You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
At least for the foreseeable future. But is the Manchin-Barrasso bill actually worth it?

So … is the permitting reform bill any good or not?
Earlier this year, Senators Joe Manchin of West Virginia and John Barrasso of Wyoming proposed a bill that would change federal environmental rules so as to spur a buildout of new energy infrastructure around the country.
Their proposal would have loosened rules for oil and gas drilling and exporting while changing federal law to encourage the construction of more clean energy.
These renewables-friendly changes included creating a new legal regime that would push utilities and grid operators to build significantly more long-distance power lines, triggering a nationwide boost to renewable resources. They would also have changed the regulations governing geothermal power generation, allowing new enhanced geothermal wells to play by the same federal rules that bind oil and gas.
The legislation was announced in July and then … nothing happened.
Now it seems likely to come back. Congress is eyeing its final agenda items for the year, and permitting reform is one of them. Representative Bruce Westerman, a Republican who chairs the House Committee on Natural Resources, is currently said to be revamping Manchin and Barrasso’s proposal to include reforms to the National Environmental Policy Act, a bedrock law that guides the process — but not the outcome — of virtually every major decision that the federal government makes and requires it to study the environmental impact of its policies.
We don’t know what those changes will look like yet, though they’ll have to come soon — the new Congress gets sworn in in just a few weeks. Which means lawmakers will have to get the proposed changes, process them, and decide whether to vote for them in a very short period of time — just a few days.
So during this liminal period, then, I wanted to take a moment to look at the other parts of the bill. Earlier this year, we got a sense of what the bill’s quantitative effects might be. They suggest that the legislation — at least in the initial version proposed by Manchin and Barrasso — could very well help cut U.S. emissions, or at least leave them flat. But after that? It starts to get complicated.
Republicans have long pushed for changes to the federal government’s permitting regime.
But in recent years, Democrats — who hope to prompt a national surge of clean energy construction — have come aboard too. The Biden administration, frustrated that some parts of the Inflation Reduction Act and Bipartisan Infrastructure Law haven’t resulted in the large-scale projects they hoped for, has come to back permitting reform explicitly, although they have not endorsed Manchin and Barrasso’s bill.
“The president has been clear … that we believe permitting reform should pass on a bipartisan basis — and that we believe permitting needs to be optimized for building out a clean energy economy,” John Podesta, a White House senior advisor who is now the country’s top climate diplomat, said in a speech last year.
The White House’s support of bipartisan permitting reform is more than just posturing: Because of Senate math, any changes to the country’s permitting laws almost certainly must be bipartisan. Until a bare majority of Democratic senators exists to kill the legislative filibuster, it will take a vote of at least 60 senators — a so-called supermajority — to alter most pre-existing federal legislation.
So the question, then, is: Is this attempt at permitting reform worth passing? Is this package of fossil fuel concessions and clean energy incentives likely to reduce emissions more than it increases them?
I won’t try to answer that question comprehensively today, and we can’t even answer it fully until we know the scope of Westerman’s changes. But I do want to share an analysis from the center-left think tank Third Way and other researchers that suggests that the answer is “yes.”
This analysis, released in September, argues that Manchin and Barrasso’s bill would modestly increase emissions by encouraging more oil and gas drilling on federal lands. But that increase would likely be dwarfed by a large decrease in emissions prompted by building out the country’s electricity transmission grid.
More specifically, it finds that while the pro-fossil fuel provisions could raise global climate pollution by as much as 6.1 billion metric tons by 2050, the bill’s support for transmission could cut emissions by as much as 15.7 billion metric tons in that time (although the final number, as you’ll see, is a very high end estimate). That’s because, as I’ve written before, building the grid will allow for more renewable, geothermal, and other forms of zero-carbon electricity generation to get built. And the country can only reduce emissions by building more zero-carbon electricity.
Some of those emissions increases from oil and gas are now likely to occur whether or not the bill passes — the Trump administration will encourage fossil fuel extraction and export far beyond what a Harris administration would have done.
But even in a more conservative scenario, the transmission provisions would still cut emissions by 6.5 billion metric tons by 2050, Third Way’s synthesis says. That would mean — when compared to the pro-fossil policies — that the bill has a much more modest effect overall, cutting emissions by just over 400 million tons through 2050.
These aren’t the only numbers out there. An analysis by Jeremy Symons, the former vice president of public affairs at the Environmental Defense Fund, argues that the bill’s loosening of some Biden-era restrictions on liquified natural gas export terminals will result in a tremendous LNG boom. He asserts that the bill’s LNG provisions could increase global emissions by 8.5 to 11 gigatons; his analysis, however, draws heavily from a controversial, initially erroneous, and now updated study from the Cornell ecologist Robert Howarth that contends American natural gas is far worse for the climate than coal.
Third Way did not include Symons’ study in its analysis. Instead, it cites a different study led by the Princeton professor Jesse Jenkins (with whom I cohost Heatmap’s Shift Key podcast) that uses natural-gas emissions estimates more in line with the broader scholarly literature. That modeling study indicates that the LNG provisions in the Manchin-Barrasso bill could increase emissions by as much as 3.3 gigatons — or decrease them by 2.4 gigatons.
I’m not going to get more into the LNG question in this story. And it’s somewhat less important than it was earlier this year because Trump administration is likely to approve as many LNG export terminals as it can. (That doesn’t mean those terminals will get built: Right now, a dozen LNG terminals have been approved but not built due to a lack of global demand for more LNG.) Instead, I want to dive into two specific provisions in the bill — on oil and gas leasing and transmission — that reveal the broader challenges of trying to speak concretely about this proposal.
By far the most climate-friendly provisions in EPRA concern its support of long-distance electricity transmission. As I’ve covered before, the lack of electricity transmission is now one of the biggest barriers to building new wind, solar, and other clean energy in the United States; the construction of new wind farms, in particular, seems to be slowing down because of a lack of available power lines to carry their electrons.
Manchin and Barrasso’s proposal aims to build more transmission largely by granting new powers to the Federal Energy Regulatory Commission, the independent agency that oversees the country’s power grids. EPRA would, for instance, allow FERC to step in and approve transmission lines that are “in the national interest” if a state has not acted on a given project within a year. The law also clarifies who should pay for a new power line, encoding the idea that customers who benefit from a line should pay for it. And it lets FERC approve payments from developers to the communities where new transmission infrastructure gets built, potentially smoothing approvals at the local level.
The bill also instructs FERC to write a rule that will require each part of the country to build a minimal amount of power lines that allow regions to exchange power with their neighbors. This measure — meant to spur new “interregional” transmission infrastructure — aims to knit the national grid more closely together and lower power costs on average.
How much would these policies reduce national emissions? The truth is, that’s extremely difficult to model. “There’s nothing in the EPRA that says, Thou shalt build this much transmission,” Charles Teplin, a grid expert at the think tank RMI, told me.
Instead, the bill aims to kick off a process that will result in more transmission getting built. That transmission should — in theory — bring more renewables online. But what will the size of that buildout be, and how many emissions will those renewables displace?
Answering these questions requires, again, estimating the uncertain. To come up with a reasonable, conservative figure to represent the amount of regional transmission that might get built under the new FERC process, they looked at what happened when a similar process was overseen by the Midwest’s grid. Then they rounded down that figure significantly.
Teplin and his colleagues also assumed that some big power lines that have already been proposed nationwide — roughly 15 gigawatts, to be exact — will get completed faster because of these new laws, so their analysis starts to bring them online by 2029. One only need look at the nearly two-decade saga of SunZia, a large power line that crosses New Mexico and Arizona, to see how long it can take to finish those projects today.
Under those assumptions, the law should more than double the rate of America’s transmission buildout, Teplin and his team estimated. Right now, the country builds perhaps 1 gigawatt of new transmission lines every year; under their assumptions, that would leap to 2 to 4 gigawatts a year.
So how many emissions would these new lines avoid? Using a report published by Grid Strategies, a power sector consulting firm that advocates for more transmission, Teplin and his colleagues estimate that each “gigawatt-mile” of new transmission will let operators add about 32 gigawatts of solar and wind to the grid each year. (This suggests that, most of the time, the lines would run at about 30% of capacity.)
Finally, the team assumed that electricity from these new renewable projects will replace power from natural gas plants. That, too, is an approximation: Some of those new wind and solar farms will drive out coal plants; others might replace non-emitting resources like nuclear or hydroelectric dams; but in general they will reduce gas burning.
When you put all those figures together, RMI’s analysis suggests that the legislation could build roughly twice as much new clean energy generation by 2050 as exists in all fossil-fuel power plants today. These new resources would help avoid about 6.5 gigatons of greenhouse gas emissions by the middle of the century.
That may seem like a big number — but Third Way was actually able to reach an even larger estimate. Teplin and his team didn’t try to differentiate, for instance, between the effects of a recent FERC order, which requires utilities to build more transmission within regions, and the proposed Manchin-Barrasso bill, which shores up the legality of that FERC order and would also induce utilities to build more power lines between regions. Some legal experts argue that the recent FERC order will be on shaky ground if the Manchin-Barrasso bill doesn’t pass; others say it’s stable enough as-is.
If you assume that courts will kill the FERC order unless Congress acts, then that should raise your estimate of what Manchin-Barrasso might do. That’s essentially what Third Way did — by giving the bill more credit for the resulting regional transmission buildout, they say that its carbon upside could be as large as 15.7 gigatons over the next 25 years. I’m not sure I would be that aggressive, but I think the transmission provisions would likely initiate a big buildout of renewables.
The Manchin-Barrasso bill contains a number of provisions that aim to increase the leasing of federal land for oil and gas drilling. One set requires that the Interior Department must offer a minimum amount of acres every year for oil and gas leasing. It also says that the land offered must be land that oil and gas companies actually want to lease.
This would address one of Republicans’ biggest objections to how the Biden administration has handled oil and gas extraction on federally owned land. As part of the Inflation Reduction Act, Manchin required that the government offer a minimum amount of oil and gas acreage for every acre of public land it leased to wind and solar developers. But Republicans have accused the Biden administration of getting around this rule by, in essence, offering useless or otherwise undesirable land.
(This concession, I should add, is now essentially moot until 2029, as the Trump administration will hasten to nominate the parcels that oil and gas companies are most excited to drill on. But it could bind a future Democratic administration, requiring them to offer good parcels for oil and gas leasing at the same time that they offer federal land for renewable development.)
The bill would also change some of the rules around the drilling allowed on the borders of federally owned land. Under the Manchin-Barrasso bill, companies could drill a vertical well on privately owned land, then extend it horizontally underground into federal land to extract oil or gas.
These provisions, too, are difficult to model. Much like the transmission proposal, they won’t lead to a guaranteed amount of drilling (although they will essentially produce a minimum amount of fossil fuel leasing). Nor will they substantially change the drilling that happens under Donald Trump or a future Republican president because any fossil fuel-loving administration is already free to go much further than these provisions would require them to.
To estimate the emissions impact of these provisions, the think tank Resources for the Future first tried to draw some error bars around their analysis. As a worst-case scenario, analysts modeled what would happen if the onshore drilling that happened during the Trump administration occurred every year from 2025 to 2050. Under this “Trump forever” scenario, emissions increase about 2.1 gigatons from 2025 to 2050. Under a less dire scenario, they would increase by about 0.6 gigatons during the same period.
These estimates almost certainly exceed what EPRA would actually do, Kevin Rennert, the director of RFF’s federal climate policy initiative, told me.
“None of the provisions would require the levels of leasing that we’re analyzing in the high-leasing scenario,” he said. “It’s clear [that the model is] a high upper bound on what EPRA itself would drive.” The provisions in the Manchin-Barrasso bill, in other words, are aimed much more at putting a floor under a future Democratic administration than they are raising a ceiling for a future Republican administration.
(Over all these discussions hangs a curious question about drilling for oil and gas on public land: How important is it, really? But that’s a question for another time.)
How you feel about this reform effort ultimately depends on how you feel about gambling. Is it worth hamstringing a future Democratic president’s ability to hem in oil production in exchange for unleashing a wave of new transmission under the Trump administration? How much do you weigh building more renewables versus selling more fossil fuels to the world?
Trump’s victory last month also changes the calculus. His administration will increase onshore oil and gas leasing regardless of whether this bill passes or not. He will stop the Energy Department’s effort to slow down the construction of LNG terminals and approve a new wave of projects. All of the bill’s support for fossil fuels, in other words, would be moot — Trump will do that stuff anyway. So the question becomes whether the bill’s support for new transmission infrastructure 1) actually builds new power lines, and 2) provides a useful tailwind for renewables and clean energy during what would otherwise be a difficult four years.
You can go in almost endless loops through the politics here. Given Trump’s antipathy toward renewables, why should we expect his administration to allow a transmission buildout in the first place, regardless of what Congress says? In which case, maybe the bill isn’t worth it. But on the other hand, maybe it is — since Trump’s going to do everything he can to juice fossil fuels and fight renewables, why not pass the bill and give power system regulators in blue and purple states an extra tool to juice clean energy construction? And hey, given Trump’s friendliness toward the AI boom, maybe he’ll wind up having to build more transmission just to service data centers.
We can’t make that political call quite yet. Until we know exactly how Westerman’s addition to the legislation would change NEPA, it’s hard to say where lawmakers should come down. But what’s clear is that this may be Congress’s last chance to deal with permitting reform for a while. Next year, the Republican majority is likely to be focused on tax cuts, and it’s not even clear that the reconciliation process would allow for changing permitting law. “We’re pretty pessimistic that you could include anything on permitting or transmission or any of these other things in the reconciliation process,” Devin Hartman, a policy director at the center-right think tank the R Street Institute, told Heatmap this week.
So this is it for permitting reform — it’s now or never for this set of changes. In a year full of surprises for climate and environmental law, we may yet get one more.
Jael Holzman contributed reporting.
Editor’s note: This story has been updated to correct the magnitude of emissions reductions from the Manchin-Barrasso bill found in Third Way’s analysis.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The storm currently battering Jamaica is the third Category 5 to form in the Atlantic Ocean this year, matching the previous record.
As Hurricane Melissa cuts its slow, deadly path across Jamaica on its way to Cuba, meteorologists have been left to marvel and puzzle over its “rapid intensification” — from around 70 miles per hour winds on Sunday to 185 on Tuesday, from tropical storm to Category 5 hurricane in just a few days, from Category 2 occurring in less than 24 hours.
The storm is “one of the most powerful hurricane landfalls on record in the Atlantic basin,” the National Weather Service said Tuesday afternoon. Though the NWS expected “continued weakening” as the storm crossed Jamaica, “Melissa is expected to reach southeastern Cuba as an extremely dangerous major hurricane, and it will still be a strong hurricane when it moves across the southeastern Bahamas.”
So how did the storm get so strong, so fast? One reason may be the exceptionally warm Caribbean and Atlantic.
“The part of the Atlantic where Hurricane Melissa is churning is like a boiler that has been left on for too long. The ocean waters are around 30 degrees Celsius, 2 to 3 degrees above normal, and the warmth runs deep,” University of Redding research scientist Akshay Deoras said in a public statement. (Those exceedingly warm temperatures are “up to 700 times more likely due to human-caused climate change,” the climate communication group Climate Central said in a press release.)
Based on Intergovernmental Panel on Climate Change reports, the National Oceanic and Atmospheric Administration concluded in 2024 that “tropical cyclone intensities globally are projected to increase” due to anthropogenic climate change, and that “rapid intensification is also projected to increase.”
NOAA also noted that research suggested “an observed increase in the probability of rapid intensification” for tropical cyclones from 1982 to 2017 The review was still circumspect, however, labeling “increased intensities” and “rapid intensification” as “examples of possible emerging human influences.”
What is well known is that hurricanes require warm water to form — at least 80 degrees Fahrenheit, according to NOAA. “As long as the base of this weather system remains over warm water and its top is not sheared apart by high-altitude winds, it will strengthen and grow.”
A 2023 paper by hurricane researcher Andra Garner argued that between 1971 and 2020, rates of intensification of Atlantic tropical storms “have already changed as anthropogenic greenhouse gas emissions have warmed the planet and oceans,” and specifically that the number of these storms that intensify from Category 1 or weaker “into a major hurricane” — as Melissa did so quickly — “has more than doubled in the modern era relative to the historical era.”
“Hurricane Melissa has been astonishing to watch — even as someone who studies how these storms are impacted by a warming climate, and as someone who knows that this kind of dangerous storm is likely to become more common as we warm the planet,” Garner told me by email. She likened the warm ocean waters to “an extra shot of caffeine in your morning coffee — it’s not only enough to get the storm going, it’s an extra boost that can really super-charge the storm.”
This year has been an outlier for the Atlantic with three Category 5 storms, University of Miami senior research associate Brian McNoldy wrote on his blog. “For only the second time in recorded history, an Atlantic season has produced three Category 5 hurricanes,” with wind speeds reaching and exceeding 157 miles per hour, he wrote. “The previous year was 2005. This puts 2025 in an elite class of hurricane seasons. It also means that nearly 7% of all known Category 5 hurricanes have occurred just in this year.” One of those Category 5 storms in 2005 was Hurricane Katrina.
Jamaican emergency response officials said that thousands of people were already in shelters amidst storm surge, flooding, power outages, and landslides. Even as the center of the storm passed over Jamaica Tuesday evening, the National Weather Service warned that “damaging winds, catastrophic flash flooding and life-threatening storm surge continues in Jamaica.”
With Trump turning the might of the federal government against the decarbonization economy, these investors are getting ready to consolidate — and, hopefully, profit.
Since Trump’s inauguration, investors have been quick to remind me that some of the world’s strongest, most resilient companies have emerged from periods of uncertainty, taking shape and cementing their market position amid profound economic upheaval.
On the one hand, this can sound like folks grasping at optimism during a time when Washington is taking a hammer to both clean energy policies and valuable sources of government funding. But on the other hand — well, it’s true. Google emerged from the dot-com crash with its market lead solidified, Airbnb launched amid the global financial crisis, and Sunrun rose to dominance after the first clean tech bubble burst.
The circumstances may change, but behind all of these against-the-odds successes are investors who saw opportunity where others saw risk. In the climate tech landscape of 2025, well-capitalized investors are eyeing some of the more mature sectors being battered by federal policy or market uncertainty — think solar, wind, biogas, and electric transportation — rather than the fresh-faced startups pursuing more cutting edge tech.
“History does not repeat, but it certainly rhymes,” Andrew Beebe, managing director at Obvious Ventures, told me. He was working as the chief commercial officer at the solar company Suntech Power when the first climate tech bubble collapsed in the wake of the 2008 financial crisis. Back then, venture capital and project financing dried up instantly, as banks and investors faced heavy losses from their exposure to risky assets. This time around, “there’s plenty of capital at all stages of venture,” as well as infrastructure investing, he said. That means firms can afford to swoop in to finance or acquire undervalued startups and established companies alike.
“I think you’re gonna see a lot of projects in development change hands,” Beebe told me.
Investors don’t generally publicize when the companies or projects that they’re backing become “distressed assets,” i.e. are in financial trouble, nor do they broadcast when their explicit goal is to turn said projects around. But that’s often what opportunistic investing entails.
“As investors in the energy and infrastructure space — which is inherently in transition — we take it as a very important point of our strategy to be opportunistic,” Giulia Siccardo, a managing director at Quinbrook, told me. (Prior to joining the investment firm, Siccardo was director of the Department of Energy’s Office of Manufacturing & Energy Supply Chains under President Biden.)
Quinbrook sees opportunities in biogas and renewable natural gas, a sector that once enjoyed “very cushioned margins” thanks to investor interest in corporate sustainability, Siccardo told me, but which has lately gone into a “rapid decline.” But she’s also looking at solar and storage, where developers are rushing to build projects before tax credits expire, as well as grid and transmission infrastructure, given the dire need for upgrades and buildout as load growth increases.
As of now, the only investment Quinbrook has explicitly described as opportunistic is its acquisition of a biomethane facility in Junction City, Oregon. When it opened in 2013, the facility used food waste — which otherwise would have emitted methane in a landfill — to produce renewable biogas for clean electricity generation. But after Shell acquired the plant, it switched to converting cow manure and agricultural residue into renewable natural gas for heavy-duty transportation fuels, a process that it’s operated commercially since 2021. Siccardo declined to provide information about the plant’s performance at the time of Quinbrook’s acquisition, though presumably, it has yet to reach its total production capacity of 730,000 million British thermal units per year — enough to supply about 12,000 U.S. households.
The extension of the clean fuel production tax credit, plus the potential for hyperscalers to purchase RNG credits, are still driving demand, however. And that’s increased Siccardo’s confidence in pursuing investments and acquisitions in the space. “That’s a market that, from a policy standpoint, has actually been pretty stable — and you might even say favored — by the One Big Beautiful Bill relative to other technologies,” she explained.
Solar, meanwhile, is still cheap and quick to deploy, with or without the tax credits, Siccardo told me. “If you strip away all subsidies, and are just looking at, what is the technology that’s delivering the lowest cost electron, and which technology has the least supply chain bottlenecks right now in North America —- that drives you to solar and storage,” she said.
Another leading infrastructure investment firm, Generate Capital, is also looking to cash in on the moment. After replacing its CEO and enacting company-wide layoffs, Generate’s head of external affairs, Jonah Goldman, told me that “managers who understand the [climate] space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
The firm also sees major opportunities when it comes to good old solar and storage projects. In an open letter, Generate’s new CEO, David Crane, wrote that “for the first time in nearly four decades, the U.S. has an insatiable need for more power: as much as we can produce, as soon as we can, wherever and however we can produce it.”
Crane sees it as the duty of Generate and other investors to use mergers and acquisitions as a tool to help clean tech scale and mature. “If companies across our subsectors were publicly traded, the market itself would act as a centripetal force towards industry consolidation,” he wrote. But because many clean energy companies are privately funded, Crane said “it is up to us, the providers of that private capital, to force industry improvement, through consolidation and otherwise.”
Helping solar companies accelerate their construction timelines to lock in tax credit eligibility has actually become an opportunistic market of its own, Chris Creed, a managing partner at Galvanize Climate Solutions and co-head of its credit division, told me. “Helping those companies that need to start or complete their projects within a predetermined time frame because of changes in the tax credit framework became an investable opportunity for us,” Creed told me. “We have a number of deals in our near term pipeline that basically came about as a result of that.”
Given that some solar companies are bound to fare better than others, he agreed that mergers and acquisitions were likely — among competitors as well as involving companies working in different stages of a supply chain. “It wouldn’t shock me if you saw some horizontal consolidation or some vertical integration,” Creed told me.
Consolidation can only go so far, though. So while investors seem to agree that solar, storage, and even the administration’s nemesis — wind — are positioned for a long and fruitful future, when it comes to more emergent technologies, not all will survive the headwinds. Beebe thinks there’s been “irrational exuberance” around both green hydrogen and direct air capture, for example, and that seasoned investors will give those spaces a pass.
Electric mobility — e.g. EVs, electric planes, and even electrified shipping — and grid scalability — which includes upgrades to make the grid more efficient, flexible, and optimized — are two sectors that Beebe is betting will survive the turmoil.
But for all investors that have the capability to do so, for now, “the easy bet is just to move your money outside the U.S.” Beebe told me.
We might be starting to see just that. Quinbrook also invests in the U.K. and Australia, and just announced its first Canadian investment last week. It acquired an ownership stake in Elemental Clean Fuels, an energy developer making renewable fuels such as RNG, low-carbon methanol, and — yes — clean hydrogen.
Last week, Generate announced that it had closed $43 million in funding from the Canadian company Fiera Infrastructure Private Debt for its North American portfolio of anaerobic digestion projects, which produce renewable natural gas — Generate’s first cross-currency, cross-border deal.
Creed still has confidence in the U.S. market, however, telling me he’s “very bullish on American innovation.” He certainly acknowledges that it’s a tough time out there for any investor deciding where to park their money, but thinks that ultimately, “that volatility should manifest itself as excess returns to investors who are able to figure out their investment strategy and deploy in this environment.”
Exactly what firms will manage this remains an open question, and the opportunities may be short-lived — but it’s a race that plenty of investors are getting in on.
“I mean, God bless the Europeans for caring about climate.”
Bill Gates, the billionaire co-founder of Microsoft and one of the world’s most important funders of climate-related causes, has a new message: Lighten up on the “doomsday.”
In a new memo, called “Three tough truths about climate,” Gates calls for a “strategic pivot.” Climate-concerned philanthropy should focus on global health and poverty, he says, which will still cause more human suffering than global warming.
“I’m not saying we should ignore temperature-related deaths because diseases are a bigger problem,” he writes. “What I am saying is that we should deal with disease and extreme weather in proportion to the suffering they cause, and that we should go after the underlying conditions that leave people vulnerable to them. While we need to limit the number of extremely hot and cold days, we also need to make sure that fewer people live in poverty and poor health so that extreme weather isn’t such a threat to them.”
This new focus didn’t come with a change in funding priorities — but that’s partly because some big shake-ups have already happened. In February, Heatmap reported that Breakthrough Energy, Gates’ climate-focused funding group, had slashed its grant-making budget. Gates later closed Breakthrough’s policy and advocacy office altogether.
Despite eliminating those financial commitments, he still dwells on two of his longtime obsessions in the new memo: cutting the “green premium” for energy technologies, meaning the delta between the cost of carbon-emitting and clean energy technologies, and improving the measurement of how spending can do the most for human welfare. The same topics dominated his thinking when I last spoke to the billionaire at the 2023 United Nations climate conference in Dubai.
What seems to have shifted, instead, is the global political environment. The Trump administration and Elon Musk gutted the federal government’s spending on global public health causes, such as vaccines and malaria prevention. European countries have also cut back their global aid spending, although not as dramatically as the U.S.
Gates seemingly now feels called to their defense: “Vaccines are the undisputed champion of lives saved per dollar spent,” he writes, praising the vaccine alliance Gavi in particular. “Energy innovation is a good buy not because it saves lives now, but because it will provide cheap clean energy and eventually lower emissions, which will have large benefits for human welfare in the future.”
Last week, Gates shared his thinking about climate change at a roundtable with a handful of reporters. He was, as always, engaging. I’ve shared some of his new takes on climate policy below. His quotes have been edited for clarity.
The environment we’re in today, the policies for climate change are less accommodating. It’s hard to name a country where you’d say, Oh, the climate policies are more accommodating today than they have been in the past.
The thesis I had was that middle income countries — who were already, at that time, the majority of all emissions — would never pay a premium for greenness. And so you could say, well, maybe the rich countries should subsidize that. But you know, the amounts involved would get you up to, like, 4% of rich country budgets would have to be transferred to do that. And we’re at 1% and going down. And there are some other worthy things that that money goes for, other than subsidizing positive green premium type approaches. So the thesis in the book [How to Avoid a Climate Disaster, published in 2021] is we had to innovate our way to negative green premiums for the middle income countries.
Climate [change] is an evil thing in that it’s caused by rich countries and high middle-income countries and the primary burden [falls on poor countries]. When I looked into climate activists, I said, Well, this is incredible. They care about poor countries so much. That’s wonderful, that they feel guilty about it. But in fact, a lot of climate activists, they have such an extreme view of what’s going to happen in rich countries — their climate activism is not because they care about poor farmers and Africa, it’s because they have some purported view that, like, New York City, can’t deal with the flooding or the heat.
The other challenge we have in the climate movement is in order to have some degree of accountability, it was very focused on short-term goals and per-country reports. And the per-country reporting thing is, in a way, a good thing, because a country — certainly when it comes to deforestation or what it’s doing on its electric grid, there is sovereign accountability for what’s being done. But I mean, the way everybody makes steel is the same. The way everybody makes the cement, it’s the same. The way we make fertilizer, it’s all the same. And so there can’t be some wonderful surprise, where some country comes in and, you know, gives you this little number [for its Paris Agreement goals], and you go, Wow, good! You’re so tough, you’re so good, you’re so amazing. Because other than deforestation and your particular electric grid, these are all global things.
If you’re a rich country, the costs of adaptation are just one of many, many things that are not gigantic, huge percentages of GDP — you know, rebuilding L.A. so that it’s like the Getty Museum, in terms of there’s no brush that can catch on fire, there’s no roof that can catch on fire, adds about 10% cost to the rebuild. It’s not like, Oh my god, we can’t live in LA. There’s no apocalyptic story for rich countries. [Climate adaptation] is one of many things that you should pay attention to, like, Does your health system work? Does your education system work? Does your political system work? There are a variety of things that are also quite important.
The place where it gets really tough is in these poor countries. But you know, what is the greatest tool for climate adaptation? Getting rich — growing your economy is the biggest single thing, living in conditions where you don’t face big climate problems. So when you say to an African country, Hey, you have a natural gas deposit, and we’re going to try to block you from getting financing for using that natural gas deposit … It probably won’t work, because there’s a lot of money in the world. It’s not clear how you’d achieve that. And it’s also in terms of the warming effect of that natural gas, versus the improvement of the conditions of the people in that country — it’s not even a close thing.
People in the [climate] movement, we do have to say to ourselves, For the Europeans, how much were they willing to pay in order to support climate? — and did we overestimate in terms of forcing them to switch to electric cars, to buy electric heat pumps, to have their price of electricity be higher? Did we overestimate their willingness to pay with some of those policies? And you do have to be careful because if your climate policies are too aggressive, you will be unelected, and you’ll have a right-wing government that cares not a bit about climate. I mean, God bless the Europeans for caring about climate. You worry they care so much about it that the people you talk to, you won’t be able to meet with them again, because they won’t be in power.