You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Here are six things to know about it.
If one company has set the pace for direct air capture, it’s Climeworks. The Switzerland-based business opened its — and the world’s — first commercial DAC plant in 2017, capable of capturing “several hundred tons” of carbon dioxide each year. Today, the company unveiled its newest plant, the aptly named Mammoth. Located in Iceland, Mammoth is designed to take advantage of the country’s unique geology to capture and store up to 36,000 metric tons of carbon per year — eventually. Here’s what you need to know about the new project.
Mammoth is not yet operating at full capacity, with only 12 of its planned 72 capturing and filtering units installed. When the plant is fully operational — which Climeworks says should be sometime next year — it will pull up to 36,000 metric tons of CO2 out of the atmosphere annually. For scale, that’s about 1/28,000th of a gigaton. To get to net zero emissions, we’ll have to remove multiple gigatons of carbon from the atmosphere every year.
“The engineered solutions will have to play a major — and I would say even the major part of this task,” said Climeworks CEO Jan Wurzbacher at the virtual press conference for Mammoth’s unveiling. In his opinion, nature-based solutions “will not be able to scale to the level where we need them to be.”
So in the context of where we need to go, Mammoth is almost nothing. But in the context of our current reality, it’s nine times the size of the next largest DAC facility: another Iceland-based Climeworks plant called Orca. And it’s a major stepping stone towards the company’s ultimate goal of capturing a million metric tons of CO2 yearly by 2030 and a billion by 2050.
Climeworks first broke ground on Mammoth in June 2022, and 18 months later the company announced that the “core pieces of the plant are built.” Now that the plant has started capturing CO2, Climeworks says the rest of 2024 will be devoted to installing the remaining CO2capture units and ramping toward full capacity.
Thus far in its history, Climeworks has largely avoided the construction delays that often plague first-of-its-kind projects. “They’re coming out with new projects every three to four years, which is a pretty wild timeline,” said Erin Burns, Executive Director of the nonprofit Carbon180.
Through Climework’s partnership with Icelandic geothermal company ON Power, Mammoth is powered in full by geothermal energy — although the company has long been reticent about how much energy, exactly, it needs.
At any rate, Climeworks has committed to powering the direct air capture process as well as its storage process with 100% renewables in the long run. The company cited Kenya, New Zealand, and Indonesia as other areas that would be geologically advantageous for future Climeworks facilities, as all have substantial geothermal resources.
Climeworks said it would be able to disclose an exact cost per metric ton of carbon removal figure after Mammoth has been operational for a year or two. But in the meantime, Wurzbacher said the company is “closer to the $1,000 per ton mark than we are to the $100 per ton mark.” He expects prices to drop as the company further scales, and is aiming for $300 to $350 per metric ton by 2030, and ultimately $100 per metric ton by 2050. That’s in line with the Department of Energy’s Earthshots initiative, which aims to reduce the cost of a variety of carbon dioxide removal pathways to below $100 per metric ton by 2050.
While Climeworks hasn’t divulged Mammoth’s lifetime carbon removal capacity, it said the plant is designed to operate for 25 years, and that a third of its lifetime capacity has already been sold. The remainder will be sold in the next year or two, representatives told reporters
The company has offtake agreements with more than 160 organizations including some major corporate buyers such as JPMorgan Chase, Boston Consulting Group and Microsoft. Many of these agreements span a decade or more and involve tens of thousands of tons of CO2 removal from current and future Climeworks projects. (The company also recently opened a marketplace, Climeworks Solutions, to package and sell “high quality” carbon credits from other carbon removal companies.)
The Mammoth plant was primarily financed by Climework’s own equity, said Wurzbacher. “But going forward, project financing will be vital to accelerate the scale up. And for that, such long-term offtake agreements are important.”
Now that the plant is operational, it should help drive more investment, Dana Jacobs, chief of staff at the Carbon Removal Alliance, told me. “Having carbon removal projects that you can see and reach out and touch and understand is so critical,” she said.
Climeworks said the lessons from Mammoth will help the company scale further as it enters the U.S. market through its participation in the Department of Energy-funded direct air capture hub, Project Cypress in Louisiana.
Climeworks is working on Project Cypress alongside developer Battelle and another direct air capture company, Heirloom. The project is designed to capture a million metric tons of CO2annually by 2030, and recently received an initial $50 million grant from the DOE to kickstart the project’s planning, design and community engagement processes.
Editor’s note: This story has been updated with quotes and additional information from Climeworks’ team.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
We’re powering data centers every which way these days.
The energy giant ExxonMobil is planning a huge investment in natural gas-fired power plants that will power data centers directly, a.k.a. behind the meter, meaning they won’t have to connect to the electric grid. That will allow the fossil fuel giant to avoid making the expensive transmission upgrades that tend to slow down the buildout of new electricity generation. And it’ll add carbon capture to boot.
The company said in a corporate update that it plans to build facilities that “would use natural gas to generate a significant amount of high-reliability electricity for a data center,” then use carbon capture to “remove more than 90% of the associated CO2 emissions, then transport the captured CO2 to safe, permanent storage deep underground.” Going behind the meter means that this generation “can be installed at a pace that other alternatives, including U.S. nuclear power, cannot match,” the company said.
The move represents a first for Exxon, which is famous for its far-flung operations to extract and process oil and natural gas but has not historically been in the business of supplying electricity to customers. The company is looking to generate 1.5 gigawatts of power, about 50% more than a large nuclear reactor, The New York Timesreported.
Exxon’s announcement comes as thepower industry has reached an inflection point thanks to new demand from data centers to power artificial intelligence, electrification of transportation and heating, and new manufacturing investment. The demand for new power is immense, yet the industry’s ability to provide it quickly is limited both by the intermittent nature of cheap renewable power like solar and storage — plus the transmission capacity it requires — and by theregulatory barriers and market uncertainty around building new natural gas and nuclear power. While technology companies are starting to invest in bringing more nuclear power onto the grid,those projects won’t begin to bear fruit until the 2030s at the earliest.
Exxon is also not the only energy giant looking at behind-the-meter gas.
“This county is blessed with an abundance of natural gas,” Chevron chief executive Mike Wirthsaid at a recent event hosted by the Atlantic Council. “I think what we’re likely to see is that gas turbine generation is going to be a big part of the solution set, and a lot of it may be what’s called behind the meter … to support data centers.”
At the same time, the so-called hyperscalers are still making massive investments in renewables. Google, the investment firm TPG, and the energy developer Intersectannounced a $20 billion investment “to synchronize new clean power generation with data center growth in a novel way,” Google’s President and Chief Investment Officer Ruth Porat wrote in a company blog post on Tuesday.
While Google was a pioneer in developing new renewable power to offset emissions from its operations and recently formed a partnership with Microsoft and the steel company Nucor to foster energy technology that can deliver clean power 24/7, this new project will be focused on “co-locating grid-connected carbon-free energy and data center investments into closely-linked infrastructure projects.”
These projects — the data centers and the clean power generation — would be sited close to each other, however they would not be behind the meter, a Google executive told Canary Media. Instead, Intersect will build “new clean energy assets in regions and projects of interest,” according to the blog post, with Google then acting as an offtaker for the power “as an anchor tenant in the co-located industrial park that would support data center development.” The Google data center and the Intersect-built power “would come online alongside its own clean power, bringing new generation capacity to the grid to meet our load, reduce time to operation and improve grid reliability.”
“This partnership is an evolution of the way hyperscalers and power providers have previously worked together,” Sheldon Kimber, Intersect chief executive, said in a press release. “We can and are developing innovative solutions to rapidly expand clean power capacity at scale while reducing the strain on the grid.”
But ... how?
President-elect Donald Trump on Tuesday rocked the energy world when he promised “fully expedited approvals and permits, including, but in no way limited to, all Environmental approvals” for “Any person or company investing ONE BILLION DOLLARS, OR MORE, in the United States of America,” in a post on Truth Social Tuesday.
“GET READY TO ROCK!!!” he added.
Trump has frequently derided regulatory barriers to development, including in his announcements of various economic and policy roles in his upcoming administration. His designee for Secretary of the Interior, Doug Burgum, for instance, will also head a
National Energy Council that will “oversee the path to U.S. ENERGY DOMINANCE by cutting red tape … by focusing on INNOVATION over longstanding, but totally unnecessary, regulation.”
When Trump
announced his nomination of Lee Zeldin to head the Environmental Protection Agency, he said Zeldin would “ensure fair and swift deregulatory decisions that will be enacted in a way to unleash the power of American business.”
Current interpretations of existing laws dictate that any project constituting a major federal action (e.g. one that uses public lands) must be reviewed under the National Environmental Policy Act, the country’s signature permitting law. Federal courts are often asked in litigation to sign off on whether that review process — although not the outcome — was sufficient.
Regardless of any changes Trump may make to the federal regulatory system as president, that infrastructure is already in flux. The D.C. Circuit Court of Appeals recently issued a ruling that throws into doubt decades of NEPA enforcement. Also on Tuesday, the Supreme Court heard a separate case on the limits of NEPA as it relates to aproposed rail line expansion to transport oil from Utah’s Uinta Basin to refineries on the Gulf of Mexico. Although the court is unlikely to issue a decision until next year, its current membership has shown itself plenty willing to scrap longstanding precedent in the name of cutting the regulatory state down to size.
Trump did not support his announcement with any additional materials laying out the legal authorities he plans to exercise to exempt these projects from regulation or proposed legislation, but it already attracted criticism from environmentalists, with the Sierra Club describing it as a “plan to sell out communities and environment to the highest bidder.It’s also unclear whether Trump was referring to foreign direct investment in the United States, of which there was $177 billion in 2022,according to the Department of Commerce.
Trump’s appointed co-deregulator-in-chief, for one, approved of his message today. “This is awesome 🚀🇺🇸,” Elon Musk wrote on X in response.
Companies are racing to finish the paperwork on their Department of Energy loans.
Of the over $13 billion in loans and loan guarantees that the Energy Department’s Loan Programs Office has made under Biden, nearly a third of that funding has been doled out in the month since the presidential election. And of the $41 billion in conditional commitments — agreements to provide a loan once the borrower satisfies certain preconditions — that proportion rises to nearly half. That includes some of the largest funding announcements in the office’s history: more than $7.5 billion to StarPlus Energy for battery manufacturing, $4.9 billion to Grain Belt Express for a transmission project, and nearly $6.6 billion to the electric vehicle company Rivian to support its new manufacturing facility in Georgia.
The acceleration represents a clear push by the outgoing Biden administration to get money out the door before President-elect Donald Trump, who has threatened to hollow out much of the Department of Energy, takes office. Still, there’s a good chance these recent conditional commitments won’t become final before the new administration takes office, as that process involves checking a series of nontrivial boxes that include performing due diligence, addressing or mitigating various project risks, and negotiating financing terms. And if the deals aren’t finalized before Trump takes office, they’re at risk of being paused or cancelled altogether, something the DOE considers unwise, to put it lightly.
“It would be irresponsible for any government to turn its back on private sector partners, states, and communities that are benefiting from lower energy costs and new economic opportunities spurred by LPO’s investments,” a spokesperson wrote to me in an email.
The once nearly dormant LPO has had a renaissance under the Biden administration and the office’s current director, Jigar Shah. The Inflation Reduction Act supercharged its lending authority to $400 billion, from just $40 billion when Biden took office. Then a week after the election, the office announced that it had recalibrated its risk estimates for the loan guarantees that it makes under the Energy Infrastructure Reinvestment program, which works to modernize and repurpose existing energy infrastructure to make it cleaner and more energy efficient. As the office explained, these projects “may reflect a relatively moderate risk profile in comparison to typical projects LPO finances with higher project risk.” When there’s less risk involved, LPO doesn’t have to set aside as much money to cover a possible default, which in this case has allowed the office to more than quadruple its funding for qualifying projects.
It’s not just that LPO staffers are working fast, though that’s part of it — it’s also that loan beneficiaries have picked up their pace in responding to the LPO. As Shah emphasized today at the LPO’s second annual Demonstrate Deploy Decarbonize conference, finalizing conditional commitments largely depends on companies getting their ducks in a row as quickly as possible. “I do think that right now borrowers are sufficiently motivated to move more quickly than they have probably a year ago,” Shah said. “It's up to the borrowers. Our process hasn’t changed. Their ability to move through it faster is in their control.”
Shah noted that though timelines may be accelerating, the office’s due diligence procedures have remained the same. Thus far, the project that has moved the fastest from a conditional commitment to a finalized loan was for a clean hydrogen and energy storage facility in Utah. That took 43 days, and there are 46 left in Biden’s presidency. Let’s see what the LPO can do.