Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

Carbon Capture Heads Out to Sea

Seabound is out to scrub carbon from shipping exhaust.

Mirror images of ships.
Heatmap Illustration/Getty Images

If the global shipping industry were its own nation, it would be the sixth largest emitter of carbon dioxide, belching about a billion tons of the stuff into the atmosphere every year. And not to state the obvious, but the sector isn’t going anywhere. Not only is cargo shipping the means by which 80% of global trade is carried out, but transporting goods via ship is actually much more fuel-efficient than the alternatives.

That means that slashing shipping emissions, which account for nearly 3% of the global total, is 100% necessary for a decarbonized future. But unlike most other industries, there’s a global regulatory body — the International Maritime Organization — that can set goals and mandates to ensure that decarbonization happens on schedule. The IMO is targeting net-zero shipping emissions by 2050, with a 40% reduction in the carbon intensity of international shipping by 2030 compared to 2008. And while these goals aren’t binding, forthcoming measures set to be developed and adopted late next year will be.

Shipping decarbonization is still in its early infancy though, meaning the pathway to net zero remains highly unclear — and that there’s lots of room for technological innovation. One company that’s gained traction in the past few years is aiming more at the “net” than the “zero” part of that equation — rather than develop clean fuels, UK-based startup Seabound is retrofitting ships with onboard carbon capture devices. The process uses a technology called calcium-looping that allows the company to capture carbon from the ship’s exhaust system, essentially locking it up in a limestone rock, and then process it later on land.

Though it’s relatively unproven, onboard carbon capture has the potential to gain ground quickly if it can be shown to work at scale. But precisely because thetechnology is unproven, the industry is far from unified in the idea that it will play a consequential role in the final decarbonization picture. “Alternative fuels are probably going to be the dominant solution,” Aparajit Pandey, shipping decarbonization lead at the think tank RMI, told me.

Indeed, low and zero-carbon fuels made from green methanol or ammonia (which are themselves made from green hydrogen) are widely considered the leading contenders in this space — while methanol does produce some CO2 when burned, it’s much cleaner than fossil fuels due to its low carbon and high oxygen content, and ammonia contains no carbon at all. But it could take a while to ramp up production to meet the industry’s ravenous fuel demand. Plus, repowering an existing ship with ammonia or methanol requires an expensive and time-consuming engine retrofit, and turning over the entire global fleet could take decades.

Other ideas and approaches abound. Biofuels? They come with a familiar host of concerns, plus fuel production is inherently limited by the amount of biomass that’s available. Solar-powered ships? Folks are trying, but current panels aren’t nearly energy dense enough to power a freighter on their own. Electrifying ships? It definitely makes sense for smaller vessels like ferries and tugboats, but batteries also take up a lot of space that could otherwise be used for freight. They also need to be either charged or swapped, requiring infrastructure that just doesn’t exist yet.

“Carbon capture is probably the only way that you can get a meaningful amount of emissions reduction in any near term way,” Clea Kolster, partner and head of science at Lowercarbon Capital, told me, referring to the cargo shipping industry. Lowercarbon led Seabound’s $4.4 million seed round two years ago.

This is not a zero sum calculation, however. Seabound CEO Alisha Fredricksson told me that she believes both methanol and ammonia fuels have a significant role to play. “They’re just taking a long time to develop. And so we won't have sufficient supply for another 10, 20 years or so.”

Seabound’s system works by reacting the CO2 in a ship’s exhaust gas with calcium oxide to form solid calcium carbonate (aka limestone). This essentially locks the carbon away in small pebbles, which are unloaded when the ship docks. Because Seabound doesn’t purify or compress the CO2 onboard, the company says its system requires “negligible” amounts of additional fuel to operate. Once on land, the plan is for Seabound to either sell the limestone for use as a building material or to separate the CO2 and calcium oxide; the latter could then be reused to capture more carbon, while the former could either be used to produce methanol shipping fuel or geologically sequestered.

There are other companies attempting onboard carbon capture: Value Maritime, Mitsubishi, and Wartsila, among others, all of which rely on amine-based systems, a well-proven technology for carbon removal on land. But Fredricksson told me that miniaturizing these systems to work on ships is much more capital and energy intensive than Seabound’s decoupled approach, which allows the company to capture the CO2 at sea and process it later on land. This older tech also produces liquified CO2, which she says ports are less equipped to handle than a solid material like limestone.

Seabound completed its maiden voyage earlier this year, leaving from Turkey and traveling around the Middle East in a months-long trip that put their tech to the test in the real world for the first time. The system was installed on a freighter from Lomar Shipping, and was able to capture carbon at 78% efficiency and sulfur, a pollutant that can cause respiratory problems and acid rain, at about 90% efficiency while it was running.

Fredricksson and the company’s backers deemed the voyage a great success. “We hit the results we were looking for,” she told me. But in the grand scheme of things, the pilot was still quite small-scale. Seabound’s system only captured about 1 metric ton of carbon per day, a tiny percent of the ship’s overall emissions. That’s because the system was only running for a total of around 100 hours during the two months it was at sea. The objective, Fredricksson told me, was not to capture as much CO2 as possible, but to demonstrate the technical feasibility of the system and prepare for future scale-up.

Ultimately, the company hopes to capture up to 95% of a ship’s carbon emissions. But similar to batteries, this involves a space-related tradeoff. A larger, more effective carbon capture system would mean less room for cargo. “So I think the main goal for our engineering team over time will be to increase the efficiency to pack more and more tons of CO2 into each container,” Fredricksson told me. Right now, she says that 10- to 14-day voyages are Seabound’s sweet spot, given the size of its systems. The company hopes to build its first full scale system by the end of this year and start delivering to commercial customers in 2025.

The degree of interest in Seabound’s systems will depend in no small part on forthcoming directives from the IMO. As of now, there’s a rule mandating that ships calculate their energy efficiency and report it to the organization. Fredricksson says it’s already getting harder to sell ships with lower ratings. Pandey said he thinks future regulations could resemble the FuelEU initiative, which requires a steady decrease in the emissions intensity of shipping fuels over time, from 2% in 2025 to up to 80% by 2050.

While it’s unclear how a rule like this would incorporate onboard carbon capture into its framework, Pandey told me that if Seabound can prove out its tech on a larger scale, the approach is promising. “Of the carbon capture solutions that are out there, they’re probably the most innovative,” he told me. But he’s not sure that the company’s aim to commercialize by next year is realistic. “From now to prove it out to scale, who knows? Five years, six years, seven years, something like that,” Pandey guessed, “I think it could be viable, but it's so early.”

A recent report on the potential of onboard carbon capture from DNV, an organization that maintains technical standards for ships, agrees that a longer timeline is more likely, stating that, “With the wider [carbon capture, utilization, and storage] infrastructure in development, scaling up of the maritime carbon capture network will take time and is expected to reach a broader uptake after 2030.”

Since returning from its first voyage, Seabound has reconfigured its system to fit into modified shipping containers that are intended to reduce retrofit time and costs. Now, if a shipowner wants to use Seabound’s system, the primary modification involves installing pipes to route exhaust from the ship’s smokestack or funnel to the company’s carbon capture device. Fredricksson estimates installation costs will be on the order of $100,000 per ship, though that will vary greatly depending on vessel size and type.

But if that estimate is in the right ballpark, it would be orders of magnitude cheaper than retrofitting a ship with an engine built for ammonia or methanol fuels. And yet Pandey isn’t so sure ship operators will be keen on either upgrade. “My strong guess is if they’re not going to retrofit a vessel for a new engine, they’re also not going to retrofit it for carbon capture,” Pandey told me.

Fredricksson expects Seabound will raise a Series A round later this year or early next, to help get its first commercial units off the line. And apparently, there’s been loads of investor interest. “Shipping and maritime is new for the climate tech ecosystem,” Fredricksson told me, meaning there’s lots to be gained by moving quickly and early. “There is so much CO2 out there being emitted by ships,” Fredricksson said, “and not a lot of solutions yet going after them.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate

AM Briefing: The Greenpeace Verdict

On Energy Transfer’s legal win, battery storage, and the Cybertruck

The Greenpeace Verdict Is In
Heatmap Illustration/Getty Images

Current conditions: Red flag warnings are in place for much of Florida • Spain is bracing for extreme rainfall from Storm Martinho, the fourth named storm in less than two weeks • Today marks the vernal equinox, or the first day of spring.

THE TOP FIVE

1. Jury sides with pipeline company in Greenpeace lawsuit

A jury has ordered Greenpeace to pay more than $660 million in damages to one of the country’s largest fossil fuel infrastructure companies after finding the environmental group liable for defamation, conspiracy, and physical damages at the Dakota Access Pipeline. Greenpeace participated in large protests, some violent and disruptive, at the pipeline in 2016, though it has maintained that its involvement was insignificant and came at the request of the local Standing Rock Sioux Tribe. The project eventually went ahead and is operational today, but Texas-based Energy Transfer sued the environmental organization, accusing it of inciting the uprising and encouraging violence. “We should all be concerned about the future of the First Amendment, and lawsuits like this aimed at destroying our rights to peaceful protest and free speech,” said Deepa Padmanabha, senior legal counsel for Greenpeace USA. The group said it plans to appeal.

Keep reading...Show less
Yellow
Fusion.
Heatmap Illustration/Getty Images, Thea Energy

Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.

Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”

Keep reading...Show less
Yellow
Electric Vehicles

Why BYD Keeps Shocking the World

The Chinese carmaker says it can charge EVs in 5 minutes. Can America ever catch up?

The BYD logo as a rabbit.
Heatmap Illustration/Getty Images

The Chinese automaker BYD might have cracked one of the toughest problems in electric cars.

On Tuesday, BYD unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes. That’s made possible because of a 1,000-volt architecture and what BYD describes as matching charging capability, which could theoretically add nearly one mile of range every second.

Keep reading...Show less