You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Department of Energy is advancing 24 companies in its purchase prize contest. What these companies are getting is more important than $50,000.

The Department of Energy is advancing its first-of-a-kind program to stimulate demand for carbon removal by becoming a major buyer. On Tuesday, the agency awarded $50,000 to each of 24 semifinalist companies competing to suck carbon dioxide out of the atmosphere on behalf of the U.S. government. It will eventually spend $30 million to buy carbon removal credits from up to 10 winners.
The nascent carbon removal industry is desperate for customers. At a conference held in New York City last week called Carbon Unbound, startup CEOs brainstormed how to convince more companies to buy carbon removal as part of their sustainability strategies. On the sidelines, attendees lamented to me that there were hardly even any potential buyers at the conference — what a missed opportunity.
Conference panelists asserted that the industry needed to rebuild trust. Purchasing carbon credits has become a risky strategy for companies. In one investigation after another, journalists and researchers have shown that many of the projects behind these credits fail to produce the climate benefits they advertise. There’s a class action lawsuit against Delta Air Lines for marketing itself as “carbon neutral” after purchasing such questionable carbon offsets.
Carbon removal credits are technically different from the offsets that companies bought in the past, which were based on projects that reduce emissions to the atmosphere rather than remove carbon that’s already heating the planet. But there’s still a risk of sham projects. And because the field is relatively new, there’s not yet a set of widely agreed-upon standards to measure and verify how much carbon is being removed.
The Department of Energy hopes that by selecting 24 companies that have been vetted by government scientists, it’s sending a signal to the private sector that there are at least some projects that are legitimate. “We can’t wait to invest in CDR until those standards have been codified,” Noah Deich, the agency’s deputy assistant secretary of carbon management, told me. “We need to invest now so that we actually get the data that we can use to inform the standards, and then over time codify those standards and strengthen and improve them.”
The semifinalists represent a wide range of carbon removal methods. Nine of the companies are building machines that capture carbon dioxide directly from the air. Seven take advantage of the natural ability of plants and algae to suck up carbon, and have developed systems to sequester that carbon for far longer than would otherwise occur. Five employ rocks that naturally absorb carbon and have figured out how to speed up the process. The last three capture carbon from the ocean, enabling the world’s biggest carbon sink to draw down more from the atmosphere.
To proceed to the final round, all of these companies will have to draw up contracts that say how quickly they will be able to remove the promised tons of carbon, and who they will work with to measure and verify the process.
The Biden administration is spending billions on research, development, and deployment of carbon removal. Some of the semifinalists, like Climeworks, Heirloom Carbon, and 1PointFive, were already selected for grants from the DOE to build the U.S.’s first “direct air capture hubs” — projects capable of removing one million tons of carbon from the air per year. But those hubs will fail if the companies don’t ultimately find buyers for their carbon removal. “Every single CDR project that we’re seeing today requires some sort of voluntary credit sale to be profitable,” said Deich.
The Department of Energy’s $30 million budget to buy carbon removal is relatively small. The semifinalists said they could deliver a wide range of credits with their share of the funds, from 3,000 over a three-year period, to more than 30,000. In any case, DOE is unlikely to afford much more than 100,000 tons of carbon taken out of the atmosphere, equivalent to about 0.002% of the CO2 the United States emitted in 2022. When distributed among 10 companies, it’s certainly not enough to finance a project. But Deich told me he sees this contest as a public-private partnership. The agency is challenging the semifinalists to leverage the DOE’s recognition to try and sell as many credits as they can. It’s one of the criteria they’ll be judged on for the final phase of the contest.
Several semifinalists I spoke with were optimistic the DOE’s backing would help. “One of the things that the private sector is wrestling with is the technical underwriting of various carbon dioxide removal technologies,” Barclay Rogers, the CEO of the carbon removal company Graphyte, told me. Graphyte’s process almost sounds too simple to work. The company takes discarded plant matter from forests and fields, dries it out so that it doesn’t decompose, compresses it into bricks, and then buries them. Graphyte has already built a small processing facility in Arkansas and secured a burial site that could store an estimated 1.5 million tons of CO2. Rogers was excited to have DOE’s backing as “a broad signal to the market of the viability of Graphyte’s carbon casting process.”
Others were grateful that the government was branching out to new technologies. To date, most of the DOE’s carbon removal programs have supported direct air capture. Companies working on other approaches have been shut out of funding opportunities, and some worry that this has contributed to a perception among buyers that direct air capture is the only valid method. “We think this is a huge step forward, since it’s really the first time not only that the U.S. government is going to become a purchaser of carbon removal, but also funding a full range of carbon removal solutions,” Nora Cohen Brown, head of market development and policy at Charm Industrial, told me. (Charm also buries plant waste underground, but in the form of oil.) “We really think that biomass CDR has immense potential,” she said. “It’s a big deal to have DOE’s blessing for that pathway.”
Edward Sanders, the chief operating officer of a startup called Equatic, told me that being a semifinalist meant the company would be able to build a plant in the U.S. much sooner than it initially planned. Equatic has developed technology to remove carbon from seawater, enabling the ocean to take up more carbon. It’s currently building its first large-scale plant in Singapore. “This tells prospective future buyers that there is a role to play in the near term in the U.S. for a marine-based pathway.”
Many of the companies on the list, including the three I just mentioned, have already been relatively successful in selling credits. Graphyte sold 10,000 to American Airlines. Equatic has a 62,000 deal with Boeing. Charm will remove more than 100,000 tons for Frontier Climate, a group of buyers that includes Stripe, Alphabet, Shopify, and Meta. But even though a handful of tech companies and airlines are buying carbon removal, these sweeping gestures are not enough to sustain the industry, let alone grow it to the scale that scientists say will be necessary to halt climate change.
DOE’s purchase may help increase confidence in some of these companies and approaches, but it may not do much to solve another problem: There’s little incentive for anyone to pay for carbon removal today, and it’s much more expensive than other options companies have to reduce their emissions. Credits can cost between several hundred to more than a thousand dollars each.
Deich said the agency was trying to set an example for other buyers. Instead of creating a net-zero target and searching for the cheapest credits to accomplish its goal, it’s prioritizing quality and only buying what it can afford. “We need to pay what it costs,” he said, “and then developers can develop projects and figure out how to do it cheaper so that over time, it starts to come down the cost curve significantly, and we can buy larger and larger quantities.”
But this is only the near term plan to help the industry mature. Ultimately, Deich doesn’t think that the voluntary trade of credits will be enough to support the levels of carbon removal that will make a difference in climate change. He sees this purchase prize program as a way to start building the government’s capacity to play a larger role. “There’s going to need to be some sort of mandate or public procurement that happens for the field to really scale beyond 2030,” he said.
Avnos, Inc. — direct air capture — 3,000 credits
Carbon America — direct Air Capture — 3,400 credits
CarbonCapture, Inc. — direct air capture — 3,333 credits
Climeworks — direct air capture — 3,500 credits
Global Thermostat and Fervo Energy — direct air capture — 3,500 credits
Heirloom — direct air capture — 3,030 credits
1PointFive — direct air capture — 3,861 credits
280 Earth — direct air capture — 3,000 credits
8 Rivers — direct air capture — 7,200 credits
Arbor Energy — biomass with carbon removal and storage — 8,000 credits
Carbon Lockdown — biomass with carbon removal and storage — 17,143 credits
Charm Industrial — biomass with carbon removal and storage — 5,000 credits
Clean Energy Systems — biomass with carbon removal and storage — 11,320 credits
Climate Robotics — biochar — 30,252 credits
Graphyte — biomass with carbon removal and storage — 30,000 credits
Vaulted Deep — biomass with carbon removal and storage — 10,320 credits
Alkali Earth — enhanced rock weathering and mineralization — 8,108 credits
CREW Carbon — enhanced rock weathering and mineralization — 7,500 credits
Eion — enhanced rock weathering and mineralization — 9,900 credits
Lithos Carbon — enhanced rock weathering and mineralization — 8,109 credits
Mati Carbon — enhanced rock weathering and mineralization — 4,561 credits
Ebb Carbon — marine-based carbon removal — 3,000 credits
Equatic — marine-based carbon removal — 6,521 credits
Vycarb Inc. — marine-based carbon removal — 3,000 credits
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In practice, direct lithium extraction doesn’t quite make sense, but 2026 could its critical year.
Lithium isn’t like most minerals.
Unlike other battery metals such as nickel, cobalt, and manganese, which are mined from hard-rock ores using drills and explosives, the majority of the world’s lithium resources are found in underground reservoirs of extremely salty water, known as brine. And while hard-rock mining does play a major role in lithium extraction — the majority of the world’s actual production still comes from rocks — brine mining is usually significantly cheaper, and is thus highly attractive wherever it’s geographically feasible.
Reaching that brine and extracting that lithium — so integral to grid-scale energy storage and electric vehicles alike — is typically slow, inefficient, and environmentally taxing. This year, however, could represent a critical juncture for a novel process known as Direct Lithium Extraction, or DLE, which promises to be faster, cleaner, and capable of unlocking lithium across a wider range of geographies.
The traditional method of separating lithium from brine is straightforward but time-consuming. Essentially, the liquid is pumped through a series of vast, vividly colored solar evaporation ponds that gradually concentrate the mineral over the course of more than a year.
It works, but by the time the lithium is extracted, refined, and ready for market, both the demand and the price may have shifted significantly, as evidenced by the dramatic rise and collapse of lithium prices over the past five years. And while evaporation ponds are well-suited to the arid deserts of Chile and Argentina where they’re most common, the geology, brine chemistry, and climate of the U.S. regions with the best reserves are generally not amenable to this approach. Not to mention the ponds require a humongous land footprint, raising questions about land use and ecological degradation.
DLE forgoes these expansive pools, instead pulling lithium-rich brine into a processing unit, where some combination of chemicals, sorbents, or membranes isolate and extricate the lithium before the remaining brine gets injected back underground. This process can produce battery-grade lithium in a matter of hours or days, without the need to transport concentrated brine to separate processing facilities.
This tech has been studied for decades, but aside from a few Chinese producers using it in combination with evaporation ponds, it’s largely remained stuck in the research and development stage. Now, several DLE companies are looking to build their first commercial plants in 2026, aiming to prove that their methods can work at scale, no evaporation ponds needed.
“I do think this is the year where DLE starts getting more and more relevant,” Federico Gay, a principal lithium analyst at Benchmark Mineral Intelligence, told me.
Standard Lithium, in partnership with oil and gas major Equinor, aims to break ground this year on its first commercial facility in Arkansas’s lithium-rich Smackover Formation, while the startup Lilac Solution also plans to commence construction on a commercial plant at Utah’s Great Salt Lake. Mining giant Rio Tinto is progressing with plans to build a commercial DLE facility in Argentina, which is already home to one commercial DLE plant — the first outside of China. That facility is run by the French mining company Eramet, which plans to ramp production to full capacity this year.
If “prices are positive” for lithium, Gay said, he expects that the industry will also start to see mergers and acquisitions this year among technology providers and larger corporations such as mining giants or oil and gas majors, as “some of the big players will try locking in or buying technology to potentially produce from the resources they own.” Indeed, ExxonMobil and Occidental Petroleum are already developing DLE projects, while major automakers have invested, too.
But that looming question of lithium prices — and what it means for DLE’s viability — is no small thing. When EV and battery storage demand boomed at the start of the decade, lithium prices climbed roughly 10-fold through 2022 before plunging as producers aggressively ramped output, flooding the market just as EV demand cooled. And while prices have lately started to tick upward again, there’s no telling whether the trend will continue.
“Everyone seems to have settled on a consensus view that $20,000 a tonne is where the market’s really going to be unleashed,” Joe Arencibia, president of the DLE startup Summit Nanotech, told me, referring to the lithium extraction market in all of its forms — hard rock mining, traditional brine, and DLE. “As far as we’re concerned, a market with $14,000, $15,000 a tonne is fine and dandy for us.”
Lilac Solutions, the most prominent startup in the DLE space, expects that its initial Utah project — which will produce a relatively humble 5,000 metric tons of lithium per year — will be profitable even if lithium prices hit last year’s low of $8,300 per metric ton. That’s according to the company’s CEO Raef Sully, who also told me that because Utah’s reserves are much lower grade than South America’s, Lilac could produce lithium for a mere $3,000 to $3,500 in Chile if it scaled production to 15,000 or 20,000 metric tons per year.
What sets Lilac apart from other DLE projects is its approach to separating lithium from brine. Most companies are pursuing adsorption-based processes, in which lithium ions bind to an aluminum-based sorbent, which removes them from surrounding impurities. But stripping the lithium from the sorbent generally requires a good deal of freshwater, which is not ideal given that many lithium-rich regions are parched deserts.
Lilac’s tech relies on an ion-exchange process in which small ceramic beads selectively capture lithium ions from the brine in their crystalline structure, swapping them for hydrogen ions. “The crystal structure seems to have a really strong attraction to lithium and nothing else,” Sully told me. Acid then releases the concentrated lithium. When compared with adsorption-based tech, he explained, this method demands far fewer materials and is “much more selective for lithium ions versus other ions,” making the result purer and thus cheaper to process into a battery-grade material.
Because adsorption-based DLE is already operating commercially and ion-exchange isn’t, Lilac has much to prove with its first commercial facility, which is expected to finalize funding and begin construction by the middle of this year.
Sully estimates that Lilac will need to raise around $250 million to build its first commercial facility, which has already been delayed due to the price slump. The company’s former CEO and current CTO Dave Snydacker told me in 2023 that he expected to commence commercial operations by the end of 2024, whereas now the company plans to bring its Utah plant online at the end of 2027 or early 2028.
“Two years ago, with where the market was, nobody was going to look at that investment,” Sully explained, referring to its commercial plant. Investors, he said, were waiting to see what remained after the market bottomed out, which it now seems to have done. Lilac is still standing, and while there haven’t yet been any public announcements regarding project funding, Sully told me he’s confident that the money will come together in time to break ground in mid-2026.
It also doesn’t hurt that lithium prices have been on the rise for a few months, currently hovering around $20,000 per tonne. Gay thinks prices are likely to stabilize somewhere in this range, as stakeholders who have weathered the volatility now have a better understanding of the market.
At that price, hard rock mining would be a feasible option, though still more expensive than traditional evaporation ponds and far above what DLE producers are forecasting. And while some mines operated at a loss or mothballed their operations during the past few years, Gay thinks that even if prices stabilize, hard-rock mines will continue to be the dominant source of lithium for the foreseeable future due to sustained global investment across Africa, Brazil, Australia, and parts of Asia. The price may be steeper, but the infrastructure is also well-established and the economics are well-understood.
“I’m optimistic and bullish about DLE, but probably it won’t have the impact that it was thought about two or three years ago,” Gay told me, as the hype has died down and prices have cooled from their record high of around $80,000 per tonne. By 2040, Benchmark forecasts that DLE will make up 15% to 20% of the lithium market, with evaporation ponds continuing to be a larger contributor for the next decade or so, primarily due to the high upfront costs of DLE projects and the time required for them to reach economies of scale.
On average, Benchmark predicts that this tech will wind up in “the high end of the second quartile” of the cost curve, making DLE projects a lower mid-cost option. “So it’s good — not great, good. But we’ll have some DLE projects in the first quartile as well, so competing with very good evaporation assets,” Gay told me.
Unsurprisingly, the technology companies themselves are more bullish on their approach. Even though Arencibia predicts that evaporation ponds will continue to be about 25% cheaper, he thinks that “the majority of future brine projects will be DLE,” and that DLE will represent 25% or more of the future lithium market.
That forecast comes in large part because Chile — the world’s largest producer of lithium from brine — has stated in its National Lithium Strategy that all new projects should have an “obligatory requirement” to use novel, less ecologically disruptive production methods. Other nations with significant but yet-to-be exploited lithium brine resources, such as Bolivia, could follow suit.
Sully is even more optimistic, predicting that as lithium demand grows from about 1.5 million metric tons per year to around 3.5 million metric tons by 2035, the majority of that growth will come from DLE. “I honestly believe that there will be no more hard rock mines built in Australia or the U.S.,” he said, telling me that in ten years time, half of our lithium supply could “easily” come from DLE.
As a number of major projects break ground this year and the big players start consolidating, we’ll begin to get a sense of whose projections are most realistic. But it won’t be until some of these projects ramp up commercial production in the 2028 to 2030 timeframe that DLE’s market potential will really crystalize.
“If you’re not a very large player at the moment, I think it’s very difficult for you to proceed,” Sully told me, reflecting on how lithium’s price shocks have rocked the industry. Even with lithium prices ticking precariously upwards now, the industry is preparing for at least some level of continued volatility and uncertainty.
“Long term, who knows what [prices are] going to be,” Sully said. “I’ve given up trying to predict.”
A chat with CleanCapital founder Jon Powers.
This week’s conversation is with Jon Powers, founder of the investment firm CleanCapital. I reached out to Powers because I wanted to get a better understanding of how renewable energy investments were shifting one year into the Trump administration. What followed was a candid, detailed look inside the thinking of how the big money in cleantech actually views Trump’s war on renewable energy permitting.
The following conversation was lightly edited for clarity.
Alright, so let’s start off with a big question: How do investors in clean energy view Trump’s permitting freeze?
So, let’s take a step back. Look at the trend over the last decade. The industry’s boomed, manufacturing jobs are happening, the labor force has grown, investments are coming.
We [Clean Capital] are backed by infrastructure life insurance money. It’s money that wasn’t in this market 10 years ago. It’s there because these are long-term infrastructure assets. They see the opportunity. What are they looking for? Certainty. If somebody takes your life insurance money, and they invest it, they want to know it’s going to be there in 20 years in case they need to pay it out. These are really great assets – they’re paying for electricity, the panels hold up, etcetera.
With investors, the more you can manage that risk, the more capital there is out there and the better cost of capital there is for the project. If I was taking high cost private equity money to fund a project, you have to pay for the equipment and the cost of the financing. The more you can bring down the cost of financing – which has happened over the last decade – the cheaper the power can be on the back-end. You can use cheaper money to build.
Once you get that type of capital, you need certainty. That certainty had developed. The election of President Trump threw that into a little bit of disarray. We’re seeing that being implemented today, and they’re doing everything they can to throw wrenches into the growth of what we’ve been doing. They passed the bill affecting the tax credits, and the work they’re doing on permitting to slow roll projects, all of that uncertainty is damaging the projects and more importantly costs everyone down the road by raising the cost of electricity, in turn making projects more expensive in the first place. It’s not a nice recipe for people buying electricity.
But in September, I went to the RE+ conference in California – I thought that was going to be a funeral march but it wasn’t. People were saying, Now we have to shift and adjust. This is a huge industry. How do we get those adjustments and move forward?
Investors looked at it the same way. Yes, how will things like permitting affect the timeline of getting to build? But the fundamentals of supply and demand haven’t changed and in fact are working more in favor of us than before, so we’re figuring out where to invest on that potential. Also, yes federal is key, but state permitting is crucial. When you’re talking about distributed generation going out of a facility next to a data center, or a Wal-Mart, or an Amazon warehouse, that demand very much still exists and projects are being built in that middle market today.
What you’re seeing is a recalibration of risk among investors to understand where we put our money today. And we’re seeing some international money pulling back, and it all comes back to that concept of certainty.
To what extent does the international money moving out of the U.S. have to do with what Trump has done to offshore wind? Is that trade policy? Help us understand why that is happening.
I think it’s not trade policy, per se. Maybe that’s happening on the technology side. But what I’m talking about is money going into infrastructure and assets – for a couple of years, we were one of the hottest places to invest.
Think about a European pension fund who is taking money from a country in Europe and wanting to invest it somewhere they’ll get their money back. That type of capital has definitely been re-evaluating where they’ll put their money, and parallel, some of the larger utility players are starting to re-evaluate or even back out of projects because they’re concerned about questions around large-scale utility solar development, specifically.
Taking a step back to something else you said about federal permitting not being as crucial as state permitting–
That’s about the size of the project. Huge utility projects may still need federal approvals for transmission.
Okay. But when it comes to the trendline on community relations and social conflict, are we seeing renewable energy permitting risk increase in the U.S.? Decrease? Stay the same?
That has less to do with the administration but more of a well-structured fossil fuel campaign. Anti-climate, very dark money. I am not an expert on where the money comes from, but folks have tried to map that out. Now you’re even seeing local communities pass stuff like no energy storage [ordinances].
What’s interesting is that in those communities, we as an industry are not really present providing facts to counter this. That’s very frustrating for folks. We’re seeing these pass and honestly asking, Who was there?
Is the federal permitting freeze impacting investment too?
Definitely.
It’s not like you put money into a project all at once, right? It happens in these chunks. Let’s say there’s 10 steps for investing in a project. A little bit of money at step one, more money at step two, and it gradually gets more until you build the project. The middle area – permitting, getting approval from utilities – is really critical to the investments. So you’re seeing a little bit of a pause in when and how we make investments, because we sometimes don’t know if we’ll make it to, say, step six.
I actually think we’ll see the most impact from this in data center costs.
Can you explain that a bit more for me?
Look at northern Virginia for a second. There wasn’t a lot of new electricity added to that market but you all of the sudden upped demand for electricity by 20 percent. We’re literally seeing today all these utilities putting in rate hikes for consumers because it is literally a supply-demand question. If you can’t build new supply, it's going to be consumers paying for it, and even if you could build a new natural gas plant – at minimum that will happen four-to-six years from now. So over the next four years, we’ll see costs go up.
We’re building projects today that we invested in two years ago. That policy landscape we invested in two years ago hasn’t changed from what we invested into. But the policy landscape then changed dramatically.
If you wipe out half of what was coming in, there’s nothing backfilling that.
Plus more on the week’s biggest renewables fights.
Shelby County, Indiana – A large data center was rejected late Wednesday southeast of Indianapolis, as the takedown of a major Google campus last year continues to reverberate in the area.
Dane County, Wisconsin – Heading northwest, the QTS data center in DeForest we’ve been tracking is broiling into a major conflict, after activists uncovered controversial emails between the village’s president and the company.
White Pine County, Nevada – The Trump administration is finally moving a little bit of renewable energy infrastructure through the permitting process. Or at least, that’s what it looks like.
Mineral County, Nevada – Meanwhile, the BLM actually did approve a solar project on federal lands while we were gone: the Libra energy facility in southwest Nevada.
Hancock County, Ohio – Ohio’s legal system appears friendly for solar development right now, as another utility-scale project’s permits were upheld by the state Supreme Court.