You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Department of Energy is advancing 24 companies in its purchase prize contest. What these companies are getting is more important than $50,000.
The Department of Energy is advancing its first-of-a-kind program to stimulate demand for carbon removal by becoming a major buyer. On Tuesday, the agency awarded $50,000 to each of 24 semifinalist companies competing to suck carbon dioxide out of the atmosphere on behalf of the U.S. government. It will eventually spend $30 million to buy carbon removal credits from up to 10 winners.
The nascent carbon removal industry is desperate for customers. At a conference held in New York City last week called Carbon Unbound, startup CEOs brainstormed how to convince more companies to buy carbon removal as part of their sustainability strategies. On the sidelines, attendees lamented to me that there were hardly even any potential buyers at the conference — what a missed opportunity.
Conference panelists asserted that the industry needed to rebuild trust. Purchasing carbon credits has become a risky strategy for companies. In one investigation after another, journalists and researchers have shown that many of the projects behind these credits fail to produce the climate benefits they advertise. There’s a class action lawsuit against Delta Air Lines for marketing itself as “carbon neutral” after purchasing such questionable carbon offsets.
Carbon removal credits are technically different from the offsets that companies bought in the past, which were based on projects that reduce emissions to the atmosphere rather than remove carbon that’s already heating the planet. But there’s still a risk of sham projects. And because the field is relatively new, there’s not yet a set of widely agreed-upon standards to measure and verify how much carbon is being removed.
The Department of Energy hopes that by selecting 24 companies that have been vetted by government scientists, it’s sending a signal to the private sector that there are at least some projects that are legitimate. “We can’t wait to invest in CDR until those standards have been codified,” Noah Deich, the agency’s deputy assistant secretary of carbon management, told me. “We need to invest now so that we actually get the data that we can use to inform the standards, and then over time codify those standards and strengthen and improve them.”
The semifinalists represent a wide range of carbon removal methods. Nine of the companies are building machines that capture carbon dioxide directly from the air. Seven take advantage of the natural ability of plants and algae to suck up carbon, and have developed systems to sequester that carbon for far longer than would otherwise occur. Five employ rocks that naturally absorb carbon and have figured out how to speed up the process. The last three capture carbon from the ocean, enabling the world’s biggest carbon sink to draw down more from the atmosphere.
To proceed to the final round, all of these companies will have to draw up contracts that say how quickly they will be able to remove the promised tons of carbon, and who they will work with to measure and verify the process.
The Biden administration is spending billions on research, development, and deployment of carbon removal. Some of the semifinalists, like Climeworks, Heirloom Carbon, and 1PointFive, were already selected for grants from the DOE to build the U.S.’s first “direct air capture hubs” — projects capable of removing one million tons of carbon from the air per year. But those hubs will fail if the companies don’t ultimately find buyers for their carbon removal. “Every single CDR project that we’re seeing today requires some sort of voluntary credit sale to be profitable,” said Deich.
The Department of Energy’s $30 million budget to buy carbon removal is relatively small. The semifinalists said they could deliver a wide range of credits with their share of the funds, from 3,000 over a three-year period, to more than 30,000. In any case, DOE is unlikely to afford much more than 100,000 tons of carbon taken out of the atmosphere, equivalent to about 0.002% of the CO2 the United States emitted in 2022. When distributed among 10 companies, it’s certainly not enough to finance a project. But Deich told me he sees this contest as a public-private partnership. The agency is challenging the semifinalists to leverage the DOE’s recognition to try and sell as many credits as they can. It’s one of the criteria they’ll be judged on for the final phase of the contest.
Several semifinalists I spoke with were optimistic the DOE’s backing would help. “One of the things that the private sector is wrestling with is the technical underwriting of various carbon dioxide removal technologies,” Barclay Rogers, the CEO of the carbon removal company Graphyte, told me. Graphyte’s process almost sounds too simple to work. The company takes discarded plant matter from forests and fields, dries it out so that it doesn’t decompose, compresses it into bricks, and then buries them. Graphyte has already built a small processing facility in Arkansas and secured a burial site that could store an estimated 1.5 million tons of CO2. Rogers was excited to have DOE’s backing as “a broad signal to the market of the viability of Graphyte’s carbon casting process.”
Others were grateful that the government was branching out to new technologies. To date, most of the DOE’s carbon removal programs have supported direct air capture. Companies working on other approaches have been shut out of funding opportunities, and some worry that this has contributed to a perception among buyers that direct air capture is the only valid method. “We think this is a huge step forward, since it’s really the first time not only that the U.S. government is going to become a purchaser of carbon removal, but also funding a full range of carbon removal solutions,” Nora Cohen Brown, head of market development and policy at Charm Industrial, told me. (Charm also buries plant waste underground, but in the form of oil.) “We really think that biomass CDR has immense potential,” she said. “It’s a big deal to have DOE’s blessing for that pathway.”
Edward Sanders, the chief operating officer of a startup called Equatic, told me that being a semifinalist meant the company would be able to build a plant in the U.S. much sooner than it initially planned. Equatic has developed technology to remove carbon from seawater, enabling the ocean to take up more carbon. It’s currently building its first large-scale plant in Singapore. “This tells prospective future buyers that there is a role to play in the near term in the U.S. for a marine-based pathway.”
Many of the companies on the list, including the three I just mentioned, have already been relatively successful in selling credits. Graphyte sold 10,000 to American Airlines. Equatic has a 62,000 deal with Boeing. Charm will remove more than 100,000 tons for Frontier Climate, a group of buyers that includes Stripe, Alphabet, Shopify, and Meta. But even though a handful of tech companies and airlines are buying carbon removal, these sweeping gestures are not enough to sustain the industry, let alone grow it to the scale that scientists say will be necessary to halt climate change.
DOE’s purchase may help increase confidence in some of these companies and approaches, but it may not do much to solve another problem: There’s little incentive for anyone to pay for carbon removal today, and it’s much more expensive than other options companies have to reduce their emissions. Credits can cost between several hundred to more than a thousand dollars each.
Deich said the agency was trying to set an example for other buyers. Instead of creating a net-zero target and searching for the cheapest credits to accomplish its goal, it’s prioritizing quality and only buying what it can afford. “We need to pay what it costs,” he said, “and then developers can develop projects and figure out how to do it cheaper so that over time, it starts to come down the cost curve significantly, and we can buy larger and larger quantities.”
But this is only the near term plan to help the industry mature. Ultimately, Deich doesn’t think that the voluntary trade of credits will be enough to support the levels of carbon removal that will make a difference in climate change. He sees this purchase prize program as a way to start building the government’s capacity to play a larger role. “There’s going to need to be some sort of mandate or public procurement that happens for the field to really scale beyond 2030,” he said.
Avnos, Inc. — direct air capture — 3,000 credits
Carbon America — direct Air Capture — 3,400 credits
CarbonCapture, Inc. — direct air capture — 3,333 credits
Climeworks — direct air capture — 3,500 credits
Global Thermostat and Fervo Energy — direct air capture — 3,500 credits
Heirloom — direct air capture — 3,030 credits
1PointFive — direct air capture — 3,861 credits
280 Earth — direct air capture — 3,000 credits
8 Rivers — direct air capture — 7,200 credits
Arbor Energy — biomass with carbon removal and storage — 8,000 credits
Carbon Lockdown — biomass with carbon removal and storage — 17,143 credits
Charm Industrial — biomass with carbon removal and storage — 5,000 credits
Clean Energy Systems — biomass with carbon removal and storage — 11,320 credits
Climate Robotics — biochar — 30,252 credits
Graphyte — biomass with carbon removal and storage — 30,000 credits
Vaulted Deep — biomass with carbon removal and storage — 10,320 credits
Alkali Earth — enhanced rock weathering and mineralization — 8,108 credits
CREW Carbon — enhanced rock weathering and mineralization — 7,500 credits
Eion — enhanced rock weathering and mineralization — 9,900 credits
Lithos Carbon — enhanced rock weathering and mineralization — 8,109 credits
Mati Carbon — enhanced rock weathering and mineralization — 4,561 credits
Ebb Carbon — marine-based carbon removal — 3,000 credits
Equatic — marine-based carbon removal — 6,521 credits
Vycarb Inc. — marine-based carbon removal — 3,000 credits
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Whichever way you cut it, this has been an absolute banner year for nuclear deals in the U.S. It doesn’t much matter the metric — the amount of venture funding flowing to nuclear startups, the number of announcements regarding planned reactor restarts and upgrades, gigawatts of new construction added to the pipeline — it’s basically all peaking. Stock prices are up across all major publicly traded nuclear companies this year, in some cases by over 100%.
“This year is by far the biggest year in terms of nuclear deals that has occurred, probably, since the 70s,” Adam Stein, the director of nuclear innovation at The Breakthrough Institute, told me. “It’s spanning the gamut from bringing a 40-year-old reactor back to things that have not even been proven scientifically yet.”
To name just a few announcements from this year: planning for a 4.4-gigawatt nuclear power complex is now underway in Texas; South Carolina’s state-owned utility is seeking buyers to restart construction on two partially built AP1000 reactors; New York governor Kathy Hochul is looking to build a new reactor in upstate New York; The Tennessee Valley Authority submitted a construction permit for a small modular reactor; Google signed a power purchase agreement with Commonwealth Fusion Systems; and another fusion company, Helion Energy, raised a whopping $425 million round of venture capital. On top of all that there’s the Palisades nuclear power plant in Michigan, which is targeted to restart by year’s end, bringing 800 megawatts of new nuclear power online.
Heading into the second Trump term, there were plenty of indications that the administration would support this technology with increasingly bipartisan appeal. So it wasn’t exactly a surprise that while the One Big Beautiful Bill eviscerated tax credits for solar and wind, it preserved them for both existing and new nuclear facilities. Now that this support is assured, Stein expects the nuclear announcements to keep rolling in. “We might have seen more deals earlier this year if there wasn’t uncertainty about what was going to happen with tax credits. But now that that’s resolved, I expect to hear more later this year,” he told me.
How much of this is, I asked him, is due to data centers and their seemingly insatiable demand for clean, firm power? “Most of it,” he said simply. By way of example, he pointed out how data center load growth has changed the outlooks for two small modular reactor companies in particular. “NuScale has been trying to find their first project for a long time now, after they had to cancel their [Utah Associated Municipal Power Systems] project. Kairos didn’t have a clear buyer for its first-of-a-kind, even though it was building two test reactors,” Stein explained. “Then all of a sudden, they all had additional deals in the works because of data center demand.”
Last year, Kairos inked a 500-megawatt deal with Google to meet the hyperscaler’s growing data center needs, while this year, Texas A&M selected the company — along with three others — to build a reactor at the university’s research and development campus. And while NuScale infamously canceled its first project in 2023 due to rising costs, this year it received approval from the Nuclear Regulatory Commission for a new and improved reactor design. Now the company’s CEO, John Hopkins, told Reuters that NuScale is in talks to deploy its tech with five unnamed “tier one hyperscalers.” Its stock is up more than 150% on the year.
That’s a big turnaround for a company that, less than two years ago, was widely considered a cautionary tale — and it’s not the only one in the industry with this type of comeback story. Right before NuScale’s project failed, another nuclear company, X-energy, announced that it would no longer go public due to “challenging market conditions” and “peer company trading performance.” But while X-energy still has yet to IPO, it appears to be doing just fine. In February, the company announced the close of a $700 million Series C follow-on round, coming on the heels of Amazon’s strategic investment last year.
“I think every company has their stories about how things are changing,” Seth Grae, CEO of the advanced nuclear fuel company Lightbridge, told me. Things have moved a lot faster, Grae said, since Trump released a series of executive orders aimed at accelerating nuclear energy deployment. “Just since May, we’ve received this highly enriched uranium [from the Department of Energy], made these fuel samples, got them qualified already at Idaho National Lab. We expect they’ll be in the reactor this year. Grae told me. “Things didn’t used to happen that fast in nuclear.”
Trump’s plans to fast track nuclear development have also raised serious concerns, however, as critics worry that acceleration could lead to laxer safety standards The executive orders call for, among other things, cutting staff at the Nuclear Regulatory Commission, just as the industry enters a period of intense activity. In June, the President fired one of the agency’s commissioners, Christopher Hanson, without cause. Another commissioner, Annie Caputo, resigned in July.
But right now, the nuclear industry is mostly basking in optimism. Grae credits the government’s strong support for the surge in nuclear stocks — Lightbridge’s own stock price has jumped 180% this year, while another nuclear fuel company, Centrus Energy, is up even more. The small modular reactor company Oklo is up 285% for the year, on the heels of last year’s 12-gigawatt non-binding deal with the data center company Switch — one of the largest corporate clean power agreements to date.
Last year’s slew of deals involving Oklo, X-energy, and Kairos show that the sector’s momentum had been building well before Trump took office. By 2023, the writing was already on the wall in terms of data center load growth, as grid planners began to predict a sharp rise in electricity demand after over a decade of stagnation. But when I asked Erik Funkhauser of the Good Energy Collective whether the prior two years compared with this one, he concurred with Stein. “Nope,” he told me. “We’re seeing capital infusion at a really, really high pace, as high of a pace as the company’s suppliers can keep up with on projects.”
Still, the party may not go on forever. “I see a potential for a Valley of Death,” Stein told me, similar to what many startups go through when they’re trying to raise later-stage funding rounds.
“If things don’t start to actually move forward with real progress, either getting licenses or building prototypes on time, then all of that investment will be pulled back.” That’s what the U.S. saw during the last so-called “nuclear renaissance” in the late 2000s, he explained, when a rash of large reactors were proposed with only two actually reaching completion.
These were the notorious Vogtle reactors 3 and 4 in Georgia, which finally came online in 2023 and 2024 respectively, running billions over budget and years behind schedule. In order for this latest round of nuclear enthusiasm to avoid the same fate, Stein told me it’s critical that leading projects demonstrate enough early success to maintain developer confidence in the economic and technical viability of new — and old — nuclear technologies.
That being said, the sector will inevitably contract. “Back when we saw this last scale-up, there were three designs that were really competing for attention, and now there are 75. So we’re going to see a lot of failures,” Stein said. The question for venture investors, he told me, is “how many failures of startups that you didn’t invest in are you willing to tolerate before you start to think the whole segment has trouble?”
The second main way this could all fall to pieces, he told me, is if “somebody tries to move too fast,” and that recklessness leads to “either a bankruptcy or an accident or something like that that will send ripples or shock waves through the whole sector.”
Indeed, a metaphorical or literal meltdown in the sector could put a quick halt to this year’s frenzied momentum. But within the next few years, as these announced projects begin to line up their licenses and come online — or fall apart— we’ll soon see whether this latest nuclear revival is a true turning point or just another bubble.
On the Senate’s climate whip, green cement deals, and a U.S. uranium revival.
Current conditions: Flash flooding strikes the Southeastern U.S. • Monsoon rains unleash landslides in southern China • A heat dome is bringing temperatures of up to 107 degrees Fahrenheit to France, Italy, and the Balkans.
An August 5 chart showing last month's record electricity demand peaks.EIA
The United States’ demand for electricity broke records twice last month. Air conditioners cranking on hot days, combined with surging demand from data centers, pushed the peak in the Lower 48 states to a high of 758,053 megawatts on July 28, between 6 p.m. and 7 p.m. EST, data from the U.S. Energy Information Administration’s Hourly Electric Grid Monitor shows. The following day, peak demand set another record, hitting 759,180 megawatts. That’s nearly 2% above the previous record set on July 15, 2024.
The EIA predicted demand to grow by more than 2% per year between 2025 and 2026. Forecasts are even higher in areas with large data centers and factories underway, such as Texas and northern Virginia. The milestone comes as the Trump administration cracks down on solar and wind energy, two of the fastest-growing and quicker-to-build sources of new generation. On Tuesday, The New York Times reported that the Environmental Protection Agency is moving to eliminate $7 billion in spending on grants for solar energy, though when Heatmap’s Emily Pontecorvo asked the agency, it said only that, “With the passage of the One Big Beautiful Bill, EPA is working to ensure Congressional intent is fully implemented in accordance with the law.”
Senator Brian Schatz, a Democrat from Hawaii, locked down enough votes on Tuesday to replace Illinois Senator Dick Durbin as the Democrats’ whip in the chamber. Durbin, who is retiring next year, has served in the Senate Democrats’ No. 2 position since 2005. In his endorsement on Tuesday, Senate Minority Leader Chuck Schumer of New York called Schatz “a close friend and one of my most valued allies.”
Schatz crusaded for the Inflation Reduction Act and told Heatmap he supported last year’s failed bipartisan permitting reform deal, even as progressive greens campaigned against its giveaways to fossil fuels. In a Shift Key podcast interview with my colleague Robinson Meyer and his co-host, Princeton professor Jesse Jenkins, in February, Schatz pitched a big tent for climate action. “We all have to hang together. It’s the American Clean Power Association. It’s the energy company that does both clean and fossil energy. It’s the transmission and distribution companies. It’s the manufacturers. It’s labor. It’s Wall Street. It’s K Street. Everyone has to hang together and say, not only is this good for business, but there’s something that is foundationally worse for business than any individual policy decision.”
Get Heatmap AM directly in your inbox every morning:
The Trump administration may be clawing back funding for cleaning up heavy industry, but Big Tech is still inking deals. On Monday, Amazon agreed to buy low-carbon cement from the startup Brimstone. Then on Tuesday, the data center developer STACK Infrastructure announced the completion of “a pilot pour” of green cement from rival startup Sublime. The moves highlight the growing demand for cleaner industrial materials amid increased scrutiny of the energy and pollution linked to server farms.
America’s uranium enrichment went out of business in the early 2000s after the Clinton-era megatons-to-megawatts program essentially ceded the industry to cheap Russian imports made from disassembled atomic weapons. Since banning imports from Russia last year, the U.S. has been ramping up funding for nuclear fuel again, especially as the industry looks to build new types of reactors that rely on fuel other than the low-enriched uranium that virtually all the country’s operating 94 commercial reactors use. On Monday, the Department of Energy announced its first pilot project for advanced nuclear fuels, giving the startup Standard Nuclear the first federal deal. On Tuesday, the agency signed a $1.5 billion deal to restore the so-called Atomic City on the 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plan in Kentucky.
The Trump administration gave permission to the National Weather Service to hire up to 450 meteorologists, hydrologists, and radar technicians after sweeping cuts from the Department of Government Efficiency, CNN’s Andrew Freedman reported. The agency, which was partly blamed for its warnings going unheeded ahead of the deadly Texas floods last month, also received an exemption from the federal hiring freeze.
The move came the same day as a federal judge blocked the administration from diverting billions of dollars in Federal Emergency Management Agency funding for disaster resilience and flood mitigation. The injunction warned FEMA against spending the money on anything else.
Beyond Meat is finally getting beyond meat. The company plans to shed the flesh reference in its name this week as it launches its new Beyond Ground product that promises more protein than ground beef. “With this launch,” Fast Company’s Clint Rainey reported, “Beyond Meat is becoming merely Beyond and turning its focus away from only mimicking animal proteins to letting plant-based proteins speak for themselves. The radical move is cultural, agricultural, and financial.”
Rob and Jesse talk through the proposed overturning of the EPA’s “endangerment finding” on greenhouse gases with Harvard Law School’s Jody Freeman.
The Trump administration has formally declared that carbon dioxide and other greenhouse gases are not dangerous pollutants. If the president gets his way, then the Environmental Protection Agency may soon surrender any ability to regulate heat-trapping pollution from cars and trucks, power plants, and factories — in ways that a future Democratic president potentially could not reverse.
On this week’s episode of Shift Key, we discuss whether Trump’s EPA gambit will work, the arguments that the administration is using, and what it could mean for the future of U.S. climate and energy policy. We’re joined by Jody Freeman, the Archibald Cox Professor of Law at Harvard and the director of Harvard’s environmental and energy law program. She was an architect of the Obama administration’s landmark deal with automakers to accept carbon dioxide regulations.
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: I just want to make a related question, which is, you can actually say some of the sentences in the DOE report — you can believe tornadoes don’t show any influence from climate change and still believe heatwaves do, and still believe extreme rainfall events do. In fact, you could believe the cost of heat waves getting worse could justify the entire regulatory edifice.
Jody Freeman: What I love about you, Rob, right now, is you’re kind of incensed about little points that might individually sort of be right, maybe each one separately, but none of it adds up to even a chink in the armor. Right? And what’ll have to happen is the scientific community writ large, en masse, is going to have to come back and say, even if one or two or three of these sentences could possibly, plausibly be actually accurate, it does nothing to change the overwhelming —
Jesse Jenkins: It doesn’t matter.
Freeman: Right. What I think is happening is we’re all getting poked and distracted and tweaked into outrage over science, when in fact, the first argument they’re making is the one where they could actually attract some judges and justices to say, Oh wait, maybe you have a little more discretion here to set a threshold level. You know, Maybe it matters that you’re saying nothing we do here in the U.S. will make a difference in the end to global warming, and maybe that is a reason you don’t want to regulate. Hmm, maybe we’ll accept that reason. And that’s what we need, I think, to be more concerned about.
Jenkins: You’re saying, don’t get distracted by the fight over the climate science. That fight is very clear. It’s this legal argument that this isn’t an air pollutant because it’s not a local air pollutant, it mixes globally with all the other CO2, and we can’t, you know, each class of cars is a tiny contributor to that, and so we shouldn’t worry about it —
Freeman: And much of this is a replay, or a rehash of arguments that the George W. Bush administration lost in Massachusetts vs. EPA. So a lot of this is like, let’s take another run at the Supreme Court.
Mentioned:
The EPA Says Carbon Pollution Isn’t Dangerous. What Comes Next?
The EPA on its reconsideration of the endangerment finding
Jody’s story on the change: Trump’s EPA proposes to end the U.S. fight against climate change
Jesse’s upshift (and accompanying video); Rob’s sort of upshift.
This episode of Shift Key is sponsored by …
Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.
Join clean energy leaders at RE+ 25, September 8–11 in Las Vegas. Explore opportunities to meet rising energy demand with the latest in solar, storage, EVs, and more at North America’s largest energy event. Save 20% with code HEATMAP20 at re-plus.com.
Music for Shift Key is by Adam Kromelow.