You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Just a few years ago, the subject was basically taboo.
Katherine Ricke, a University of California at San Diego sustainability professor, turned to face the roomful of attentive scientists at the American Geophysical Union a few weeks ago. In any other year, she would have been about to break one of climate science’s biggest taboos.
“Geoscientists know very well at this point that solar geoengineering is not a very good substitute for emissions reductions,” she said. “The question that comes next, then, is, Is solar geoengineering a complement to mitigation?”
The answer, she then argued, was yes. While cutting greenhouse gas emissions might bring down the planet’s temperature in the long term, she said, it would not do so immediately. But spraying sulfate aerosols into the stratosphere was pretty cheap, and it could quickly help relieve the planet’s fever. “Solar geoengineering has a rapid but temporary effect on global temperatures, while the effect of emissions reduction is deferred but persistent,” she said.
Ricke went on to ask whether the economics of solar geoengineering made sense — and about its risks. Would it deprive other important efforts of research funding? Probably not. Could it encourage the public to procrastinate on cutting emissions? Maybe yes.
Yet perhaps the presentation’s biggest surprise — for people who have long thought about the issue — was that nobody in the audience of normal climate scientists gasped. Nobody shooed Ricke out of the room or told her that her talk didn’t belong in a session devoted to achieving net zero — that is, to climate mitigation, to reducing carbon pollution, not blotting out its effects.
To get a sense of what American climate scientists are talking about, you can do a lot worse than attending the annual fall meeting of the AGU, where more than 20,000 scientists come to network, present new research, and gossip about their superiors. This year, AGU was held in the cavernous Moscone Center in San Francisco. The arrival of tens of thousands of people immediately broke the city’s post-pandemic downtown; Starbucks ran out of breakfast sandwiches and every restaurant within a quarter mile of the conference site was jammed before the 8:30 a.m. sessions.
AGU is almost always held, for some nonsensical reason, at roughly the same time as the annual United Nations climate conference, and the two events have a lot in common: They are bazaars, free-for-alls, half salon and half trade show, and each way too big for any one person to see. Yet by keen attention to sounds and signals, one can detect a vibe at both events. The vibe of this year’s AGU was clear: Geoengineering is here to stay.
This sincere interest in geoengineering and climate modification represents a broader shift in climate science from observation to intervention. It also represents a huge change for a field that used to regard any interference with the climate system — short of cutting greenhouse gas emissions — as verboten. “There is a growing realization that [solar radiation management] is not a taboo anymore,” Dan Visioni, a Cornell climate professor, told me. “There was a growing interest from NASA, NOAA, the national labs, that wasn’t there a year ago.”
At the highest level, this acceptance of geoengineering shows that scientists have seriously begun to imagine what will happen if humanity blows its goal of cutting greenhouse gas emissions.
Why the sudden embrace of geoengineering? Part of it is that the Intergovernmental Panel on Climate Change has become increasingly insistent that carbon removal is crucial — and opened the door to other once-taboo ideas.
But another part is that climate disasters seem to get bigger and bigger every year, and humanity seems to be growing more and more alarmed about them, yet no country plans to cut emissions fast enough to relieve global warming’s near-term dangers. 2023 was the warmest year in modern human history, but the Paris Agreement’s temperature goals remain far off. “It was always pretty clear that the kind of emissions reduction to stay below 1.5 [degrees Celsius] was never going to happen in any realistic scenario, but there was always a conviction that just by saying it was physically possible, it was going to inspire people into some kind of action,” Visioni said. “2023 has shown this to not be the case.”
Perhaps one more reason is that, for better or worse, geoengineering is already happening. Economists have long argued that stratospheric aerosol injection is so cheap that someone will eventually try to do it. Then, last year, Luke Iseman, a 39-year-old former employee of the startup incubator Y Combinator, claimed to have conducted rogue experiments in western Mexico delivering reflective sulfur molecules to the atmosphere using weather balloons. It’s unclear whether this “move fast and break things”-styled effort actually reflected any meaningful sunlight back into space. What it did do was awaken the Mexican government to a regulatory arbitrage. It responded by banning solar geoengineering.
Yet more serious attempts have been made at bringing geoengineering into the mainstream. In September, the Overshoot Commission, a panel of current and former world leaders — including an influential Chinese adviser and a former Canadian prime minister — recommended that the world begin to seriously study solar geoengineering. And Congress recently mandated that the White House Office of Science and Technology Policy study the technique — although the office’s resulting report also suggested that scientists are still treading carefully around it. Its hilariously curt title: “Congressionally-Mandated Report on Solar Radiation Modification.”
“The way that broader climate intervention has started to move into the mainstream has been kind of astounding,” said Shuchi Talati, a University of Pennsylvania scholar and former Energy Department official. “If you look at AGU of four or five years ago, if there was one [solar radiation management] panel, that was novel,” she told me. But this year, there were more panels and side conversations than ever. “You can feel it in the air that there was more interest.”
Ricke’s was far from the only geoengineering presentation in San Francisco this year. In a packed lunchtime session, Lisa Graumlich, AGU’s president, led a town hall about the organization’s draft proposal on how to research climate intervention ethically. “Are we attempting to play God? Do we have the right to do this? What risks are we willing to accept? Or … do we have the right not to?” Cynthia Scharf, a former UN adviser who helped lead a Carnegie Foundation project on how the world could possibly govern geoengineering, told the room by video conference. The crowd wasn’t exactly rewarded for attending: After every panelist had finished going through their introductions, the audience only had time to ask two questions.
Across the hall, more than 60 people were talking about a different kind of climate intervention. For years, scientists have known that the stability of a few glaciers in West Antarctica could mean the difference between quasi-manageable amounts of sea-level rise this century and a rapid, catastrophic surge. So small groups of glaciologists have now started to ask whether those specific glaciers — such as Thwaites, which holds a quadrillion gallons of water and is larger than Florida — could be engineered or modified somehow to slow their collapse.
Perhaps a berm could be built on the seafloor, in front of each of the glaciers, in order to prevent warm water from eroding them. Or maybe holes could be drilled into the glaciers, allowing the warmth of their subsurface to be vented to the surface. Glacial scientists have already met twice this year — at the University of Chicago and later Stanford — to begin hashing out the idea.
Another approach — using ships to spray ocean water into the atmosphere, thereby brightening clouds and reflecting more sunlight into space — was also the subject of several events. One scholar, Chih-Chieh Jack Chen, showed research suggesting that brightening the clouds over just 5% of the ocean surface could cool the planet enough to meet the world’s temperature targets — but that the climatic ripple effects of doing so might simultaneously raise temperatures in Southeast Asia by even more than what global warming would do alone. Others presented work showing that cloud brightening might accidentally shut down the planet’s westerly trade winds — or even silence the Pacific Ocean’s El Niño oscillation.
Then there were the carbon removal people, who arrived by the tens and who seemed to have graduated to a less controversial (and possibly more remunerative) plane than geoengineering. Most scientists seem to have accepted that carbon dioxide removal, or CDR, will need to happen to at least some degree. “CDR is a given. People don’t even consider it to be geoengineering any more, which is what the CDR people have always wanted,” Visioni told me. A new Department of Energy report, released during the conference, argues that by 2050, the United States might be able to suck 1 billion tons of carbon dioxide out of the atmosphere for a mere $130 billion a year, creating 440,000 jobs. In other scenarios — and not only those sponsored by the federal government — America seems likely to become the keystone of the global carbon removal industry, its vast geological capacity and fossil-fuel expertise giving it a competitive advantage.
In anticipation, venture capital and public-sector cash has surged into carbon removal, creating a corps of CDR startups with one foot in the geosciences and the other in Silicon Valley. Their employees were at AGU too, mingling in full force. “It was interesting how much industry was there — researchers at companies, even heads of companies,” Talati told me. “I’ve never really experienced that at AGU.” Employees from Lithos, Heirloom, Carbon Direct, Stripe, and Additional Ventures all registered for the conference; in what might be an AGU first, scientists and technologists sipped cappuccinos and nibbled pastries during an early-morning confab at the Salesforce Tower, a few blocks from the official conference site. “AGU is not the place where you would have expected to find these kinds of people, even just for CDR, so it’s interesting that they’re there,” Visioni said.
The whole thing presented both a stark contrast and an inescapable mirror to COP28, where oil lobbyists roamed the grounds. Some environmental old-timers grumble that the UN climate conference has transformed from a diplomatic meeting into a trade show. But maybe there is now so much money and interest and public attention directed at the climate problem that any major gathering about it will take on shades of the commercial. There are lots of rich people with huge amounts of money who want to help do something about climate change. At the same time, the United States government is looking like less and less of a long-term reliable partner on climate research. Sooner or later, someone is going to try to do more serious geoengineering than releasing a few balloons in Mexico. Scientists have started preparing for that day. Is that smart? I don’t know. But it seems like a better strategy than feigned ignorance about where we’re headed.
Editor’s note: This story originally misidentified the name of the person who conducted geoengineering experiments in Mexico. We regret the error.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “super soaker” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the super soaker collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the super soaker collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the super soaker, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.
On tough questioning from the Senate, LA’s fires, and EV leases
Current conditions: Odd weather has caused broccoli and cauliflower plants to come up far too early in the UK • Another blast of Arctic air is headed for the Midwest • An air quality alert has been issued in Los Angeles due to windblown dust and ash.
Firefighters in Los Angeles are scrambling to make progress against the ongoing wildfires there before dangerous winds return. The Palisades and Eaton fires have now been burning for almost a week, charring nearly 40,000 acres, damaging more than 12,000 structures, and leaving at least 24 people dead. They are 13% and 27% contained, respectively. Residents who lost their homes are desperately trying to find new properties to rent or buy in a tight market, with reports of intense bidding wars as landlords hike rents. The economic toll of this disaster is estimated to be between $135 billion and $150 billion. Red flag warnings are in effect today, with critical fire conditions and extreme wind gusts forecast through Wednesday.
Red fire retardant on pool furniture. Justin Sullivan/Getty Images
A few updates on the incoming administration: President-elect Donald Trump tapped Ed Russo to run an advisory environmental task force. Trump said Russo will oversee “initiatives to create great jobs and protect our natural resources, by following my policy of CLEAN AIR and CLEAN WATER. Together, we will achieve American Energy DOMINANCE, rebuild our Economy, and DRILL, BABY, DRILL.” Russo is a longtime Trump loyalist who served as an environmental consultant to the Trump Organization and wrote a book titled “Donald J. Trump: An Environmental Hero”.
Trump also announced his deputies for some key environmental and energy Cabinet positions over the weekend, including:
More than a dozen of Trump’s Cabinet nominees face Senate confirmation hearings this week. Doug Burgum, who is up for interior secretary, has a hearing before the Committee on Energy and Natural Resources tomorrow. Energy secretary nominee Chris Wright has one on Wednesday. EPA nominee Lee Zeldin has one with the Environment and Public Works Committee on Thursday.
Affordable EV leases are “the car market’s hottest deal,” according toThe Wall Street Journal. Car companies are changing the way they pitch EVs to buyers, offering short-term leases with low monthly payments. These deals are attractive to first-time EV shoppers who are still a little bit hesitant to commit, as well as people on a tighter budget. Roughly 45% of EV transactions at the end of 2024 were leases, much higher than the auto industry as a whole. And a provision in the Inflation Reduction Act means leased cars can more easily qualify for the government’s $7,500 EV tax credit. “The proliferation of lease deals has made EVs more accessible to buyers who couldn’t afford their higher sticker prices,” the Journal said. “For the automakers, it is helping get more EVs into customers’ hands after a choppy start for their electric-car operations.”
Wind power could overtake coal in Europe for electricity generation for the first time this year, according to the energy think tank Ember. At the end of 2024, wind power was closing in on coal, coming in at just 4% below the fossil fuel in power generation as the continent’s coal plants close. “That output gap could easily be made up over the course of 2025 by an increase in regional wind generation capacity or by higher average wind speeds at turbine level, or by some combination of both,” Reutersreported. Last year wind power accounted for 20% of electricity consumed in the EU, and the goal is to get that up to 50% by 2050. But as Electreknoted, the same problems plaguing projects in the U.S. – permitting delays and connection bottlenecks – are slowing things down. The EU accounts for 4.6% of global power sector emissions.
The World Health Organization’s European Centre for Environment and Health has issued a callout for “examples of interventions to protect and promote mental health in the face of climate change.” The group wants to take stock of these interventions so that it can identify gaps in mental health care and share some best practices. The callout is aimed at Europe only, but it is indicative of a growing awareness of how the worsening climate crisis is taking a toll on mental health worldwide.
“There’s a lot of finger-pointing going around, and I would just try to emphasize that this is a really complex problem. We have lots of different responsible parties. To me, what has happened requires more of a rethink than a blame game.” –Faith Kearns, a water and wildfire researcher at Arizona State University, speaking to Heatmap about the spread of misinformation around the LA fires