing U.S. power station. More details are due out in March 2026.
Executives from at least 14 fusion energy startups met with the Energy Department on Monday as the agency looks to spur construction of what could be the world’s first power plants to harness the reaction that powers the sun. The Trump administration has made fusion a priority, issuing a roadmap for commercialization and devoting a new office to the energy source, as I wrote in a breakdown of the agency’s internal reorganization last month. It is, as Heatmap’s Katie Brigham has written, “finally, possibly, almost time for fusion” as billions of dollars flow into startups promising to make the so-called energy source of tomorrow a reality in the near future. “It is now time to make an investment in resources to match the nation’s ambition,” the Fusion Industry Association, the trade group representing the nascent industry, wrote in a press release. “China and other strategic competitors are mobilizing billions to develop the technology and capture the fusion future. The United States has invested in fusion R&D for decades; now is the time to complete the final step to commercialize the technology.” Indeed, as I wrote last month, China has forged an alliance with roughly a dozen countries to work together on fusion, and it’s spending orders of magnitude more cash on the energy source than the U.S.
Founded by a former Google worker, the startup Quilt set out to design chic-looking heat pumps sexy enough to serve as decor. Investors like the pitch. The company closed a $20 million Series B round on Monday, bringing its total fundraising to $64 million. “Our growth demonstrates that when you solve for comfort, design, and efficiency simultaneously, adoption accelerates,” Paul Lambert, chief executive and co-founder of Quilt, said in a statement. “This funding enables us to bring that experience to millions more North American homes.”