Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

The U.S. Has Gotten 3 Direct Air Capture Plants in 13 Months

Now we just need to know how well they work.

The 280 Earth plant.
Heatmap Illustration/280 Earth

A new direct air capture facility built by the Alphabet-backed 280 Earth is officially plucking carbon dioxide from the surrounding air along the Columbia River in Oregon, the company announced on Monday. It’s the third-largest “direct air capture” plant operating in the United States and the latest entrant in the race to design the cheapest, most efficient machine to strip the heat-trapping gas from the atmosphere.

The small-scale demonstration project, which neighbors a Google data center in a city called The Dalles, is expected eventually to capture carbon at a rate of 500 tons per year. The two other U.S. facilities — Global Thermostat’s plant in Commerce City, Colorado, and Heirloom’s plant in Tracy, California — are both designed to capture 1,000 tons per year. All three came online in just the past 13 months. (There are also a handful of smaller facilities operating in the U.S. that capture 100 tons per year or less.)

The team that is now 280 Earth first began working on their direct air capture system inside X, the tech incubator at Google also known as the “Moonshot Factory.” They spun out into their own company in 2022, after four-and-a-half years of research and development. The name comes from 280 parts per million, the amount of carbon in the atmosphere before industrialization. Today we’ve reached nearly 420 parts per million. But if the world manages to reduce emissions nearly to zero, it may be possible to pull enough carbon out of the air to restore the atmosphere to levels closer to pre-industrial times.

In general, direct air capture technologies suck in ambient air and pass it through a special material called a sorbent that attracts CO2 molecules. They then use heat to remove the carbon from the sorbent so that it can be transported and safely stored underground.

280 Earth’s approach is unique in a few ways. To begin with, the company is using a “pelletized” sorbent — CEO John Pimental described it to me as a “half a piece of uncooked rice,” or the innards of a bean bag chair. The tiny pellets of sorbent flow through the system almost like water, resulting in some operational efficiency gains.

For the second step, the company plans to use waste heat from other industrial facilities like data centers to remove the captured carbon from the sorbent. Many data centers circulate cold water through their facilities for cooling, then send the hot water to a cooling tower where the heat is released into the atmosphere. 280 Earth can instead take that hot water and run it through a heat exchanger, sending the now-cooled water back to the data center. “It means their cooling tower needs to work less hard, it has less load on it,” said Pimental. “So it's an additional revenue source for our company to provide those cooling services to a neighbor.”

This waste heat can meet up to 80% of 280 Earth’s operational needs, reducing the amount of electricity the company buys. It’s also a win-win for the data center — 280 Earth’s process pulls water from the air in addition to carbon, and can supply that water to the data center, which in turn doesn’t have to rely as much on natural sources.

Direct air capture technology is often called “speculative” and “unproven.” But with an increasing number of deployments in the real world, it’s worth being more specific. These machines have proven to be able to separate carbon out of the air. The question is whether they can do so permanently, economically, and at a scale that will actually make a difference for climate change.

Although more plants are coming online every year, those questions are unlikely to be answered anytime soon. For example, it will be impossible to judge the efficiency claims made by 280 Earth or any other company until there is more public data — or any public data — about the energy these plants consume or what they cost to operate. Even the companies that are farthest along, like Climeworks, which has been operating a 4,000 metric ton per year commercial plant in Iceland since 2021 and just opened a 36,000-ton plant earlier this month, say that they are still testing the technology and therefore are not ready to share any stats that could be misinterpreted.

The potential to scale could also have less to do with the details of any one company’s technology and more to do with the ability to procure clean energy or to find somewhere to store the captured carbon.

Though 280 Earth is officially collecting CO2, the company doesn’t yet have anywhere to put it. Pimental told me the company plans to transport the gas by truck or rail to a carbon dioxide storage well, but it has not yet signed any agreements with well operators, and it’s unclear how long that could take. There are currently only a few operating carbon storage wells in the country, located in Illinois and North Dakota. But additional wells have been permitted in California, Indiana, and Wyoming, and many more are under review by the Environmental Protection Agency. Rather than sequester the carbon underground, the company could also sell it for industrial uses. Heirloom, for example, has an agreement with a company called CarbonCure to take the CO2 it captures and store it in concrete.

Regardless, 280 Earth company is aiming to scale up quickly and plans to build a new unit that can capture 5,000 tons of CO2 per year by 2025. Pimental told me that equipment procurement and permitting for that project are already underway. 280 Earth has not been awarded any government funding to date, but the company plans to compete to be one of the Department of Energy’s next direct air capture “hubs.”

Pimental told me he likes his odds. “I think we'll be in a very strong position because not many people have a 500 ton commercial demonstration facility up and running.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Sustainability

Window Heat Pumps Could Change the Game

A new report from the American Council for an Energy-Efficient Economy has some exciting data for anyone attempting to retrofit a multifamily building.

A Midea heat pump.
Heatmap Illustration/Midea, Getty Images

By now there’s plenty of evidence showing why heat pumps are such a promising solution for getting buildings off fossil fuels. But most of that research has focused on single-family homes. Larger apartment buildings with steam or hot water heating systems — i.e. most of the apartment buildings in the Northeast — are more difficult and expensive to retrofit.

A new report from the nonprofit American Council for an Energy-Efficient Economy, however, assesses a handful of new technologies designed to make that transition easier and finds they have the potential to significantly lower the cost of decarbonizing large buildings.

Keep reading...Show less
Yellow
Climate

AM Briefing: Noem Defends FEMA’s Response to Texas Floods

On FEMA’s response in Texas, climate diplomacy, and the Grand Canyon fire

Noem Defends FEMA’s Response to Texas Floods
Heatmap Illustration/Getty Images

Current conditions: Two people are missing after torrential rains in CataloniaThe daily high will be over 115 degrees Fahrenheit every day this week in Baghdad, IraqThe search for victims of the Texas floods is paused due to a new round of rains and flooding in the Hill Country.

THE TOP FIVE

1. Trump admin pushes back on reports of FEMA’s slow response to Texas floods

Homeland Security Secretary Kristi Noem defended the Federal Emergency Management Agency after The New York Times reported it failed to answer nearly two-thirds of the calls placed to its disaster assistance line by victims of the Central Texas floods. Speaking on NBC’s Meet the Press on Sunday, Noem repudiated reports by the Times and Reuters that her requirement that she personally approve expenses over $100,000, as well as the deployment of other critical resources, created bottlenecks during the crucial hours after the floodwaters receded. “Those claims are absolutely false,” she said.

Keep reading...Show less
Yellow
Energy

The Pentagon’s Rare Earths Deal Is Making Former Biden Officials Jealous

The multi-faceted investment is defense-oriented, but could also support domestic clean energy.

A rare earths mine.
Heatmap Illustration/MP Materials, Getty Images

MP Materials is the national champion of American rare earths, and now the federal government is taking a stake.

The complex deal, announced Thursday, involves the federal government acting as a guaranteed purchaser of MP Materials’ output, a lender, and also an investor in the company. In addition, the Department of Defense agreed to a price floor for neodymium-praseodymium products of $110 per kilogram, about $50 above its current spot price.

Keep reading...Show less
Blue