You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Maybe you’re reading this in a downpour. Perhaps you’re reading it because you have questions about the upcoming hurricane season. Or maybe you’re reading it because you’re one of the 150 million Americans enduring record-breaking temperatures in this week’s heat dome.
Whatever the reason, you have a question: Is this climate change?
There’s an old maxim — that, like many things, is often dubiously attributed to Mark Twain — that goes something like, “Climate is what you expect and weather is what you get.” Weather refers to the event itself, while climate refers to the trends (averaged over 30 years or more, usually) that might make such an event more or less likely.
Climate change is almost always an exacerbating factor in the case of something like a heat wave or a heat dome. In other situations, the picture is far more complicated and uncertain. It can take years to understand if and how climate change made an extreme weather event more likely, and while organizations like World Weather Attribution work hard to provide quick and accurate estimations, getting the science wrong can fuel climate skepticism and bolster deniers’ arguments. While it might be tempting to pin all extreme weather on climate change, the truth is, not all of it is.
Still, we do know a lot about how climate change influences the weather — and we’re always learning more. While this guide is far from the be-all and end-all of attribution and should be referred to with caveats, here is what we know about how climate change is shaping the extreme weather we see today.
“When you’re looking at heat extremes, there is almost always a climate change signal,” Clair Barnes, a research associate with World Weather Attribution, told me. “I don’t think there’s ever not been a climate change signal since I’ve been doing it in the last couple of years.”
As the planet warms, local temperatures respond everywhere. There are not as many complicating variables in this relationship as there are with something like drought. “With heat waves, it’s the same answer every time: It got hotter because it’s got hotter,” Barnes said.
The Intergovernmental Panel on Climate Change has found that the kind of heat waves that would have occurred once in a decade before the Industrial Revolution now occur almost three times more frequently and are 1.2 degrees Celsius (or 2.2 degrees Fahrenheit) warmer. The most extreme examples — like the 2021 heat dome over the Pacific Northwest — appear to have been possible only because of warming caused by greenhouse gas emissions. Additionally, about 37% of global heat-related deaths, which amount to tens of thousands of deaths per year, are attributable to climate change.
There have, of course, always been heat waves. But it is with high confidence that scientists say they are hotter and last longer now than they would otherwise because of climate change.
Did climate change do it? It is “virtually certain” that heat waves are more frequent and hotter than they otherwise would be because of climate change.
WWA doesn’t specifically study wildfires since they aren’t technically “weather” (though once they form, they can make their own). Instead, the organization studies the conditions that make a fire more likely. In the American West, this deadly combo usually involves high pressure, extremely dry air, and some wind.
Globally, burned areas decreased between 1998 and 2015, but that isn’t because fire-weather conditions are improving — rather, regional leaders have gotten better at things like land use and fire management. Fire weather, meanwhile, is increasing and lasting longer due to climate change. In particular, hotter temperatures — especially hotter overnight temperatures — make it more difficult to combat the fires that do ignite. (Most fires in the U.S. start due to human negligence or arson, rather than by natural causes such as lightning strikes.)
This is especially the case in California, where 10 of the state’s largest fires have occurred in the past two decades, with five in 2020 alone; a 2023 National Integrated Drought Information System-funded study further found a 320% increase in burned areas in the state between 1996 and 2021 due to contributions of human-caused climate change, with that number expected to grow in the coming decades.
On average, wildfire weather season lengthened by two weeks around the globe from 1979 to 2019. The IPCC has medium confidence in the claim that fire weather has become more probable in the U.S., Europe, Australia, and parts of Europe over the past century, and high confidence that fire weather will increase regionally due to global warming in the coming years.
Did climate change do it? Climate change has almost certainly exacerbated the heat, humidity, and drought conditions necessary for wildfires to start. The actual ignition of the fire is frequently human-caused, however, and complicating variables such as local vegetation, forest management, and land use can also muddle the picture.
Tropical cyclones are large and complicated storm systems. Ocean temperatures, the El Niño-Southern Oscillation, wind shear, barometric pressure, atmospheric moisture, the shape of the continental shelf, emergency preparedness measures, and pure luck all affect how destructive a given storm might be — when or if it makes landfall. Climate change can put a thumb on the scale, but it is far from a lone actor.
Hurricanes — the strongest manifestation of a tropical cyclone — essentially work by transferring heat from the ocean into wind energy. Because the ocean absorbs excess heat from the warming atmosphere, scientists expect to see more “major” hurricanes of Category 3 or above in the coming years.
The storms aren’t just getting more powerful, though. Because of the interaction between ocean heat and energy in a hurricane, the storms also intensify more rapidly and are “more than twice as likely to strengthen from a weak Category 1 hurricane to a major Category 3 or stronger hurricane in a 24-hour period than they were between 1970 and 1990,” according to new research published last year.
WWA says it cannot attribute the intensification of any individual storm to climate change due to relatively limited modeling so far, so the organization instead looks at how climate change may have amplified associated rainfall and storm surges. Rainfall and flooding are, in fact, more deadly than high wind speeds in hurricanes, and both are understood to be increasing because of climate change. Put simply, a warmer atmosphere can hold more water, which means worse deluges. Researchers linked extreme rainfall during Hurricanes Katrina, Maria, and Irma to climate change; Hurricane Harvey, which flooded up to 50% of the properties in Harris County, Texas, when it made landfall in 2017, had a rainfall total 15% to 38% greater than it would have been in a pre-industrial world, researchers found. Additionally, rising sea levels caused by climate change will worsen coastal flooding during such events.
However, “trends indicate no significant change in the frequency of tropical cyclones globally,” according to the IPCC. That is, there aren’t more hurricanes; the ones that form are just more likely to become major hurricanes. Scientists understand far less about what climate change means for the smaller Category 1 or 2 storms, or if it will impact the diameter of the storms that do form.
Did climate change do it? The greenhouse effect is making the atmosphere warmer, and in a warmer climate, we’d expect to see more major hurricanes of Category 3 and above. Evidence also points to hurricanes intensifying much more rapidly in today’s climate than in the past. Climate does not seem to play a role in the overall number of storms, though, and other critical factors like the path of a storm and the emergency preparedness of a given community have a significant impact on the potential loss of life but aren’t linked to a warmer atmosphere. Hurricanes are complicated events and there is still much more research to be done in understanding how exactly they’re impacted by climate change.
In the winter, your skin might feel dry, and your lips might chap; in the summer, many parts of the country feel sticky and swampy. This is simple, observable physics: Cold air holds less moisture, and warm air holds more. The “Clausius-Clapeyron” relation, as it is known, tells us that in 1 degree C warmer air, there is 7% more moisture. All that moisture has to go somewhere, so quite literally, when it rains, it pours. (That is, when and where it rains: WWA notes that “an attribution study in northern Europe found that human influence has so far had little effect on the atmospheric circulation that caused a severe rainfall event.”)
Like heat, the relationship between warm air and rainfall is well understood, which is why the IPCC is highly confident in the attributable influence of climate change on extreme rain. While it may seem confusing that both droughts and intense rainfall are symptoms of climate change, the warming atmosphere seems to increase precipitation variability, making events on the extreme margins more likely and more frequent.
Increased precipitation can have counterintuitive results, though. Rain occurring over fewer overall days due to bursts of extreme rainfall, for example, can actually worsen droughts. And while it might seem like more water in the atmosphere would mean snowier winters, that’s only true in certain places. Because it’s also warmer, snowfall is declining globally while winters are getting wetter — and as a result, probably more miserable.
But what does “more rain” really mean? Rain on its own isn’t necessarily bad, but when it overwhelms urban infrastructure or threatens roads and houses, it can quickly become deadly. Flooding, of course, is often the result of extreme rain, but “the signal in the rainfall is not necessarily correlated to the magnitude of the floods because there are other factors that turn rain into a flood,” Barnes, the research associate with WWA, told me, citing variables such as land use, water management, urban drainage, and other physical elements of a landscape.
Landslides, likewise, are caused by everything from volcanic eruptions to human construction, but rain is often a factor (climate-linked phenomena like wildfires and thawing permafrost also contribute to landslides). The IPCC writes with “high confidence” that landslides, along with floods and water availability, “have the potential to lead to severe consequences for people, infrastructure, and the economy in most mountain regions.”
Did climate change do it? More extreme rainfall is consistent with our understanding of climate change’s effects. Many other local, physical factors can compound or mitigate disasters like floods and mudslides, however.
When I spoke with Barnes, of WWA, she told me, “It’s really easy to define a heat wave. You just go, ‘It was hot.’” Droughts, not so much. For one thing, you have to define the time span you’re looking at. There are also different kinds of drought: meteorological, when there hasn’t been enough rain; hydrological, when rivers are low possibly because something else is diverting water from the natural cycle; and agricultural, when there is not enough water specifically for crops. Like flooding, many different infrastructural and physical factors go into exacerbating or even creating various kinds of droughts.
Drought as we mean it here, though, is a question of soil moisture, Barnes told me. “That’s really hard to get data on,” she said, “and we don’t necessarily understand the feedback mechanisms affecting that as well as we understand heat waves.” As recently as 2013, the IPCC had only low confidence that trends in drought could be attributed to climate change.
We have a better understanding of how drought and climate change interact now, including how higher temperatures drive evaporation and cut into snowpack, leading to less meltwater in rivers. The IPCC’s most recent report concluded that “even relatively small incremental increases in global warming (+0.5C) cause a worsening of droughts in some regions.” The IPCC also has high confidence that “more regions are affected by increases in agricultural and ecological droughts with increasing global warming.”
WWA’s attribution studies have, however, found examples of droughts that have no connection to climate change. The organization flags that it has the highest confidence in the climate affecting droughts in the Mediterranean, southern Africa, central and eastern Asia, southern Australia, and western North America and lower confidence in central and west Africa, western and central Europe, northeast South America, and New Zealand.
Did climate change do it? Maybe. Some droughts have a strong climate signal — California’s, for example. Still, researchers remain cautious about attribution for these complicated events due in part to their significant regional variability.
Tornadoes are extremely difficult to study. Compared to droughts, which can last years, tornadoes occupy a teeny tiny area and last for just a blip in time. They “wouldn’t even register” on the models WWA uses for its attribution studies, Barnes said. “It would probably look like a slightly raised average wind speed.” The IPCC, for its part, has only “low confidence” in a connection between climate change and “severe convective storms” like tornadoes, in part due to the “short length of high-quality data records.”
But we are learning more every day. This spring, researchers posited that Tornado Alley is moving east and “away from the warm season, especially the summer, and toward the cold season.” Though it’s not entirely clear why this is happening, one theory is that it relates to how climate change is affecting regional seasonality: winters and nights are becoming warmer in certain areas, and thus more conducive to tornado formation, while others are becoming too hot for storms to form during the normal season.
Did climate change do it? Researchers aren’t entirely sure but there doesn’t appear to be a correlation between tornado formation and climate change. Still, warmer temperatures potentially make certain areas more or less prone to tornadoes than they were in the past.
We say “it was a dark and stormy night” because “it was a severe convective storm” doesn’t have the same ring. But an SCS — which forms when warm, moist air rises into colder air — is the most common and most damaging weather phenomenon in the United States. You probably just call it a thunderstorm.
Severe convective storms cause many localized events that we think of as “weather,” including heavy rainfall, high winds, tornadoes, hail, thunder, and lightning. Because heat and moisture are necessary ingredients for these kinds of storms, and because the atmosphere is getting both warmer and wetter, climate models “consistently” and confidently predict an “increase in the frequency of severe thunderstorms,” the IPCC notes — but, “there is low confidence in the details of the projected increase.” Trends remain poorly studied and highly regionally dependent; in the United States, for example, there is still no evidence of a “significant increase in convective storms, and hail and severe thunderstorms.” Still, other research suggests that for every 1.8 degree F of warming, the conditions favorable to severe convective storms will increase in frequency by up to 20%.
Hail forms during severe convective storms when the hot, moist air rises to a region of the atmosphere where it is cold enough to freeze. Like thunderstorms more generally, data is fairly limited on hail, making it difficult to study long-term trends (most climate models also do not look directly at hail, studying convective storms more broadly instead). However, it’s been hypothesized that climate change could create larger and more destructive hail in the future; if thunderstorm updrafts grow stronger, as projected, then they could hold hail at freezing high altitudes for longer, allowing individual hailstones to grow larger before falling back to Earth. One study even suggested that with continued warming, there could be a 145% increase in “significant severe hail” measuring at least 2 inches in diameter — that is, a little smaller than a tennis ball.
Did climate change do it? Everything we know about thunderstorms suggests that a warmer, wetter atmosphere will mean severe convection storms become both more frequent and more intense. But there is still very little available data to track the long-term trends, so attributing any one storm to climate change would be nearly impossible.
Just as virtually all heat waves worldwide are worsened by climate change, “nearly every instance of extreme cold across the world has decreased in likelihood,” according to the WWA. While the organization has run attribution studies on “a few” heavy snowfall events, it has either found no link to climate change or has been unable to state a conclusion confidently. On the other hand, the loss of snow cover, permafrost, Arctic sea ice, and glaciers has a high-confidence link to human-caused climate change in the IPCC report.
Just because climate change makes extreme cold and snowstorms less likely does not mean they won’t happen. Research published in Nature earlier this year suggests climate change could bring more snow to certain places, as extremely cold parts of the world warm to snow-friendly temperatures, and increased precipitation from a warmer atmosphere results in more flurries. Parts of Siberia and the northern Great Plains are even experiencing a deepening snowpack.
Did climate change do it? Probably not — though there are notable exceptions.
An earthquake is usually caused by the release of energy when two tectonic plates suddenly slip past each other (though they can also be caused by fossil fuel extraction). But before you dismiss earthquakes as having no connection to climate change, there is one place where there could be a link: water.
As Emily Pontecorvo wrote for Heatmap this spring, “Changes in surface water, whether because of heavy rain, snow, or drought, could either increase or relieve stress on geologic faults, causing them to shift.” Admittedly, even if there is a relationship between climate change, water, and earthquakes, it appears to be small — so small that humans probably can’t feel any resulting quakes.
Did climate change do it? It’s highly unlikely.
Earlier this year, extreme turbulence on a Singapore-bound flight from London killed one person and injured at least 20 others. While such events remain rare — the U.S. National Transportation Safety Board recorded just 101 serious injuries caused by turbulence on millions of flights between 2013 and 2022 — extreme turbulence appears to be increasing, potentially because of climate change.
According to one study, severe turbulence is up 55% between 1979 and 2020, seemingly due to an increase in wind shear at high altitudes caused by the temperature contrast between the equator and the North Pole. (This relationship is a little bit complicated, but essentially, at higher altitudes, the temperature over the pole has been declining due to rapid Arctic temperature changes even as it’s increased at the equator; lower in the troposphere, the opposite is happening). Other studies have similarly shown that doubling the concentration of carbon dioxide in the atmosphere could increase moderate-to-severe turbulence by as much as 127%.
Data, however, is limited and fairly subjective, leading to some skepticism in the scientific community and inaccurate dismissals by climate-change deniers. As with many complex weather phenomena, our understanding of how climate change interacts with turbulence will likely grow in the coming years as the field of research develops.
Did climate change do it? Potentially in some cases, but there is still much to learn about the connection between the two.
Desertification differs from drought in that it describes a decline in soil fertility, water, and plant life to the point of total “land degradation.” (In contrast, land can become productive again after a drought.) Like other compound disasters, desertification results from natural processes, climatic conditions, and land management practices such as grazing and deforestation.
According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, land degradation is “almost always” the result of these “multiple interacting causes,” and the warming climate certainly isn’t helping. Heat stress can kill off vegetation, making landscapes more prone to desertification, as well as drive aridification.
In the resulting drylands — which comprise about 46% of global land area — you can expect dust storms (also known as haboobs), and sand storms resulting from the wind kicking up loose soils. While there have always been sand storms, one study suggests that climate change is one of the critical drivers of global annual dust emissions increasing by 25% between the late 19th century and today.
However, “climate change impacts on dust and sand storm activity remain a critical gap,” writes the IPCC, and more research is desperately needed to address this. By the UN’s estimate, dust storms were associated with the deaths of 402,000 people in 2005. As many as 951 million people, mainly in South Asia, Central Asia, West Africa, and East Asia, could be vulnerable to the impacts of desertification if climate change continues.
Did climate change do it? It was potentially a factor, but we have lots more to learn.
Are locust swarms technically “weather”? Not really. But so long as we’re on the topic of weather events of Biblical proportions, locust swarms might as well be addressed, too.
And the answer may surprise you: Climate appears to be a driver of locust swarms, which threaten food security and exacerbate famines throughout Africa, the Middle East, and South Asia. Locusts prefer “arid areas punched by extreme rainfall,” according to one study that looked at the connection between swarms and climate change, and while much of that pattern is fixed in the natural El Niño–Southern Oscillation cycle, a warming climate will also “lead to widespread increases in locust outbreaks with emerging hotspots in west central Asia.” In particular, the research found that in a low-emissions scenario, locust habitat could increase by 5%, while in a high-emissions scenario, it could increase by 13% to 25% between 2065 and 2100.
Did climate change do it? It’d likely be tricky to attribute any one locust swarm to climate change, but as with many other natural phenomena, climate likely plays a compounding factor.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Forget data centers. Fire is going to make electricity much more expensive in the western United States.
A tsunami is coming for electricity rates in the western United States — and it’s not data centers.
Across the western U.S., states have begun to approve or require utilities to prepare their wildfire adaptation and insurance plans. These plans — which can require replacing equipment across thousands of miles of infrastructure — are increasingly seen as non-negotiable by regulators, investors, and utility executives in an era of rising fire risk.
But they are expensive. Even in states where utilities have not yet caused a wildfire, costs can run into the tens or hundreds of millions of dollars. Of course, the cost of sparking a fire can be much higher.
At least 10 Western states have recently approved or are beginning to work on new wildfire mitigation plans, according to data from E9 Insights, a utility research and consulting firm. Some utilities in the Midwest and Southeast have now begun to put together their own proposals, although they are mostly at an earlier phase of planning.
“Almost every state in the West has some kind of wildfire plan or effort under way,” Sam Kozel, a researcher at E9, told me. “Even a state like Missouri is kicking the tires in some way.”
The costs associated with these plans won’t hit utility customers for years. But they reflect one more building cost pressure in the electricity system, which has been stressed by aging equipment and rising demand. The U.S. Energy Information Administration already expects wholesale electricity prices to increase 8.5% in 2026.
The past year has seen a new spate of plans. In October, Colorado’s largest utility Xcel Energy proposed more than $845 million in new spending to prepare for wildfires. The Oregon utility Portland General Electric received state approval to spend $635 million on “compliance-related upgrades” to its distribution system earlier this month. That category includes wildfire mitigation costs.
The Public Utility Commission of Texas issued its first mandatory wildfire-mitigation rules last month, which will require utilities and co-ops in “high-risk” areas to prepare their own wildfire preparedness programs.
Ultimately, more than 140 utilities across 19 states have prepared or are working on wildfire preparedness plans, according to the Pacific Northwest National Laboratory.
It will take years for this increased utility spending on wildfire preparedness to show up in customers’ bills. That’s because utilities can begin spending money for a specific reason, such as disaster preparedness, as soon as state regulators approve their plan to do so. But utilities can’t begin passing those costs to customers until regulators review their next scheduled rate hike through a special process known as a rate case.
When they do get passed through, the plans will likely increase costs associated with the distribution system, the network of poles and wires that deliver electricity “the last mile” from substations to homes and businesses. Since 2019, rising distribution-related costs has driven the bulk of electricity price inflation in the United States. One risk is that distribution costs will keep rising at the same time that electricity itself — as well as natural gas — get more expensive, thanks to rising demand from data centers and economic growth.
California offers a cautionary tale — both about what happens when you don’t prepare for fire, and how high those costs can get. Since 2018, the state has spent tens of billions to pay for the aftermath of those blazes that utilities did start and remake its grid for a new era of fire. Yet it took years for those costs to pass through to customers.
“In California, we didn’t see rate increases until 2023, but the spending started in 2018,” Michael Wara, a senior scholar at the Woods Institute for the Environment and director of the Climate and Energy Policy Program at Stanford University, told me.
The cost of failing to prepare for wildfires can, of course, run much higher. Pacific Gas and Electric paid more than $13.5 billion to wildfire victims in California after its equipment was linked to several deadly fires in the state. (PG&E underwent bankruptcy proceedings after its equipment was found responsible for starting the 2018 Camp Fire, which killed 85 people and remains the deadliest and most destructive wildfire in state history.)
California now has the most expensive electricity in the continental United States.
Even the risk of being associated with starting a fire can cost hundreds of millions. In September, Xcel Energy paid a $645 million settlement over its role in the 2021 Marshall fire, even though it has not admitted to any responsibility or negligence in the fire.
Wara’s group began studying the most cost-effective wildfire investments a few years ago, when he realized the wave of cost increases that had hit California would soon arrive for other utilities.
It was partly “informed by the idea that other utility commissions are not going to allow what California has allowed,” Wara said. “It’s too expensive. There’s no way.”
Utilities can make just a few cost-effective improvements to their systems in order to stave off the worst wildfire risk, he said. They should install weather stations along their poles and wires to monitor actual wind conditions along their infrastructure’s path, he said. They should also install “fast trip” conductors that can shut off powerlines as soon as they break.
Finally, they should prepare — and practice — plans to shut off electricity during high-wind events, he said. These three improvements are relatively cheap and pay for themselves much faster than upgrades like undergrounding lines, which can take more than 20 years to pay off.
Of course, the cost of failing to prepare for wildfires is much higher than the cost of preparation. From 2019 to 2023, California allowed its three biggest investor-owned utilities to collect $27 billion in wildfire preparedness and insurance costs, according to a state legislative report. These costs now make up as much as 13% of the bill for customers of PG&E, the state’s largest utility.
State regulators in California are currently considering the utility PG&E’s wildfire plan for 2026 to 2028, which calls for undergrounding 1,077 miles of power lines and expanding vegetation management programs. Costs from that program might not show up in bills until next decade.
“On the regulatory side, I don’t think a lot of these rate increases have hit yet,” Kozel said.
California may wind up having an easier time adapting to wildfires than other Western states. About half of the 80 million people who live in the west live in California, according to the Census Bureau, meaning that the state simply has more people who can help share the burden of adaptation costs. An outsize majority of the state’s residents live in cities — which is another asset, since wildfire adaptation usually involves getting urban customers to pay for costs concentrated in rural areas.
Western states where a smaller portion of residents live in cities, such as Idaho, might have a harder time investing in wildfire adaptation than California did, Wara said.
“The costs are very high, and they’re not baked in,” Wara said. “I would expect electricity cost inflation in the West to be driven by this broadly, and that’s just life. Climate change is expensive.”
The administration has already lost once in court wielding the same argument against Revolution Wind.
The Trump administration says it has halted all construction on offshore wind projects, citing “national security concerns.”
Interior Secretary Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!”
There are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. Burgum confirmed to Fox Business that these were the five projects whose leases have been targeted for termination, and that notices were being sent to the project developers today to halt work.
“The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told the network’s Maria Bartiromo.
David Schoetz, a spokesperson for Empire Wind's developer Equinor, told me the company is “aware of the stop work order announced by the Department of Interior,” and that the company is “evaluating the order and seeking further information from the federal government.” Schoetz added that we should ”expect more to come” from the company.
This action takes a kernel of truth — that offshore wind can cause interference with radar communication — and blows it up well beyond its apparent implications. Interior has cited reports from the military they claim are classified, so we can’t say what fresh findings forced defense officials to undermine many years of work to ensure that offshore wind development does not impede security or the readiness of U.S. armed forces.
The Trump administration has already lost once in court with a national security argument, when it tried to halt work on Revolution Wind citing these same concerns. The government’s case fell apart after project developer Orsted presented clear evidence that the government had already considered radar issues and found no reason to oppose the project. The timing here is also eyebrow-raising, as the Army Corps of Engineers — a subagency within the military — approved continued construction on Vineyard Wind just three days ago.
It’s also important to remember where this anti-offshore wind strategy came from. In January, I broke news that a coalition of activists fighting against offshore wind had submitted a blueprint to Trump officials laying out potential ways to stop projects, including those already under construction. Among these was a plan to cancel leases by citing national security concerns.
In a press release, the American Clean Power Association took the Trump administration to task for “taking more electricity off the grid while telling thousands of American workers to leave the job site.”
“The Trump Administration’s decision to stop construction of five major energy projects demonstrates that they either don’t understand the affordability crises facing millions of Americans or simply don't care,” the group said. “On the first day of this Administration, the President announced an energy emergency. Over the last year, they worked to create one with electricity prices rising faster under President Trump than any President in recent history."
What comes next will be legal, political and highly dramatic. In the immediate term, it’s likely that after the previous Revolution victory, companies will take the Trump administration to court seeking preliminary injunctions as soon as complaints can be drawn up. Democrats in Congress are almost certainly going to take this action into permitting reform talks, too, after squabbling over offshore wind nearly derailed a House bill revising the National Environmental Policy Act last week.
Heatmap has reached out to all of the offshore wind developers affected, and we’ll update this story if and when we hear back from them.
Editor’s note: This story has been updated to reflect comment from Equinor and ACP.
On Redwood Materials’ milestone, states welcome geothermal, and Indian nuclear
Current conditions: Powerful winds of up to 50 miles per hour are putting the Front Range states from Wyoming to Colorado at high risk of wildfire • Temperatures are set to feel like 101 degrees Fahrenheit in Santa Fe in northern Argentina • Benin is bracing for flood flooding as thunderstorms deluge the West African nation.

New York Governor Kathy Hochul inked a partnership agreement with Ontario Premier Doug Ford on Friday to work together on establishing supply chains and best practices for deploying next-generation nuclear technology. Unlike many other states whose formal pronouncements about nuclear power are limited to as-yet-unbuilt small modular reactors, the document promised to establish “a framework for collaboration on the development of advanced nuclear technologies, including large-scale nuclear” and SMRs. Ontario’s government-owned utility just broke ground on what could be the continent’s first SMR, a 300-megawatt reactor with a traditional, water-cooled design at the Darlington nuclear plant. New York, meanwhile, has vowed to build at least 1 gigawatt of new nuclear power in the state through its government-owned New York Power Authority. Heatmap’s Matthew Zeitlin wrote about the similarities between the two state-controlled utilities back when New York announced its plans. “This first-of-its-kind agreement represents a bold step forward in our relationship and New York’s pursuit of a clean energy future,” Hochul said in a press release. “By partnering with Ontario Power Generation and its extensive nuclear experience, New York is positioning itself at the forefront of advanced nuclear technology deployment, ensuring we have safe, reliable, affordable, and carbon-free energy that will help power the jobs of tomorrow.”
Hochul is on something of a roll. She also repealed a rule that’s been on the books for nearly 140 years that provided free hookups to the gas system for new customers in the state. The so-called 100-foot-rule is a reference to how much pipe the state would subsidize. The out-of-pocket cost for builders to link to the local gas network will likely be thousands of dollars, putting the alternative of using electric heat and cooking appliances on a level playing field. “It’s simply unfair, especially when so many people are struggling right now, to expect existing utility ratepayers to foot the bill for a gas hookup at a brand new house that is not their own,” Hochul said in a statement. “I have made affordability a top priority and doing away with this 40-year-old subsidy that has outlived its purpose will help with that.”
Redwood Materials, the battery recycling startup led by Tesla cofounder J.B. Straubel, has entered into commercial production at its South Carolina facility. The first phase of the $3.5 billion plant “has brought a system online that’s capable of recovering 20,000 metric tons of critical minerals annually, which isn’t full capacity,” Sawyer Merritt, a Tesla investor, posted on X. “Redwood’s goal is to keep these resources here; recovered, refined, and redeployed for America’s advantage,” the company wrote in a blog post on its website. “This strategy turns yesterday’s imports into tomorrow’s strategic stockpile, making the U.S. stronger, more competitive, and less vulnerable to supply chains controlled by China and other foreign adversaries.”
A 13-state alliance at the National Association of State Energy Officials launched a new accelerator program Friday that’s meant to “rapidly expand geothermal power development.” The effort, led by state energy offices in Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia, “will work to establish statewide geothermal power goals and to advance policies and programs that reduce project costs, address regulatory barriers, and speed the deployment of reliable, firm, flexible power to the grid.” Statements from governors of red and blue states highlighted the energy source’s bipartisan appeal. California Governor Gavin Newsom, a Democrat, called geothermal a key tool to “confront the climate crisis.” Idaho’s GOP Governor Brad Little, meanwhile, said geothermal power “strengthens communities, supports economic growth, and keeps our grid resilient.” If you want to review why geothermal is making a comeback, read this piece by Matthew.
Sign up to receive Heatmap AM in your inbox every morning:
Yet another pipeline is getting the greenlight. Last week, the Federal Energy Regulatory Commission approved plans for Mountain Valley’s Southgate pipeline, clearing the way for construction. The move to shorten the pipeline’s length from 75 miles down to 31 miles, while increasing the diameter of the project to 30 inches from between 16 and 23 inches, hinged on whether FERC deemed the gas conduit necessary. On Thursday, E&E News reported, FERC said the developers had demonstrated a need for the pipeline stretching from the existing Mountain Valley pipeline into North Carolina.
Last week, I told you about a bill proposed in India’s parliament to reform the country’s civil liability law and open the nuclear industry to foreign companies. In the 2010s, India passed a law designed to avoid another disaster like the 1984 Bhopal chemical leak that killed thousands but largely gave the subsidiary of the Dow Chemical Corporation that was responsible for the accident a pass on payouts to victims. As a result, virtually no foreign nuclear companies wanted to operate in India, lest an accident result in astronomical legal expenses in the country. (The one exception was Russia’s state-owned Rosatom.) In a bid to attract Western reactor companies, Indian lawmakers in both houses of parliament voted to repeal the liability provisions, NucNet reported.
The critically endangered Lesser Antillean iguana has made a stunning recovery on the tiny, uninhabited islet of Prickly Pear East near Anguilla. A population of roughly 10 breeding-aged lizards ballooned to 500 in the past five years. “Prickly Pear East has become a beacon of hope for these gorgeous lizards — and proves that when we give native wildlife the chance, they know what to do,” Jenny Daltry, Caribbean Alliance Director of nature charities Fauna & Flora and Re:wild, told Euronews.