You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Just a few years ago, the subject was basically taboo.

Katherine Ricke, a University of California at San Diego sustainability professor, turned to face the roomful of attentive scientists at the American Geophysical Union a few weeks ago. In any other year, she would have been about to break one of climate science’s biggest taboos.
“Geoscientists know very well at this point that solar geoengineering is not a very good substitute for emissions reductions,” she said. “The question that comes next, then, is, Is solar geoengineering a complement to mitigation?”
The answer, she then argued, was yes. While cutting greenhouse gas emissions might bring down the planet’s temperature in the long term, she said, it would not do so immediately. But spraying sulfate aerosols into the stratosphere was pretty cheap, and it could quickly help relieve the planet’s fever. “Solar geoengineering has a rapid but temporary effect on global temperatures, while the effect of emissions reduction is deferred but persistent,” she said.
Ricke went on to ask whether the economics of solar geoengineering made sense — and about its risks. Would it deprive other important efforts of research funding? Probably not. Could it encourage the public to procrastinate on cutting emissions? Maybe yes.
Yet perhaps the presentation’s biggest surprise — for people who have long thought about the issue — was that nobody in the audience of normal climate scientists gasped. Nobody shooed Ricke out of the room or told her that her talk didn’t belong in a session devoted to achieving net zero — that is, to climate mitigation, to reducing carbon pollution, not blotting out its effects.
To get a sense of what American climate scientists are talking about, you can do a lot worse than attending the annual fall meeting of the AGU, where more than 20,000 scientists come to network, present new research, and gossip about their superiors. This year, AGU was held in the cavernous Moscone Center in San Francisco. The arrival of tens of thousands of people immediately broke the city’s post-pandemic downtown; Starbucks ran out of breakfast sandwiches and every restaurant within a quarter mile of the conference site was jammed before the 8:30 a.m. sessions.
AGU is almost always held, for some nonsensical reason, at roughly the same time as the annual United Nations climate conference, and the two events have a lot in common: They are bazaars, free-for-alls, half salon and half trade show, and each way too big for any one person to see. Yet by keen attention to sounds and signals, one can detect a vibe at both events. The vibe of this year’s AGU was clear: Geoengineering is here to stay.
This sincere interest in geoengineering and climate modification represents a broader shift in climate science from observation to intervention. It also represents a huge change for a field that used to regard any interference with the climate system — short of cutting greenhouse gas emissions — as verboten. “There is a growing realization that [solar radiation management] is not a taboo anymore,” Dan Visioni, a Cornell climate professor, told me. “There was a growing interest from NASA, NOAA, the national labs, that wasn’t there a year ago.”
At the highest level, this acceptance of geoengineering shows that scientists have seriously begun to imagine what will happen if humanity blows its goal of cutting greenhouse gas emissions.
Why the sudden embrace of geoengineering? Part of it is that the Intergovernmental Panel on Climate Change has become increasingly insistent that carbon removal is crucial — and opened the door to other once-taboo ideas.
But another part is that climate disasters seem to get bigger and bigger every year, and humanity seems to be growing more and more alarmed about them, yet no country plans to cut emissions fast enough to relieve global warming’s near-term dangers. 2023 was the warmest year in modern human history, but the Paris Agreement’s temperature goals remain far off. “It was always pretty clear that the kind of emissions reduction to stay below 1.5 [degrees Celsius] was never going to happen in any realistic scenario, but there was always a conviction that just by saying it was physically possible, it was going to inspire people into some kind of action,” Visioni said. “2023 has shown this to not be the case.”
Perhaps one more reason is that, for better or worse, geoengineering is already happening. Economists have long argued that stratospheric aerosol injection is so cheap that someone will eventually try to do it. Then, last year, Luke Iseman, a 39-year-old former employee of the startup incubator Y Combinator, claimed to have conducted rogue experiments in western Mexico delivering reflective sulfur molecules to the atmosphere using weather balloons. It’s unclear whether this “move fast and break things”-styled effort actually reflected any meaningful sunlight back into space. What it did do was awaken the Mexican government to a regulatory arbitrage. It responded by banning solar geoengineering.
Yet more serious attempts have been made at bringing geoengineering into the mainstream. In September, the Overshoot Commission, a panel of current and former world leaders — including an influential Chinese adviser and a former Canadian prime minister — recommended that the world begin to seriously study solar geoengineering. And Congress recently mandated that the White House Office of Science and Technology Policy study the technique — although the office’s resulting report also suggested that scientists are still treading carefully around it. Its hilariously curt title: “Congressionally-Mandated Report on Solar Radiation Modification.”
“The way that broader climate intervention has started to move into the mainstream has been kind of astounding,” said Shuchi Talati, a University of Pennsylvania scholar and former Energy Department official. “If you look at AGU of four or five years ago, if there was one [solar radiation management] panel, that was novel,” she told me. But this year, there were more panels and side conversations than ever. “You can feel it in the air that there was more interest.”
Ricke’s was far from the only geoengineering presentation in San Francisco this year. In a packed lunchtime session, Lisa Graumlich, AGU’s president, led a town hall about the organization’s draft proposal on how to research climate intervention ethically. “Are we attempting to play God? Do we have the right to do this? What risks are we willing to accept? Or … do we have the right not to?” Cynthia Scharf, a former UN adviser who helped lead a Carnegie Foundation project on how the world could possibly govern geoengineering, told the room by video conference. The crowd wasn’t exactly rewarded for attending: After every panelist had finished going through their introductions, the audience only had time to ask two questions.
Across the hall, more than 60 people were talking about a different kind of climate intervention. For years, scientists have known that the stability of a few glaciers in West Antarctica could mean the difference between quasi-manageable amounts of sea-level rise this century and a rapid, catastrophic surge. So small groups of glaciologists have now started to ask whether those specific glaciers — such as Thwaites, which holds a quadrillion gallons of water and is larger than Florida — could be engineered or modified somehow to slow their collapse.
Perhaps a berm could be built on the seafloor, in front of each of the glaciers, in order to prevent warm water from eroding them. Or maybe holes could be drilled into the glaciers, allowing the warmth of their subsurface to be vented to the surface. Glacial scientists have already met twice this year — at the University of Chicago and later Stanford — to begin hashing out the idea.
Another approach — using ships to spray ocean water into the atmosphere, thereby brightening clouds and reflecting more sunlight into space — was also the subject of several events. One scholar, Chih-Chieh Jack Chen, showed research suggesting that brightening the clouds over just 5% of the ocean surface could cool the planet enough to meet the world’s temperature targets — but that the climatic ripple effects of doing so might simultaneously raise temperatures in Southeast Asia by even more than what global warming would do alone. Others presented work showing that cloud brightening might accidentally shut down the planet’s westerly trade winds — or even silence the Pacific Ocean’s El Niño oscillation.
Then there were the carbon removal people, who arrived by the tens and who seemed to have graduated to a less controversial (and possibly more remunerative) plane than geoengineering. Most scientists seem to have accepted that carbon dioxide removal, or CDR, will need to happen to at least some degree. “CDR is a given. People don’t even consider it to be geoengineering any more, which is what the CDR people have always wanted,” Visioni told me. A new Department of Energy report, released during the conference, argues that by 2050, the United States might be able to suck 1 billion tons of carbon dioxide out of the atmosphere for a mere $130 billion a year, creating 440,000 jobs. In other scenarios — and not only those sponsored by the federal government — America seems likely to become the keystone of the global carbon removal industry, its vast geological capacity and fossil-fuel expertise giving it a competitive advantage.
In anticipation, venture capital and public-sector cash has surged into carbon removal, creating a corps of CDR startups with one foot in the geosciences and the other in Silicon Valley. Their employees were at AGU too, mingling in full force. “It was interesting how much industry was there — researchers at companies, even heads of companies,” Talati told me. “I’ve never really experienced that at AGU.” Employees from Lithos, Heirloom, Carbon Direct, Stripe, and Additional Ventures all registered for the conference; in what might be an AGU first, scientists and technologists sipped cappuccinos and nibbled pastries during an early-morning confab at the Salesforce Tower, a few blocks from the official conference site. “AGU is not the place where you would have expected to find these kinds of people, even just for CDR, so it’s interesting that they’re there,” Visioni said.
The whole thing presented both a stark contrast and an inescapable mirror to COP28, where oil lobbyists roamed the grounds. Some environmental old-timers grumble that the UN climate conference has transformed from a diplomatic meeting into a trade show. But maybe there is now so much money and interest and public attention directed at the climate problem that any major gathering about it will take on shades of the commercial. There are lots of rich people with huge amounts of money who want to help do something about climate change. At the same time, the United States government is looking like less and less of a long-term reliable partner on climate research. Sooner or later, someone is going to try to do more serious geoengineering than releasing a few balloons in Mexico. Scientists have started preparing for that day. Is that smart? I don’t know. But it seems like a better strategy than feigned ignorance about where we’re headed.
Editor’s note: This story originally misidentified the name of the person who conducted geoengineering experiments in Mexico. We regret the error.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Forget data centers. Fire is going to make electricity much more expensive in the western United States.
A tsunami is coming for electricity rates in the western United States — and it’s not data centers.
Across the western U.S., states have begun to approve or require utilities to prepare their wildfire adaptation and insurance plans. These plans — which can require replacing equipment across thousands of miles of infrastructure — are increasingly seen as non-negotiable by regulators, investors, and utility executives in an era of rising fire risk.
But they are expensive. Even in states where utilities have not yet caused a wildfire, costs can run into the tens or hundreds of millions of dollars. Of course, the cost of sparking a fire can be much higher.
At least 10 Western states have recently approved or are beginning to work on new wildfire mitigation plans, according to data from E9 Insights, a utility research and consulting firm. Some utilities in the Midwest and Southeast have now begun to put together their own proposals, although they are mostly at an earlier phase of planning.
“Almost every state in the West has some kind of wildfire plan or effort under way,” Sam Kozel, a researcher at E9, told me. “Even a state like Missouri is kicking the tires in some way.”
The costs associated with these plans won’t hit utility customers for years. But they reflect one more building cost pressure in the electricity system, which has been stressed by aging equipment and rising demand. The U.S. Energy Information Administration already expects wholesale electricity prices to increase 8.5% in 2026.
The past year has seen a new spate of plans. In October, Colorado’s largest utility Xcel Energy proposed more than $845 million in new spending to prepare for wildfires. The Oregon utility Portland General Electric received state approval to spend $635 million on “compliance-related upgrades” to its distribution system earlier this month. That category includes wildfire mitigation costs.
The Public Utility Commission of Texas issued its first mandatory wildfire-mitigation rules last month, which will require utilities and co-ops in “high-risk” areas to prepare their own wildfire preparedness programs.
Ultimately, more than 140 utilities across 19 states have prepared or are working on wildfire preparedness plans, according to the Pacific Northwest National Laboratory.
It will take years for this increased utility spending on wildfire preparedness to show up in customers’ bills. That’s because utilities can begin spending money for a specific reason, such as disaster preparedness, as soon as state regulators approve their plan to do so. But utilities can’t begin passing those costs to customers until regulators review their next scheduled rate hike through a special process known as a rate case.
When they do get passed through, the plans will likely increase costs associated with the distribution system, the network of poles and wires that deliver electricity “the last mile” from substations to homes and businesses. Since 2019, rising distribution-related costs has driven the bulk of electricity price inflation in the United States. One risk is that distribution costs will keep rising at the same time that electricity itself — as well as natural gas — get more expensive, thanks to rising demand from data centers and economic growth.
California offers a cautionary tale — both about what happens when you don’t prepare for fire, and how high those costs can get. Since 2018, the state has spent tens of billions to pay for the aftermath of those blazes that utilities did start and remake its grid for a new era of fire. Yet it took years for those costs to pass through to customers.
“In California, we didn’t see rate increases until 2023, but the spending started in 2018,” Michael Wara, a senior scholar at the Woods Institute for the Environment and director of the Climate and Energy Policy Program at Stanford University, told me.
The cost of failing to prepare for wildfires can, of course, run much higher. Pacific Gas and Electric paid more than $13.5 billion to wildfire victims in California after its equipment was linked to several deadly fires in the state. (PG&E underwent bankruptcy proceedings after its equipment was found responsible for starting the 2018 Camp Fire, which killed 85 people and remains the deadliest and most destructive wildfire in state history.)
California now has the most expensive electricity in the continental United States.
Even the risk of being associated with starting a fire can cost hundreds of millions. In September, Xcel Energy paid a $645 million settlement over its role in the 2021 Marshall fire, even though it has not admitted to any responsibility or negligence in the fire.
Wara’s group began studying the most cost-effective wildfire investments a few years ago, when he realized the wave of cost increases that had hit California would soon arrive for other utilities.
It was partly “informed by the idea that other utility commissions are not going to allow what California has allowed,” Wara said. “It’s too expensive. There’s no way.”
Utilities can make just a few cost-effective improvements to their systems in order to stave off the worst wildfire risk, he said. They should install weather stations along their poles and wires to monitor actual wind conditions along their infrastructure’s path, he said. They should also install “fast trip” conductors that can shut off powerlines as soon as they break.
Finally, they should prepare — and practice — plans to shut off electricity during high-wind events, he said. These three improvements are relatively cheap and pay for themselves much faster than upgrades like undergrounding lines, which can take more than 20 years to pay off.
Of course, the cost of failing to prepare for wildfires is much higher than the cost of preparation. From 2019 to 2023, California allowed its three biggest investor-owned utilities to collect $27 billion in wildfire preparedness and insurance costs, according to a state legislative report. These costs now make up as much as 13% of the bill for customers of PG&E, the state’s largest utility.
State regulators in California are currently considering the utility PG&E’s wildfire plan for 2026 to 2028, which calls for undergrounding 1,077 miles of power lines and expanding vegetation management programs. Costs from that program might not show up in bills until next decade.
“On the regulatory side, I don’t think a lot of these rate increases have hit yet,” Kozel said.
California may wind up having an easier time adapting to wildfires than other Western states. About half of the 80 million people who live in the west live in California, according to the Census Bureau, meaning that the state simply has more people who can help share the burden of adaptation costs. An outsize majority of the state’s residents live in cities — which is another asset, since wildfire adaptation usually involves getting urban customers to pay for costs concentrated in rural areas.
Western states where a smaller portion of residents live in cities, such as Idaho, might have a harder time investing in wildfire adaptation than California did, Wara said.
“The costs are very high, and they’re not baked in,” Wara said. “I would expect electricity cost inflation in the West to be driven by this broadly, and that’s just life. Climate change is expensive.”
The administration has already lost once in court wielding the same argument against Revolution Wind.
The Trump administration says it has halted all construction on offshore wind projects, citing “national security concerns.”
Interior Secretary Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!”
There are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. Burgum confirmed to Fox Business that these were the five projects whose leases have been targeted for termination, and that notices were being sent to the project developers today to halt work.
“The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told the network’s Maria Bartiromo.
David Schoetz, a spokesperson for Empire Wind's developer Equinor, told me the company is “aware of the stop work order announced by the Department of Interior,” and that the company is “evaluating the order and seeking further information from the federal government.” Schoetz added that we should ”expect more to come” from the company.
This action takes a kernel of truth — that offshore wind can cause interference with radar communication — and blows it up well beyond its apparent implications. Interior has cited reports from the military they claim are classified, so we can’t say what fresh findings forced defense officials to undermine many years of work to ensure that offshore wind development does not impede security or the readiness of U.S. armed forces.
The Trump administration has already lost once in court with a national security argument, when it tried to halt work on Revolution Wind citing these same concerns. The government’s case fell apart after project developer Orsted presented clear evidence that the government had already considered radar issues and found no reason to oppose the project. The timing here is also eyebrow-raising, as the Army Corps of Engineers — a subagency within the military — approved continued construction on Vineyard Wind just three days ago.
It’s also important to remember where this anti-offshore wind strategy came from. In January, I broke news that a coalition of activists fighting against offshore wind had submitted a blueprint to Trump officials laying out potential ways to stop projects, including those already under construction. Among these was a plan to cancel leases by citing national security concerns.
In a press release, the American Clean Power Association took the Trump administration to task for “taking more electricity off the grid while telling thousands of American workers to leave the job site.”
“The Trump Administration’s decision to stop construction of five major energy projects demonstrates that they either don’t understand the affordability crises facing millions of Americans or simply don't care,” the group said. “On the first day of this Administration, the President announced an energy emergency. Over the last year, they worked to create one with electricity prices rising faster under President Trump than any President in recent history."
What comes next will be legal, political and highly dramatic. In the immediate term, it’s likely that after the previous Revolution victory, companies will take the Trump administration to court seeking preliminary injunctions as soon as complaints can be drawn up. Democrats in Congress are almost certainly going to take this action into permitting reform talks, too, after squabbling over offshore wind nearly derailed a House bill revising the National Environmental Policy Act last week.
Heatmap has reached out to all of the offshore wind developers affected, and we’ll update this story if and when we hear back from them.
Editor’s note: This story has been updated to reflect comment from Equinor and ACP.
On Redwood Materials’ milestone, states welcome geothermal, and Indian nuclear
Current conditions: Powerful winds of up to 50 miles per hour are putting the Front Range states from Wyoming to Colorado at high risk of wildfire • Temperatures are set to feel like 101 degrees Fahrenheit in Santa Fe in northern Argentina • Benin is bracing for flood flooding as thunderstorms deluge the West African nation.

New York Governor Kathy Hochul inked a partnership agreement with Ontario Premier Doug Ford on Friday to work together on establishing supply chains and best practices for deploying next-generation nuclear technology. Unlike many other states whose formal pronouncements about nuclear power are limited to as-yet-unbuilt small modular reactors, the document promised to establish “a framework for collaboration on the development of advanced nuclear technologies, including large-scale nuclear” and SMRs. Ontario’s government-owned utility just broke ground on what could be the continent’s first SMR, a 300-megawatt reactor with a traditional, water-cooled design at the Darlington nuclear plant. New York, meanwhile, has vowed to build at least 1 gigawatt of new nuclear power in the state through its government-owned New York Power Authority. Heatmap’s Matthew Zeitlin wrote about the similarities between the two state-controlled utilities back when New York announced its plans. “This first-of-its-kind agreement represents a bold step forward in our relationship and New York’s pursuit of a clean energy future,” Hochul said in a press release. “By partnering with Ontario Power Generation and its extensive nuclear experience, New York is positioning itself at the forefront of advanced nuclear technology deployment, ensuring we have safe, reliable, affordable, and carbon-free energy that will help power the jobs of tomorrow.”
Hochul is on something of a roll. She also repealed a rule that’s been on the books for nearly 140 years that provided free hookups to the gas system for new customers in the state. The so-called 100-foot-rule is a reference to how much pipe the state would subsidize. The out-of-pocket cost for builders to link to the local gas network will likely be thousands of dollars, putting the alternative of using electric heat and cooking appliances on a level playing field. “It’s simply unfair, especially when so many people are struggling right now, to expect existing utility ratepayers to foot the bill for a gas hookup at a brand new house that is not their own,” Hochul said in a statement. “I have made affordability a top priority and doing away with this 40-year-old subsidy that has outlived its purpose will help with that.”
Redwood Materials, the battery recycling startup led by Tesla cofounder J.B. Straubel, has entered into commercial production at its South Carolina facility. The first phase of the $3.5 billion plant “has brought a system online that’s capable of recovering 20,000 metric tons of critical minerals annually, which isn’t full capacity,” Sawyer Merritt, a Tesla investor, posted on X. “Redwood’s goal is to keep these resources here; recovered, refined, and redeployed for America’s advantage,” the company wrote in a blog post on its website. “This strategy turns yesterday’s imports into tomorrow’s strategic stockpile, making the U.S. stronger, more competitive, and less vulnerable to supply chains controlled by China and other foreign adversaries.”
A 13-state alliance at the National Association of State Energy Officials launched a new accelerator program Friday that’s meant to “rapidly expand geothermal power development.” The effort, led by state energy offices in Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia, “will work to establish statewide geothermal power goals and to advance policies and programs that reduce project costs, address regulatory barriers, and speed the deployment of reliable, firm, flexible power to the grid.” Statements from governors of red and blue states highlighted the energy source’s bipartisan appeal. California Governor Gavin Newsom, a Democrat, called geothermal a key tool to “confront the climate crisis.” Idaho’s GOP Governor Brad Little, meanwhile, said geothermal power “strengthens communities, supports economic growth, and keeps our grid resilient.” If you want to review why geothermal is making a comeback, read this piece by Matthew.
Sign up to receive Heatmap AM in your inbox every morning:
Yet another pipeline is getting the greenlight. Last week, the Federal Energy Regulatory Commission approved plans for Mountain Valley’s Southgate pipeline, clearing the way for construction. The move to shorten the pipeline’s length from 75 miles down to 31 miles, while increasing the diameter of the project to 30 inches from between 16 and 23 inches, hinged on whether FERC deemed the gas conduit necessary. On Thursday, E&E News reported, FERC said the developers had demonstrated a need for the pipeline stretching from the existing Mountain Valley pipeline into North Carolina.
Last week, I told you about a bill proposed in India’s parliament to reform the country’s civil liability law and open the nuclear industry to foreign companies. In the 2010s, India passed a law designed to avoid another disaster like the 1984 Bhopal chemical leak that killed thousands but largely gave the subsidiary of the Dow Chemical Corporation that was responsible for the accident a pass on payouts to victims. As a result, virtually no foreign nuclear companies wanted to operate in India, lest an accident result in astronomical legal expenses in the country. (The one exception was Russia’s state-owned Rosatom.) In a bid to attract Western reactor companies, Indian lawmakers in both houses of parliament voted to repeal the liability provisions, NucNet reported.
The critically endangered Lesser Antillean iguana has made a stunning recovery on the tiny, uninhabited islet of Prickly Pear East near Anguilla. A population of roughly 10 breeding-aged lizards ballooned to 500 in the past five years. “Prickly Pear East has become a beacon of hope for these gorgeous lizards — and proves that when we give native wildlife the chance, they know what to do,” Jenny Daltry, Caribbean Alliance Director of nature charities Fauna & Flora and Re:wild, told Euronews.