You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
If you’re selling clean firm power, data centers are “the best news ever.”
There’s a simple and well-supported story to tell about the projected growth in electricity demand coming from data centers, population growth, and new factories, i.e. that it will boost the fossil fuel industry. When faced with the need for more electricity generation, utilities will simply build more natural gas power plants, and market overseers will act to ensure that aging gas and coal plants don’t get shut down. Some version of this story is already playing out in Arizona, the Southeast, and the Mid-Atlantic.
Many green activists are understandably wary of the data center boom, seeing it as a “unique opportunity for fossil fuel interests to get in while the getting is still good and turn a digital and industrial boom into yet another gas boom,” as the Natural Resources Defense Council said of Georgia, where a 15-times increase in projected electricity demand has Georgia Power scrambling for more fossil fuels.
However this is not the story I’ve been hearing this week in New York City, where thousands of government officials, climate activists, celebrities, investors, and executives have descended for the annual meeting-and-panel extravaganza that is Climate Week. For the Biden Administration officials, clean energy executives, and technological visionaries flitting between sponsored events, data center load growth is,as John F. Kennedy might have put it in one of his frequent flights of amateur Chinese linguistics, a danger and opportunity mixed into one.
“This can be a good-news story. The sky doesn’t necessarily need to be falling,” Kelly Sanders, assistant director for energy systems innovation at the White House Office of Science and Technology Policy, said during a panel discussion hosted by the think tank Third Way, referring to load growth from manufacturing and data centers. “This could actually be good for clean energy.”
And very good for anyone who can promise to deliver said clean energy, even if it’s years in the future. During a “fireside chat” at Geothermal House, a day-long summit on geothermal energy sponsored by Project InnerSpace, a geothermal nonprofit, Mike Schroepfer, the former CTO of Meta who is now a climate venture investor, said the demand for power from AI was “the best news ever.” He argued that having companies with big power needs and deep pockets was much better for clean energy development than having a stagnant grid that’s just trying to replace dirty power plants.
Among those in the same rah-rah camp, the general idea is that energy-hungry data centers can help get new clean energy sources like advanced geothermal through the project finance "valley of death" so they can eventually deliver affordable, clean power to the rest of us. “For the first time in history, demand for clean energy outstrips supply,” said Ally Yost, a senior vice president at Commonwealth Fusion Systems, during a panel discussion in New York City. “Those that have access to that clean power will be in a very profitable situation.”
“AI is a gift for fusion,” added Clay Dumas, a partner at Lowercarbon Capital, a Commonwealth investor. He even conceded that the skyrocketing demand was a “gift for fission,” from which fusion advocates are typically at pains to distinguish themselves. “There’s an intense interest and demand for clean electrons,” he said, referencing the recent deal to bring back a shuttered reactor at Three Mile Island, alongside a power purchase agreement with Microsoft.
That investors and executives at fusion companies were talking about meeting projected load growth is a good sign of how heady the financial and technology prospects have gotten for anyone who has a good story to tell (and some capital). Fusion’s claim to be the holy grail of energy has passed over time from aspiration to irony and back again, thanks to billions piled into the industry in the past few years.
This combination of dreaminess and realism prevailed at Commonwealth’s event, where Dumas said that when he first invested in the company, “there was an exciting story of how fusion or a company like CFS could provide 5, 10, 20% of the world’s primary energy and could become the biggest company in the history of capitalism,” Dumas said. (Perhaps not surprisingly, several former SpaceX employees work at Commonwealth.) Now the focus is on getting a power plant developed with technology that the industry insists will be ready to go online on a reasonable timeframe — something more like a decade than the standard 20 or 30 years.
But whether you’re splitting atoms or fusing them, the demand for clean power from data centers is coming in months and years, not decades. OpenAI chief executive Sam Altman reportedlytold the White House he wants to build 5-gigawatt data centers, which would take the equivalent of five large nuclear reactors to power. Even restarting an existing fission plant takes at least three years, while building a new one using existing typically takes around … well no one knows because there are no plans currently to do so.
“People are not going to be patient” if new clean power can’t be developed quickly, Juliann Edwards, the chief development officer of The Nuclear Company, told me this week. “They're going to go build more gas plants.”
Kathleen Barrón, the chief strategy officer at Constellation, the country’s leading nuclear energy providers, said during the panel hosted by Third Way that conversations about new nuclear are “starting to happen,” and that the most important part of that process is coming up with a reasonable cost estimate. “Once you know what it costs, you can figure out what contributions will be,” she said, referring to the nasty problem of how to split up the expense among various stakeholders, including the government. Barrón pointed out that the second reactor at Vogtle was almost a third cheaper than the first — meaning that maybe the nuclear industry has a chance of getting a handle on costs. In the meantime, owners of existing plants will be happy to reopen and expand what they can, picking up generous incentives all along the way.
Edwards told me she’s been speaking with potential offtakers like Amazon and Meta, utilities, independent power producers, and investors in pursuit of having “binding contracts” for new plants by late 2026. But the hyperscalers committed to using clean power will need more than that.
Lucia Tian, a former official at the Department of Energy’s Loan Program Office who now heads of clean energy and decarbonization technologies at Google, estimated that Google’s clean energy needs would be largely served from existing renewable technologies “that we can deploy at scale,” which, paired with storage, would get the company to around 80% of its needs. “But in order to get that last 20%, we need a suite of technologies including nuclear, long-duration energy storage, fossil generation with carbon capture and storage.”
Behind each of these promising technologies is a unique deployment issue. Geothermal might work in the western United States only, for instance, and even then not before the late 2020s. As for nuclear, outside of reopening shuttered plants and uprating existing ones, Tian said, “the reality that everyone recognizes” is that if “I sign a deal today” for a small modular reactor or the existing AP1000 design, “it’s not going to come online before 2030.” This leaves “a strong role for CCS,” she added, referring to using natural gas with carbon capture and storage, an approach strongly encouraged by new Environmental Protection Agency rules for gas plants, but one that is by no means widespread today.
Making progress on a technology that’s been in development for decades and still involves extracting and burning a fossil fuel doesn’t quite meet the futuristic moment the data center and artificial intelligence boom has created in the present.
“Every day someone asks, can’t you foot the billion dollar risk of a nuclear reactor?” Tian said. The future will have to wait a bit longer, but the data centers are coming now.
Editor’s note: This story has been updated to reflect that Juliann Edwards is not a founder of The Nuclear Company.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
From Kansas to Brooklyn, the fire is turning battery skeptics into outright opponents.
The symbol of the American battery backlash can be found in the tiny town of Halstead, Kansas.
Angry residents protesting a large storage project proposed by Boston developer Concurrent LLC have begun brandishing flashy yard signs picturing the Moss Landing battery plant blaze, all while freaking out local officials with their intensity. The modern storage project bears little if any resemblance to the Moss Landing facility, which uses older technology,, but that hasn’t calmed down anxious locals or stopped news stations from replaying footage of the blaze in their coverage of the conflict.
The city of Halstead, under pressure from these locals, is now developing a battery storage zoning ordinance – and explicitly saying this will not mean a project “has been formally approved or can be built in the city.” The backlash is now so intense that Halstead’s mayor Dennis Travis has taken to fighting back against criticism on Facebook, writing in a series of posts about individuals in his community “trying to rule by MOB mentality, pushing out false information and intimidating” volunteers working for the city. “I’m exercising MY First Amendment Right and well, if you don’t like it you can kiss my grits,” he wrote. Other posts shared information on the financial benefits of building battery storage and facts to dispel worries about battery fires. “You might want to close your eyes and wish this technology away but that is not going to happen,” another post declared. “Isn’t it better to be able to regulate it in our community?”
What’s happening in Halstead is a sign of a slow-spreading public relations wildfire that’s nudging communities that were already skeptical of battery storage over the edge into outright opposition. We’re not seeing any evidence that communities are transforming from supportive to hostile – but we are seeing new areas that were predisposed to dislike battery storage grow more aggressive and aghast at the idea of new projects.
Heatmap Pro data actually tells the story quite neatly: Halstead is located in Harvey County, a high risk area for developers that already has a restrictive ordinance banning all large-scale solar and wind development. There’s nothing about battery storage on the books yet, but our own opinion poll modeling shows that individuals in this county are more likely to oppose battery storage than renewable energy.
We’re seeing this phenomenon play out elsewhere as well. Take Fannin County, Texas, where residents have begun brandishing the example of Moss Landing to rail against an Engie battery storage project, and our modeling similarly shows an intense hostility to battery projects. The same can be said about Brooklyn, New York, where anti-battery concerns are far higher in our polling forecasts – and opposition to battery storage on the ground is gaining steam.
And more on the week’s conflicts around renewable energy.
1. Carbon County, Wyoming – I have learned that the Bureau of Land Management is close to approving the environmental review for a transmission line that would connect to BluEarth Renewables’ Lucky Star wind project.
2. Nantucket County, Massachusetts – Anti-offshore wind advocates are pushing the Trump administration to rescind air permits issued to Avangrid for New England Wind 1 and 2, the same approval that was ripped away from Atlantic Shores offshore wind farm last Friday.
3. Campbell County, Virginia – The HEP Solar utility-scale project in rural Virginia is being accused of creating a damaging amount of runoff, turning a nearby lake into a “mud pit.” (To see the story making the rounds on anti-renewables social media, watch this TV news segment.)
4. Marrow County, Ohio – A solar farm in Ohio got approvals for once! Congratulations to ESA Solar on this rare 23-acre conquest.
5. Madison County, Indiana – The Indiana Supreme Court has rejected an effort by Invenergy to void a restrictive county ordinance.
6. Davidson County, North Carolina – A fraught conflict is playing out over a Cypress Creek Renewables solar project in the town of Denton, which passed a solar moratorium that contradicts approval for the project issued by county officials in 2022.
7. Knox County, Nebraska – A federal judge has dismissed key aspects of a legal challenge North Fork Wind, a subsidiary of National Grid Renewables, filed against the county for enacting a restrictive wind ordinance that hinders development of their project.
8. Livingston Parish, Louisiana – This parish is extending a moratorium on new solar farm approvals for at least another year, claiming such action is necessary to comply with a request from the state.
9. Jefferson County, Texas – The city council in the heavily industrial city of Port Arthur, Texas, has approved a lease for constructing wind turbines in a lake.
10. Linn County, Oregon – What is supposed to be this county’s first large-scale solar farm is starting to face pushback over impacts to a wetlands area.Today’s sit-down is with Nikhil Kumar, a program director at GridLab and an expert in battery storage safety and regulation. Kumar’s folks reached out to me after learning I was writing about Moss Landing and wanted to give his honest and open perspective on how the disaster is impacting the future of storage development in the U.S. Let’s dive in!
The following is an abridged and edited version of our conversation.
So okay – walk me through your perspective on what happened with Moss Landing.
When this incident occurred, I’d already been to Moss Landing plenty of times. It caught me by surprise in the sense that it had reoccurred – the site had issues in the past.
A bit of context about my background – I joined GridLab relatively recently, but before that I spent 20 years in this industry, often working on the integrity and quality assurance of energy assets, anything from a natural gas power plant to nuclear to battery to a solar plant. I’m very familiar with safety regulation and standards for the energy industry, writ large.
Help me understand how things have improved since Moss Landing. Why is this facility considered by some to be an exception to the rule?
It’s definitely an outlier. Batteries are very modular by nature, you don’t need a lot of overall facility to put battery storage on the ground. From a construction standpoint, a wind or solar farm or even a gas plant is more complex to put together. But battery storage, that simplicity is a good thing.
That’s not the case with Moss Landing. If you look at the overall design of these sites, having battery packs in a building with a big hall is rare.
Pretty much every battery that’s been installed in the last two or three years, industry has already known about this [risk]. When the first [battery] fire occurred, they basically containerized everything – you want to containerize everything so you don’t have these thermal runaway events, where the entire battery batch catches fire. If you look at the record, in the last two or three years, I do not believe a single such design was implemented by anybody. People have learned from that experience already.
Are we seeing industry have to reckon with this anyway? I can’t help but wonder if you’ve witnessed these community fears. It does seem like when a fire happens, it creates problems for developers in other parts of the country. Are developers reckoning with a conflation from this event itself?
I think so. Developers that we’ve talked to are very well aware of reputational risk. They do not want people to have general concern with this technology because, if you look at how much battery is waiting to be connected to the grid, that’s pretty much it. There’s 12 times more capacity of batteries waiting to be connected to the grid than gas. That’s 12X.
We should wait for the city and I would really expect [Vistra] to release the root cause investigation of this fire. Experts have raised a number of these potential root causes. But we don’t know – was it the fire suppression system that failed? Was it something with the batteries?
We don’t know. I would hope that the details come out in a transparent way, so industry can make those changes, in terms of designs.
Is there anything in terms of national regulation governing this sector’s performance standards and safety standards, and do you think something like that should exist?
It should exist and it is happening. The NFPA [National Fire Prevention Association] is putting stuff out there. There might be some leaders in the way California’s introduced some new regulation to make sure there’s better documentation, safety preparedness.
There should be better regulation. There should be better rules. I don’t think developers are even against that.
OK, so NFPA. But what about the Trump administration? Should they get involved here?
I don’t think so. The OSHA standards apply to people who work on site — the regulatory frameworks are already there. I don’t think they need some special safety standard that’s new that applies to all these sites. The ingredients are already there.
It’s like coal power plants. There’s regulation on greenhouse gas emissions, but not all aspects of coal plants. I’m not sure if the Trump administration needs to get involved.
It sounds like you're saying the existing regulations are suitable in your view and what’s needed is for states and industry to step up?
I would think so. Just to give you an example, from an interconnection standpoint, there’s IEEE standards. From the battery level, there are UL standards. From the battery management system that also manages a lot of the ins and outs of how the battery operates —- a lot of those already have standards. To get insurance on a large battery site, they have to meet a lot of these guidelines already — nobody would insure a site otherwise. There’s a lot of financial risk. You don’t want batteries exploding because you didn’t meet any of these hundreds of guidelines that already exist and in many cases standards that exist.
So, I don’t know if something at the federal level changes anything.
My last question is, if you were giving advice to a developer, what would you say to them about making communities best aware of these tech advancements?
Before that, I am really hoping Vistra and all the agencies involved [with Moss Landing] have a transparent and accountable process of revealing what actually happened at this site. I think that’s really important.