You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The organization’s annual World Energy Outlook is pretty sanguine on the subject.
Early this morning, the International Energy Agency released its annual World Energy Outlook. And while the Paris-based agency says the world should certainly be concerned about rising electricity demand overall, it also conveys (not quite in so many words) that perhaps we should all just calm down when it comes to data center load growth driven by the rise of generative artificial intelligence.
The report demonstrates that on a global scale, data centers are pretty trivial compared to, say, the uptick in electric vehicle adoption or increased demand for cooling. By 2030 in the base case scenario, the IEA projects that data centers will account for less than 10% of global electricity demand growth, which is roughly equal to demand growth from desalination technologies, which we see much less hand-wringing about. By comparison, the combination of rising temperatures and rising incomes could create over 1,200 terawatt-hours of additional cooling demand by 2035, more than the entire Middle East’s electricity use.
IEA
The IEA emphasized that when it comes to data centers, “plausible high and low sensitivities do not change the outlook fundamentally,” meaning that regardless of factors such as how quickly renewables and other low-emission energy sources are able to ramp up or the rate at which computing efficiency improves, data centers are poised to be a small piece of the overall pie.
The authors even sound an optimistic note as they urge readers to consider the positive impacts that artificial intelligence could have on the energy sector at large, writing that “the potential implications of AI for energy are broader [than just their data center electricity use] and include improved systems coordination in the power sector and shorter innovation cycles.” As of now, folks can only guess as to whether the net benefits of AI will be positive or negative from an emissions standpoint. But the report again sounded relatively cheery as it noted that there is “a set of low-emissions options available to meet this [data center] demand,” as cleaner electricity sources are growing much faster than data center electricity use.
The unbothered tone might seem surprising, given the general freakout over demand growth as well as dueling perspectives over how to meet it. But while it’s important to put these numbers in perspective, that task shouldn’t be an excuse not to act. After all, even “a small percent of the pie” still leads to some pretty big figures. For example, say data centers comprise a conservative 5% of global electricity demand growth between now and 2030. That would mean an additional 338 terawatt-hours of electricity demand by the end of the decade, an estimate the IEA says could vary by as much as 170 terawatt-hours. So on the high end, global growth in data center electricity demand could reach around 500 terawatt-hours by 2030, nearly a quarter of total U.S. electricity generation last year.
So while this might not level up to a crisis on a global scale, it’s still very much a problem worth mitigating — all the more so because data centers are heavily geographically concentrated, meaning local grid impacts will be felt acutely. Back in April, Jonathan Koomey, an independent researcher, lecturer, and entrepreneur who studies the energy and environmental impacts of information technology, discussed this very issue with Heatmap’s own Shift Key co-hosts, Robinson Meyer and Jesse Jenkins. As Koomey put it, “A place like Ireland that has, I think at last count 17%, 18% of its load from data centers, if that grows, that could give them real challenges. Same thing with Loudoun County in Virginia.”
The IEA also acknowledges this reality, noting that even if, globally, there’s enough clean energy to go around, local constraints on generation and grid capacity could be severe. But as Koomey told Heatmap — and as, perhaps, the IEA is trying to tell us all — “it is not a national story. It is a local story.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Zanskar’s second geothermal discovery is its first on untapped ground.
For the past five years or so, talk of geothermal energy has largely centered on “next-generation” or “enhanced” technologies, which make it possible to develop geothermal systems in areas without naturally occurring hot water reservoirs. But one geothermal exploration and development company, Zanskar, is betting that the scope and potential of conventional geothermal resources has been vastly underestimated — and that artificial intelligence holds the key to unlocking it.
Last year, Zanskar acquired an underperforming geothermal power plant in New Mexico. By combining exclusive data on the subsurface of the region with AI-driven analysis, the company identified a promising new drilling site, striking what has now become the most productive pumped geothermal well in the U.S. Today, the company is announcing its second reservoir discovery, this one at an undeveloped site in northern Nevada, which Zanskar is preparing to turn into a full-scale, 20-megawatt power plant by 2028.
“This is probably one of the biggest confirmed resources in geothermal in the last 10 years,” Zanskar’s cofounder and CEO Carl Hoiland told me. When we first connected back in August, he explained that since founding the company in 2019, he’s become increasingly convinced that conventional geothermal — which taps into naturally occurring reservoirs of hot water and steam — will be the linchpin of the industry’s growth. “We think the estimates of conventional potential that are now decades old just all need to be rewritten,” Hoiland told me. “This is a much larger opportunity than has been previously appreciated.”
The past decade has seen a lull in geothermal development in the U.S. as developers have found exploration costs prohibitively high, especially as solar and wind fall drastically in price. Most new projects have involved either the expansion of existing facilities or tapping areas with established resources, spurring geothermal startups such as Fervo Energy and Sage Geosystems to use next-generation technologies to unlock new areas for development.
But Hoiland told me that in many cases, conventional geothermal plants will prove to be the simplest, most cost-effective path to growth.
Zanskar’s new site, dubbed Pumpernickel, has long drawn interest from potential geothermal developers given that it’s home to a cluster of hot springs. But while both oil and gas companies and the federal government have drilled exploratory wells here intermittently since the 1970s, none hit hot enough temperatures for the reservoirs to be deemed commercially viable.
But Zanksar’s AI models — trained on everything from decades old geological and geophysical data sets to newer satellite and remote sensing databases — indicated that Pumpernickel did indeed have adequately hot reservoirs, and showed where to drill for them. “We were able to take the prior data that was seen to be a failure, plug it into these models, and get not just the surface locations that we should drill from, but [the models] even helped us identify what angle and which direction to drill the well,” Hoiland told me.
That’s wildly different from the way geothermal exploration typically works, he explained. Traditionally, a geologist would arrive onsite with their own mental model of the subsurface and tell the team where to drill. “But there are millions of possible models, and there’s no way humans can model all of those fully and quantitatively,” Hoiland told me, hence the industry’s low success rate for exploratory wells. Zanskar can, though. By modeling all possible locations for geothermal reservoirs, the startup’s tools “create a probability distribution that allows you to make decisions with more confidence.”
To build these tools, Hoiland and his cofounder, Joel Edwards, both of whom have backgrounds in geology, tracked down and acquired long forgotten analog data sets mapping the subsurface of regions that were never developed. They digitized these records and fed them into their AI model, which is also trained on fresh inputs from Zanksar’s own data collection team, a group the company launched three years ago. After adding all this information, the team realized that test wells had been drilled in only about 5% of the “geothermally prospective areas of the western U.S.,” leaving the startup with no shortage of additional sites to explore.
“It’s been nine years since a greenfield geothermal plant has been built in the U.S.,” Edwards told me, meaning one constructed on land with no prior geothermal development. “So the intent here is to restart that flywheel of developing greenfield geothermal again.” And while Zanskar would not confirm, Axios reported earlier this month that the company is now seeking to raise a $100 million Series C round to help accomplish this goal.
In the future, Zanskar plans to test and develop sites where exploratory drilling has never even taken place, something the industry essentially stopped attempting decades ago. But these hitherto unknown sites, Edwards said, is where he anticipates “most of the gigawatts” are going to come from in the future.
Hoiland credits all this to advances in AI, which he believes will allow geothermal “to become the cheapest form of energy on the planet,” he told me. Because “if you knew exactly where to drill today, it already would be.”
On EPA’s climate denial, virtual power plants, and Europe’s $50 billion climate reality
Current conditions: In the Atlantic, Tropical Storm Gabrielle is on track to intensify into a hurricane by the weekend, but it’s unlikely to affect the U.S. East Coast • Most of Vermont, New Hampshire, and Maine are under “severe” drought warning • Southeastern Nigeria is facing flooding.
The Federal Reserve announced Wednesday its first interest rate cut of the year, a quarter percentage point drop that aims to bring the federal funds rate down to between 4% and 4.25%. This may, Heatmap’s Matthew Zeitlin reported, “provide some relief to renewables developers and investors, who are especially sensitive to financing costs.” As Advait Arun, a climate and infrastructure analyst at the Center for Public Enterprise, told him: “high rates are never going to be exactly a good thing … it’s going to be good that we’re finally seeing cuts.”
Since solar and wind rely on basically free fuel, the bulk of developers’ costs to build panels or turbines are upfront. That requires borrowing money, meaning interest rates have an outsize impact on the total cost of renewable projects. Renewables carry more debt than fossil fuel plants. When interest rates rise by 2 percentage points, the levelized cost of electricity for renewables rises by 20%, compared to 11% for a gas fired plant, according to a report last year by the energy consultancy Wood Mackenzie.
The United States’ leading scientific advisory body issued what The New York Times called a “major report” on Wednesday detailing “the strongest evidence to date that carbon dioxide, methane, and other planet-warming greenhouse gases are threatening human health.” The study, published by the National Academies of Sciences, Engineering, and Medicine, stands athwart the Environmental Protection Agency’s proposal to revoke the endangerment finding. Established in 2009, the legal determination that planet-heating gases cause harm to human health means that the Clean Air Act can be used to underpin regulations on emissions. But the Trump administration proposed rescinding the finding and insisted it could “cast significant doubt” on its accuracy. “
“It’s more serious and more long term damage for them to try to rescind the underlying endangerment finding because depending on what the Supreme Court does with that, it could knock out a future administration from trying to bring it back,” Harvard Law School’s Jody Freeman told Heatmap’s Emily Pontecorvo in July. “Now that would be the nuclear option. That would be their best case scenario. I don’t think that’s likely, but it’s possible.”
Get Heatmap AM directly in your inbox every morning:
It’s an unlikely scenario. But if all U.S. households built rooftop solar panels and batteries, and adopted efficient electric appliances, the country could offset all the growing demand from data centers. That’s according to a new report by the pro-electrification nonprofit Rewiring America. “Electrifying households is a direct path to meeting the growing power needs of hyperscale data centers while creating a more flexible, resilient, cost-effective grid for all,” Ari Matusiak, the chief executive of Rewiring America, said in a statement. “The household doesn’t have to be a passive energy consumer, at the whim of rising costs. Instead, it can be the hero and, with smart investment, the foundation of a more reliable and affordable energy future.”
With new gas plants, nuclear reactors, and geothermal stations in the works, the U.S. is nowhere close to following a maximalist vision of distributed resources. But the findings highlight how much additional power could be generated on residential rooftops across the U.S. that, if combined with virtual power plant software, could comprise a large new source of clean electricity.
A scorecard highlighting all the ways the virtual power plant industry has grown.Wood Mackenzie
That isn’t to say virtual power plants aren’t having something of a moment. New data from Wood Mackenzie found that virtual power plant capacity expanded 13.7% year over year to reach 37.5 gigawatts. California, Texas, New York, and Massachusetts are the leading states, representing 37% of all VPP deployments. The market last year “broadened more than it deepened,” the consultancy’s report found, with the number of deployments, offtakers, and policy support spurring more adoption. But the residential side remains modest. Their share of the VPP wholesale market’s capacity increased to 10.2% from only about 8.8% last year, “still reflecting market barriers to small customers,” such as access to data and market rules.
“Utility program caps, capacity accreditation reforms, and market barriers have prevented capacity from growing as fast as market activity,” Ben Hertz-Shargel, global head of grid edge for Wood Mackenzie, said in a statement. He added that, “while data centers are the source of new load, there’s an enormous opportunity to tap VPPs as the new source of grid flexibility.”
Record-breaking heat, droughts, fires, and floods cost the European economy at least 43 billion euros, or $50 billion, a new European Central Bank study found. The research, presented this week to European Union lawmakers, used a model based on weather data and estimates of historical impact of extreme weather on 1,160 different regions across the 27-nation bloc. “The true costs of extreme weather surface slowly because these events affect lives and livelihoods through a wide range of channels that extend beyond the initial impact,” Sehrish Usman, an assistant professor at the University of Mannheim who led the study with two economists from the European Central Bank, told The New York Times.
Secretary of Energy Chris Wright believes nuclear fusion plants will be pumping electricity onto grids no later than 2040. In an interview this week with the BBC while traveling in Europe, Wright said he expected the technology to be commercialized in as little as eight years. “With artificial intelligence and what's going on at the national labs and private companies in the United States, we will have that approach about how to harness fusion energy multiple ways within the next five years," Wright told the broadcaster. “The technology, it'll be on the electric grid, you know, in eight to 15 years.” As Heatmap’s Katie Brigham put it recently, it’s “finally, possibly, almost time for fusion.”
Lower borrowing costs aren’t enough to erase the threat of tariffs and Trump.
It won’t rescue the renewables industry, but at least it’s something.
The Federal Reserve announced today that it will cut the federal funds rate by 0.25 percentage points, bringing it down to between 4% and 4.25%. Fed officials also projected quarter-point rate cuts at the last two meetings of the Federal Open Markets Committee this year.
This may provide some relief to renewables developers and investors, who are especially sensitive to financing costs. “On the financing side, high rates are never going to be exactly a good thing,” Advait Arun, a climate and infrastructure analyst at the Center for Public Enterprise, told me. “I think in this case, it’s going to be good that we’re finally seeing cuts.”
Because the fuel for solar and wind energy is essentially free, the lion’s share of the cost to develop these energy sources comes up front, meaning that interest rates can have a disproportionate effect on how projects pencil out. Renewable projects also tend to carry more debt than fossil fuel projects, according to energy consultancy Wood Mackenzie. When interest rates rise by 2 percentage points, the consultancy estimated, the levelized cost of electricity for renewables rises by 20%, compared to 11% for a gas-fired power plant, which might have higher operating costs but less need to borrow.
But the challenges for the renewables industry go well beyond financing. Developers are still wondering how they will be able to use Chinese-linked components without losing eligibility for clean energy tax credits. Those tax credits now come with a ticking clock after the passage of this summer’s One Big Beautiful Bill Act, which shortened the eligibility period for wind and solar projects. The Treasury Department also tightened the definition of what it means to “start construction,” making qualification even more of a race. All the while, the Trump administration’s regulatory assault on the sector, especially wind, has led to project cancellations across the industry.
“High interest rates obviously impact the business, but there are a lot of other headwinds and other things going wrong, as well,” Gautam Jain, a senior research scholar at the Center on Global Energy Policy at Columbia University, told me. “If anything, compared to the beginning of the year, rates have come down quite a bit.”
Maheep Mandloi, an analyst at the investment bank Mizuho Securities, wrote in a note to clients that renewable stocks rose last week in part because investors saw yields falling on 10-year government bonds. Ten-year Treasuries are a widely used benchmark for corporate debt, and when they get cheaper, it often means that companies can access financing more cheaply.
Falling 10-year yields are also a sign that the market anticipates a Fed rate cut. So far this year, the 10-year Treasury bond yield has fallen from 4.57% to 4.00% as of Wednesday afternoon after the rate cut was announced.
Lower borrowing costs are a welcome transition for the industry. Borrowing costs started to rise dramatically in 2022, as the Fed hiked interest rates to combat the worst inflation the U.S. had seen since the early 1980s. Annual price increases had been bouncing around or even below 2% since the 2008 recession before climbing to as high as 9% in the summer of 2022, following Russia’s invasion of Ukraine, which led to an energy price shock. The uneven and stimulus-fueled economic recovery from Covid-19 also created price instability throughout the economy, including the renewable energy industry.
Renewable energy businesses in particular were hammered by higher interest rates, as well as higher costs for commodities like steel and for final products like solar panels.
Even as unprecedented government support flowed into the renewables industry from the Inflation Reduction Act, signed in August 2022, clean energy stocks continued to stagnate, with the iShares Clean Energy ETF falling over 30% from the beginning of the Biden administration through the end of 2023. (Despite the assault from the Trump administration, the index has actually risen about 30% so far this year after falling in the fall and winter of 2024, as uncertainty around the IRA’s tax credits has dissipated.)
One of the poster children for renewables dysfunction is the Danish wind developer Orsted, which has been a victim of just about every brickbat thrown at the industry. In its most recent financial statement, the company said that its future earnings estimates were imperiled by “assumptions with major uncertainty,” which included “investment tax credits, interest rates, imposed tariffs in the U.S., and the supply chain.”
Home solar giant Sunrun, too, has cited financing stresses. In its most recent quarterly report, the company disclosed that “rising interest rates, including recent historic increases starting in 2021 … [are] reducing the proceeds we receive from certain Funds.” It also acknowledged that “because our financing structure is sensitive to volatility in interest rates, higher rates increase our cost of capital and may decrease the amount of capital available to us to finance the deployment of new solar energy systems.” High rates, the company disclosed, “have impacted and may continue to impact our business and financial results.”
Even as rates come down, the renewable industry still has the Trump administration to contend with. The various agencies of the executive branch have shown little hesitation about getting in the way of renewable energy development, even for projects that are already nearly complete. The Treasury Department also has yet to issue guidance on complying with OBBBA’s rules about sourcing from Chinese suppliers, prolonging uncertainty for many in the industry. Trump’s tariff policy, too, remains a potential wildcard, as developers await a Supreme Court ruling on the legality of the president’s efforts thus far.
“In terms of being able to build more supply with the benefit of lower financing costs,” Arun told me, “I think this is where we’re running into all of the issues with delays in procuring components — the uncertainty regarding whether the tariffs will be struck down or not, and of course, changes to the inflation Reduction Act through the OBBBA.”
Last week, analysts at Rhodium Group projected that Trump’s policies could slow U.S. progress on reducing emissions by more than half.
For renewables developers, the rate cuts may be welcome, but everything else — and there’s a lot of everything else — may be what really matters, Jain told me. “All those things add additional uncertainty, and anybody who’s in the space will be aware that more could come,” he said. “Of course, lower rates will help, but it’s a combination of the two.”