You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A counter-proposal for the country’s energy future.

American electricity consumption is growing for the first time in generations. And though low-carbon technologies such as solar and wind have scaled impressively over the past decade, many observers are concerned that all this new demand will provide “a lifeline for more fossil fuel production,” as Senator Martin Heinrich put it.
In response, a few policy entrepreneurs have proposed novel regulations known as “additionality” requirements to handle new sources of electric load. First suggested for electrolytic hydrogen, additionality standards would require that subsidized hydrogen producers source their electricity directly from newly built low-carbon power plants; in a Heatmap piece from September, Brian Deese and Lisa Hansmann proposed similar requirements for new artificial intelligence. And while AI data centers were their focus, the two argued that additionality “is a model that can be extended to address other sectors facing growing energy demand.”
There is some merit to additionality standards, particularly for commercial customers seeking to reduce their emissions profile. But we should be skeptical of writing these requirements into policy. Strict federal additionality regulations will dampen investment in new industries and electrification, reduce the efficiency of the electrical grid through the balkanization of supply and demand, and could become weapons as rotating government officials impose their views on which sources of demand or supply are eligible for the standards. The grid and the nation need a regulatory framework for energy abundance, not burdensome additionality rules.
After decades of end-use efficiency improvements, offshoring of manufacturing, and shifts toward less material-intensive economies, a confluence of emerging factors are pushing electricity demand back up again. For one, the nation is electrifying personal vehicles, home heating, and may do the same for industrial processes like steel production in the not-too-distant future, sparked by a combination of policy and commercial investment. Hydrogen, which has long been a marginal fuel, is attracting substantial interest. And technological innovation is leading to whole new sources of electric load — compute-hungry artificial intelligence being the most immediate example, but also large-scale critical minerals refining, indoor agriculture like alternative protein cultivation and aquaculture, and so on.
In recent years, clean energy has seemed to be on an unstoppable path toward dominating the power sector. Coal-fired generation has been in terminal decline in the United States as natural gas power plants and solar and wind farms have become more competitive. Flexible gas generation, likewise, is increasingly crowded out by renewables when the wind is blowing and the sun shining. These trends persisted in the context of stable electricity load. But even as deployment accelerates, low-carbon electricity supply may not be able to keep up with the surprisingly robust growth in demand. The most obvious — though not the exclusive — way for utilities and large corporates to meet that demand is often with new or existing natural gas capacity. Even a few coal plants have delayed retirement, reportedly in response to rising demand and reliability concerns.
Given the durable competitiveness of coal and especially natural gas, some form of additionality requirement might make sense for hydrogen production in particular, since hydrogen is not just a nascent form of electric load but a novel fuel in its own right. Simply installing an electrolyzer at an existing coal or natural gas plant could produce hydrogen that, from a lifecycle perspective, would result in higher carbon emissions, even if it displaces fossil fuels like gas or oil in final consumption. Even so, many experts caution that overly strict additionality standards for hydrogen at this stage are overkill, and may smother the industry in its crib.
Likewise, large corporate entities and electricity customers adopting additionality requirements for their own operations can bolster investment in so-called “clean firm” generation like nuclear, geothermal, and fossil fuels with carbon capture. In just the past month, Google announced plans to back the construction of new small nuclear reactors, and Microsoft announced plans to purchase electricity for new data centers from the shuttered Three Mile Island power plant, the plant made famous by the 1979 meltdown but which only closed down in 2019. Three Mile Island’s $100-per-megawatt-hour price tag would have been unthinkable just a few years ago but is newly attractive.
Notice the problem Microsoft is trying to solve here: a lack of abundant, reliable electricity generation. Outdated technology licensing, onerous environmental permitting processes, and other regulatory barriers are obstructing the deployment of renewables, advanced nuclear energy, new enhanced geothermal technologies, and low-carbon sources. Additionality fixes none of these issues. Of course, Deese and Hansmann propose “a dedicated fast-track approval process” for verifiably additional low-carbon generation supplying new sources of AI load. Yet this should be the central effort, not the after-the-fact add-on. The back and forth over additionality rules for the clean hydrogen tax credit is a case in point. The rules for the tax credit will (likely) be finalized by January, but lawsuits already loom over them. Expanding this contentious additionality requirement to apply to broad use cases will be even more contentious without solving the actual shortage data center companies care about. Conversations about additionality are a distraction and misplace the energies of policymakers and staff.
Substituting one regulatory thicket for another is a recipe for stasis. Instead of adding more red tape, we should be working to cut through it, fast-tracking the energy transition and fostering abundance.
With such broad requirements, what’s to stop future administrations from expanding them to cover electric vehicle charging, electric arc furnace steelmaking, alternative protein production, or any politically disfavored source of new demand? Could a second Trump Administration use additionality to punish political enemies in the tech industry? Could a Harris Administration do the same? What if a future administration maintained additionality standards for new sources of load, but required that the electricity come from fossil fuels instead of low-carbon sources?
Zero-sum regulatory contracts between sources of electricity supply and demand are not simply at risk of becoming a tool for handing out favors on a partisan basis — they already are one. Two pieces of model legislation proposed at the July meeting of the American Legislative Exchange Council, an organization of conservative state legislators that collaborate to write off-the-shelf legislative measures, would require public utility commissions to prioritize dispatchable generation and formally discourage intermittent renewable sources like solar and wind. One of the proposals suggests leaning on state attorneys general to extend the lifespans of coal plants threatened with retirement.
These proposals did not move forward this year, but it is unlikely that the motivating force behind them is exhausted. And whatever one thinks of the relative merits of intermittent versus firm generation, ALEC’s proposals demonstrate just how easily gamed regulations like additionality could be and the risks of relying on administrative discretion instead of universal, pragmatic rules.
This is not how the electric grid is supposed to work. The grid is, if not an according-to-Hoyle public good, a shared public resource, providing essential services to customers large and small. Homeowners don’t have to sign additionality contracts with suppliers when they buy an electric car or replace their gas furnace with an electric heat pump. Everyone understands that such requirements would slow the pace of electrification and investment in new industries. The same holds for corporate customers and novel sources of load.
The real problem facing the AI, hydrogen, nuclear, geothermal, and renewables industries is an inability to build. There are more than enough clean generators queueing to enter the system — 2.6 terawatts at last count, according to the Lawrence Berkeley National Laboratory. The unfortunate reality, however, is that just one in five of these projects will make it through — and those represent just 14% of the capacity waiting to connect. Still, this totals about 360 gigawatts of new energy generation over the next few years, much more than the predicted demand from AI data centers. Obstacles to technology licensing, permitting, interconnection, and transmission are the key bottlenecks here.
Would foregoing additionality requirements and loosening regulatory strictures on technology licensing and permitting increase the commercial viability of new or existing fossil fuel capacity, as Deese and Hansmann warn? Perhaps, on some margin. But for the foreseeable future, the energy projects and infrastructure most burdened by regulatory requirements will be low-carbon ones. Batteries, solar, and wind projects make up more than 80% of the queue added in 2023. Meanwhile, oil and gas benefit from categorical exclusions under the National Environmental Policy Act, while low-carbon technologies are subject to stricter standards (although three permitting bills recently passed the House, including one that waives these requirements for new geothermal projects).
Consider that 40% of projects supported by the Inflation Reduction Act are caught up in delays. That is $84 billion of economic activity just waiting for the paperwork to be figured out, according to the Financial Times. Additionality requirements are additional boxes to check that almost necessarily imply additional delays. Permitting reform makes them redundant and unnecessary for a cleaner future.
This underscores perhaps the most essential conflict between strict additionality requirements and clean energy abundance. Ensuring that every new policy and every new source of demand allows for absolutely zero additional fossil fuel consumption or emissions will prove counterproductive to global decarbonization in the long run. Natural gas is still reducing emissions on the margin in the United States. Over the past decade, in years with higher natural gas prices, coal generation has ticked up, indicating that the so-called “natural gas bridge” has not yet reached its terminus. Even aggressive decarbonization scenarios now expect a substantial role for natural gas over the coming decades. And in the long term, natural gas plants may prove wholly compatible with abundant, low-carbon electricity systems if next-generation carbon capture technologies prove scalable.
The United States is the world’s energy technology R&D and demonstration laboratory. If policies to prune marginal fossil fuel consumption here stall domestic investment and scaling of low-carbon technologies — as current permitting regulations already do, and proposed additionality requirements would do — then we will not only slow U.S. decarbonization, but also inhibit our ability to export affordable and scalable low-carbon technologies abroad.
Environmental progress’s surest path is in speeding up. For that to happen, we need processes that allow for rapid deployment of clean energy solutions. Expediting technology licensing, fast-tracking federal infrastructure permitting, and finding opportunities for quicker and more rational interconnections should be first and foremost.
The real solution lies in building a regulatory environment where energy abundance can flourish. Clearing the path for clean energy development, we can achieve a future where energy is affordable, reliable, and abundant—a future where the United States leads in both decarbonization and economic growth. It’s time to stop adding barriers and start speeding up progress.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.