You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Department of Energy is advancing 24 companies in its purchase prize contest. What these companies are getting is more important than $50,000.

The Department of Energy is advancing its first-of-a-kind program to stimulate demand for carbon removal by becoming a major buyer. On Tuesday, the agency awarded $50,000 to each of 24 semifinalist companies competing to suck carbon dioxide out of the atmosphere on behalf of the U.S. government. It will eventually spend $30 million to buy carbon removal credits from up to 10 winners.
The nascent carbon removal industry is desperate for customers. At a conference held in New York City last week called Carbon Unbound, startup CEOs brainstormed how to convince more companies to buy carbon removal as part of their sustainability strategies. On the sidelines, attendees lamented to me that there were hardly even any potential buyers at the conference — what a missed opportunity.
Conference panelists asserted that the industry needed to rebuild trust. Purchasing carbon credits has become a risky strategy for companies. In one investigation after another, journalists and researchers have shown that many of the projects behind these credits fail to produce the climate benefits they advertise. There’s a class action lawsuit against Delta Air Lines for marketing itself as “carbon neutral” after purchasing such questionable carbon offsets.
Carbon removal credits are technically different from the offsets that companies bought in the past, which were based on projects that reduce emissions to the atmosphere rather than remove carbon that’s already heating the planet. But there’s still a risk of sham projects. And because the field is relatively new, there’s not yet a set of widely agreed-upon standards to measure and verify how much carbon is being removed.
The Department of Energy hopes that by selecting 24 companies that have been vetted by government scientists, it’s sending a signal to the private sector that there are at least some projects that are legitimate. “We can’t wait to invest in CDR until those standards have been codified,” Noah Deich, the agency’s deputy assistant secretary of carbon management, told me. “We need to invest now so that we actually get the data that we can use to inform the standards, and then over time codify those standards and strengthen and improve them.”
The semifinalists represent a wide range of carbon removal methods. Nine of the companies are building machines that capture carbon dioxide directly from the air. Seven take advantage of the natural ability of plants and algae to suck up carbon, and have developed systems to sequester that carbon for far longer than would otherwise occur. Five employ rocks that naturally absorb carbon and have figured out how to speed up the process. The last three capture carbon from the ocean, enabling the world’s biggest carbon sink to draw down more from the atmosphere.
To proceed to the final round, all of these companies will have to draw up contracts that say how quickly they will be able to remove the promised tons of carbon, and who they will work with to measure and verify the process.
The Biden administration is spending billions on research, development, and deployment of carbon removal. Some of the semifinalists, like Climeworks, Heirloom Carbon, and 1PointFive, were already selected for grants from the DOE to build the U.S.’s first “direct air capture hubs” — projects capable of removing one million tons of carbon from the air per year. But those hubs will fail if the companies don’t ultimately find buyers for their carbon removal. “Every single CDR project that we’re seeing today requires some sort of voluntary credit sale to be profitable,” said Deich.
The Department of Energy’s $30 million budget to buy carbon removal is relatively small. The semifinalists said they could deliver a wide range of credits with their share of the funds, from 3,000 over a three-year period, to more than 30,000. In any case, DOE is unlikely to afford much more than 100,000 tons of carbon taken out of the atmosphere, equivalent to about 0.002% of the CO2 the United States emitted in 2022. When distributed among 10 companies, it’s certainly not enough to finance a project. But Deich told me he sees this contest as a public-private partnership. The agency is challenging the semifinalists to leverage the DOE’s recognition to try and sell as many credits as they can. It’s one of the criteria they’ll be judged on for the final phase of the contest.
Several semifinalists I spoke with were optimistic the DOE’s backing would help. “One of the things that the private sector is wrestling with is the technical underwriting of various carbon dioxide removal technologies,” Barclay Rogers, the CEO of the carbon removal company Graphyte, told me. Graphyte’s process almost sounds too simple to work. The company takes discarded plant matter from forests and fields, dries it out so that it doesn’t decompose, compresses it into bricks, and then buries them. Graphyte has already built a small processing facility in Arkansas and secured a burial site that could store an estimated 1.5 million tons of CO2. Rogers was excited to have DOE’s backing as “a broad signal to the market of the viability of Graphyte’s carbon casting process.”
Others were grateful that the government was branching out to new technologies. To date, most of the DOE’s carbon removal programs have supported direct air capture. Companies working on other approaches have been shut out of funding opportunities, and some worry that this has contributed to a perception among buyers that direct air capture is the only valid method. “We think this is a huge step forward, since it’s really the first time not only that the U.S. government is going to become a purchaser of carbon removal, but also funding a full range of carbon removal solutions,” Nora Cohen Brown, head of market development and policy at Charm Industrial, told me. (Charm also buries plant waste underground, but in the form of oil.) “We really think that biomass CDR has immense potential,” she said. “It’s a big deal to have DOE’s blessing for that pathway.”
Edward Sanders, the chief operating officer of a startup called Equatic, told me that being a semifinalist meant the company would be able to build a plant in the U.S. much sooner than it initially planned. Equatic has developed technology to remove carbon from seawater, enabling the ocean to take up more carbon. It’s currently building its first large-scale plant in Singapore. “This tells prospective future buyers that there is a role to play in the near term in the U.S. for a marine-based pathway.”
Many of the companies on the list, including the three I just mentioned, have already been relatively successful in selling credits. Graphyte sold 10,000 to American Airlines. Equatic has a 62,000 deal with Boeing. Charm will remove more than 100,000 tons for Frontier Climate, a group of buyers that includes Stripe, Alphabet, Shopify, and Meta. But even though a handful of tech companies and airlines are buying carbon removal, these sweeping gestures are not enough to sustain the industry, let alone grow it to the scale that scientists say will be necessary to halt climate change.
DOE’s purchase may help increase confidence in some of these companies and approaches, but it may not do much to solve another problem: There’s little incentive for anyone to pay for carbon removal today, and it’s much more expensive than other options companies have to reduce their emissions. Credits can cost between several hundred to more than a thousand dollars each.
Deich said the agency was trying to set an example for other buyers. Instead of creating a net-zero target and searching for the cheapest credits to accomplish its goal, it’s prioritizing quality and only buying what it can afford. “We need to pay what it costs,” he said, “and then developers can develop projects and figure out how to do it cheaper so that over time, it starts to come down the cost curve significantly, and we can buy larger and larger quantities.”
But this is only the near term plan to help the industry mature. Ultimately, Deich doesn’t think that the voluntary trade of credits will be enough to support the levels of carbon removal that will make a difference in climate change. He sees this purchase prize program as a way to start building the government’s capacity to play a larger role. “There’s going to need to be some sort of mandate or public procurement that happens for the field to really scale beyond 2030,” he said.
Avnos, Inc. — direct air capture — 3,000 credits
Carbon America — direct Air Capture — 3,400 credits
CarbonCapture, Inc. — direct air capture — 3,333 credits
Climeworks — direct air capture — 3,500 credits
Global Thermostat and Fervo Energy — direct air capture — 3,500 credits
Heirloom — direct air capture — 3,030 credits
1PointFive — direct air capture — 3,861 credits
280 Earth — direct air capture — 3,000 credits
8 Rivers — direct air capture — 7,200 credits
Arbor Energy — biomass with carbon removal and storage — 8,000 credits
Carbon Lockdown — biomass with carbon removal and storage — 17,143 credits
Charm Industrial — biomass with carbon removal and storage — 5,000 credits
Clean Energy Systems — biomass with carbon removal and storage — 11,320 credits
Climate Robotics — biochar — 30,252 credits
Graphyte — biomass with carbon removal and storage — 30,000 credits
Vaulted Deep — biomass with carbon removal and storage — 10,320 credits
Alkali Earth — enhanced rock weathering and mineralization — 8,108 credits
CREW Carbon — enhanced rock weathering and mineralization — 7,500 credits
Eion — enhanced rock weathering and mineralization — 9,900 credits
Lithos Carbon — enhanced rock weathering and mineralization — 8,109 credits
Mati Carbon — enhanced rock weathering and mineralization — 4,561 credits
Ebb Carbon — marine-based carbon removal — 3,000 credits
Equatic — marine-based carbon removal — 6,521 credits
Vycarb Inc. — marine-based carbon removal — 3,000 credits
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The most popular scope 3 models assume an entirely American supply chain. That doesn’t square with reality.
“You can’t manage what you don’t measure,” the adage goes. But despite valiant efforts by companies to measure their supply chain emissions, the majority are missing a big part of the picture.
Widely used models for estimating supply chain emissions simplify the process by assuming that companies source all of their goods from a single country or region. This is obviously not how the world works, and manufacturing in the United States is often cleaner than in countries with coal-heavy grids, like China, where many of the world’s manufactured goods actually come from. A study published in the journal Nature Communications this week found that companies using a U.S.-centric model may be undercounting their emissions by as much as 10%.
“We find very large differences in not only the magnitude of the upstream carbon footprint for a given business, but the hot spots, like where there are more or less emissions happening, and thus where a company would want to gather better data and focus on reducing,” said Steven Davis, a professor of Earth system science in the Stanford Doerr School of Sustainability and lead author of the paper.
Several of the authors of the paper, including Davis, are affiliated with the software startup Watershed, which helps companies measure and reduce their emissions. Watershed already encourages its clients to use its own proprietary multi-region model, but the company is now working with Stanford and the consulting firm ERG to build a new and improved tool called Cornerstone that will be freely available for anyone to use.
“Our hope is that with the release of scientific papers like this one and with the launch of Cornerstone, we can help the ecosystem transition to higher quality open access datasets,” Yohanna Maldonado, Watershed’s Head of Climate Data told me in an email.
The study arrives as the Greenhouse Gas Protocol, a nonprofit that publishes carbon accounting standards that most companies voluntarily abide by, is in the process of revising its guidance for calculating “scope 3” emissions. Scope 3 encompasses the carbon that a company is indirectly responsible for, such as from its supply chain and from the use of its products by customers. Watershed is advocating that the new standard recommend companies use a multi-region modeling approach, whether Watershed’s or someone else’s.
Davis walked me through a hypothetical example to illustrate how these models work in practice. Imagine a company that manufactures exercise bikes — it assembles the final product in a factory in the U.S., but sources screws and other components from China. The typical way this company would estimate the carbon footprint of its supply chain would be to use a dataset published by the U.S. Environmental Protection Agency that estimates the average emissions per dollar of output for about 400 sectors of the U.S. economy. The EPA data doesn’t get down to the level of detail of a specific screw, but it does provide an estimate of emissions per dollar of output for, say, hardware manufacturing. The company would then multiply the amount of money it spent on screws by that emissions factor.
Companies take this approach because real measurements of supply chain emissions are rare. It’s not yet common practice for suppliers to provide this information, and supply chains are so complex that a product might pass through several different hands before reaching the company trying to do the calculation. There are emerging efforts to use remote sensing and other digital data collection and monitoring systems to create more accurate, granular datasets, Alexia Kelly, a veteran corporate sustainability executive and current director at the High Tide Foundation, told me. In the meantime, even though sector-level emissions estimates are rough approximations, they can at least give a company an indication of which parts of their supply chain are most problematic.
When those estimates don’t take into account country of origin, however, they don’t give companies an accurate picture of which parts of their supply chains need the most attention.
The new study used Watershed’s multi-region model to look at how different types of companies’ emissions would change if they used supply chain data that better reflected the global nature of supply chains. Davis is the first to admit that the study’s findings of higher emissions are not surprising. The carbon accounting field has long been aware of the shortcomings of single-region models. There hasn’t been a big push to change that, however, because the exercise is already voluntary and taking into account global supply chains is significantly more difficult. Many countries don’t publish emissions and economic data, and those that do use a variety of methods to report it. Reconciling those differences adds to the challenge.
While the overall conclusion isn’t surprising, the study may be the first to show the magnitude of the problem and illustrate how more accurate modeling could redirect corporate sustainability efforts. “As far as I know, there is no similar analysis like this focused on corporate value chain emissions,” Derik Broekhoff, a senior scientist at the Stockholm Environment Institute, told me in an email. “The research is an important reminder for companies (and standard setters like the Greenhouse Gas Protocol), who in practice appear to be overlooking foreign supply chain emissions in large numbers.”
Broekhoff said Watershed’s upcoming open-source model “could provide a really useful solution.” At the same time, he said, it’s worth noting that this whole approach of calculating emissions based on dollars spent is subject to significant uncertainty. “Using spending data to estimate supply chain emissions provides only a first-order approximation at best!”
The decision marks the Trump administration’s second offshore wind defeat this week.
A federal court has lifted Trump’s stop work order on the Empire Wind offshore wind project, the second defeat in court this week for the president as he struggles to stall turbines off the East Coast.
In a brief order read in court Thursday morning, District Judge Carl Nichols — a Trump appointee — sided with Equinor, the Norwegian energy developer building Empire Wind off the coast of New York, granting its request to lift a stop work order issued by the Interior Department just before Christmas.
Interior had cited classified national security concerns to justify a work stoppage. Now, for the second time this week, a court has ruled the risks alleged by the Trump administration are insufficient to halt an already-permitted project midway through construction.
Anti-offshore wind activists are imploring the Trump administration to appeal this week’s injunctions on the stop work orders. “We are urging Secretary Burgum and the Department of Interior to immediately appeal this week’s adverse federal district court rulings and seek an order halting all work pending appellate review,” Robin Shaffer, president of Protect Our Coast New Jersey, said in a statement texted to me after the ruling came down.
Any additional delays may be fatal for some of the offshore wind projects affected by Trump’s stop work orders, irrespective of the rulings in an appeal. Both Equinor and Orsted, developer of the Revolution Wind project, argued for their preliminary injunctions because even days of delay would potentially jeopardize access to vessels necessary for construction. Equinor even told the court that if the stop work order wasn’t lifted by Friday — that is, January 16 — it would cancel Empire Wind. Though Equinor won today, it is nowhere near out of the woods.
More court action is coming: Dominion will present arguments on Friday in federal court against the stop work order halting construction of its Coastal Virginia offshore wind project.
On Heatmap's annual survey, Trump’s wind ‘spillover,’ and Microsoft’s soil deal
Current conditions: A polar vortex is sweeping frigid air back into the Northeast and bringing up to 6 inches of snow to northern parts of New England • Temperatures in the Southeast are set to plunge 25 degrees Fahrenheit below last week’s averages, with highs below freezing in Atlanta • Temperatures in the Nigerian capital of Abuja, meanwhile, are nearing 100 degrees.

To comically understate the obvious, it’s been a big year for climate. So Heatmap called up 55 of the most discerning and disputatious experts — scientists, researchers, innovators, and reformers; some of whom led the Biden administration’s policy efforts, some of whom are harsh or heterodox critics of mainstream environmentalism. We asked them to take stock of everything going on now, from the Trump administration’s shifting policy landscape to China’s evolving place in the world.
The results of that inquiry are now out. You can check out everything on this homepage.
Or see:
Wyoming is inching closer to building what could be the United States’ largest data center after commissioners in Laramie County last week unanimously approved construction of a complex designed to scale from an initial 1.8 gigawatts to 10 gigawatts. The facility, called Project Jade, is set to be built by the data center giant Crusoe, with the neighboring gas turbines to power the plant provided by BFC Power and Cheyenne Power Hub. Crusoe’s chief real estate officer, Matt Field, told commissioners last week that the first phase would “leverage natural gas with a potential pathway for CO2 sequestration in the future” by tapping into developer Tallgrass Energy Partners’ existing carbon well hub, Inside Climate News wrote Wednesday.
While the potential for renewables is under discussion, a separate state hearing last week highlighted mounting opposition to the most prolific source of clean power in the state: Wind energy. Nearly two dozen residents from central and southeast Wyoming lambasted a growing “wall” of wind turbines in what Wyofile described as “emotional pleas.” One Cheyenne resident named Wendy Volk said: “This is no longer a series of isolated projects. It is a continuous, or near continuous, industrial corridor stretching across multiple counties and landscapes.”

Global wind executives are warning of “negative spillover” effects on investor sentiment from the Trump administration’s suspended leases on all large U.S. offshore wind projects. In an interview with the Financial Times, Vestas CEO Henrik Andersen, who also serves as the president of the industry group WindEurope, called 2025 a “rollercaster” year. “When you have a 20- to 30-year investment program, the only way you can cover yourself for risk is to ask for a higher return,” he said. “When you get impairments in an industry, everyone would start saying, ‘could that hit us as well?’”
The British government seems willing to reduce that risk. On Wednesday, the United Kingdom handed out record subsidy contracts for offshore wind projects. At the same time, however, oil giant BP wrote down the value of its low-carbon business — which includes wind, solar, and hydrogen — by upward of $5 billion, according to The Wall Street Journal.
Sign up to receive Heatmap AM in your inbox every morning:
Microsoft on Thursday announced one of the largest soil-based deals to remove carbon from the atmosphere. Under a 12-year agreement, the tech giant will purchase 2.85 million credits from the startup Indigo Carbon PBC, which sequesters carbon dioxide in soil through regenerative agricultural practices. It’s the third deal between Indigo and Microsoft, building on 40,000 metric tons in 2024 and 60,000 last year. “Microsoft is pleased by Indigo’s approach to regenerative agriculture that delivers measurable results through verified credits and payments to growers, while advancing soil carbon science with advanced modeling and academic partnerships,” Phillip Goodman, Microsoft’s director of carbon removal, said in a statement. Microsoft, as my colleague Emily Pontecorvo wrote recently, has “dominated” carbon removal over the past year, increasing its purchases more than fivefold in 2025 compared to 2024.
Despite major progress on clean energy, especially with solar and batteries, a new report by McKinsey & Company found big gaps between current deployments and 2030 goals. The analysis, the first from the megaconsultancy to include China and nuclear power, highlighted “notable discrepancies between announced projects and those with committed funding,” and warned that less than “15% of low-emissions technologies required to meet Paris-aligned goals have been deployed.” In a statement, Diego Hernandez Diaz, McKinsey partner and co-author of the report, said the “progress landscape is nuanced by region and technology and while achieving energy transition commitments remain paramount for countries and companies alike, recent announcements indicate that shifting priorities and slowing momentum have led to project pauses and cancellations across technologies.”
The findings come as emissions are rising. As I wrote in yesterday’s newsletter, the latest Rhodium Group estimate of U.S. emissions notched a reversal of the last two years of declines. In a new Carbon Brief analysis, climate scientist Zeke Hausfather found that 2025 was in the top-three warmest years on record with average surface temperatures reaching 1.44 Celsius above pre-industrial averages across eight independent datasets.
China just installed the most powerful turbine ever built offshore. The 20-megawatt turbine off the coast of Fujian Province set a record for both capacity and rotor diameter, 300 meters from its 147-meter blades. “Compared with offshore wind farms with 16-megawatt units, 20-megawatt units can help wind farms reduce the number of units by 25%, save sea area, dilute development costs, and open up economic blockages for the large-scale development of deep-sea wind power,” the manufacturer, Goldwind, said in a statement.