You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Chatting with RE Tech Advisors’ Deb Cloutier about data centers, lifecycle costs, and the value of federal data.
Last fall, my colleagues and I at Heatmap put together a comprehensive (and award-winning!) guide on how to Decarbonize Your Life. Though it contained information on everything from shopping for an EV to which fake meats are actually good, as my colleague Katie Brigham noted, “an energy-efficient home needs energy-efficient … gadgets to fill it up.” So we also curated lists of climate-conscious stoves, heaters, and washer-dryers — recommendations we made by talking to experts, but also by looking closely at appliances’ Energy Star certifications.
You’ve probably relied on these certifications, too. Overseen by the Environmental Protection Agency, Energy Star labels are recognized by 90% of Americans as indicating that an appliance is top of its class when it comes to saving electricity and money. According to the government’s estimates, the voluntary program has saved Americans $500 billion since it began in 1992.
But now all that appears to be reaching its end: Last week, EPA leadership told staff that the division that oversees the Energy Star efficiency certification program for home appliances will be eliminated as part of the Trump administration’s ongoing cuts and reorganization (although the president has also long pursued a vendetta against low-flow showerheads and dishwashers that “don’t work”).
To better understand the ramifications of such a decision, I spoke this week with Deb Cloutier, the president and founder of the sustainability firm RE Tech Advisors and one of the original architects of Energy Star. She provided technical guidance and tools as a consultant during the program’s development stages of the program, and later worked as a strategic advisor for the Department of Energy’s Better Buildings Initiative. Our conversation has been lightly edited and for length and clarity.
You’ve been involved in the Energy Star program since the beginning. Can you tell me a little about what the atmosphere was like when it was established back in 1992? Was there resistance to it from appliance manufacturers or Republicans at that time?
Energy Star represented a voluntary public-private partnership, meaning a nonregulatory approach to engaging the business community and catalyzing the adoption of strategic energy management. So at the time, it was the first of its kind. I wouldn’t say folks were just like, “Yes, let’s do this.” It was really new and different.
The other thing is that at that time, we had come out of the oil crisis of the 1970s, and people were starting to recognize the importance of where and how our energy was being produced. But we weren’t focused on thinking about it as an opportunity. For office buildings, the single largest controllable operating expense is your energy or utilities expenses; if the Environmental Protection Agency or the government could build awareness, develop tools, and help businesses understand how they could invest in energy efficiency and how that would translate to financial performance results for them — it was a great experiment. And it turns out that it’s the single most successful voluntary program we’ve had to date, saving over $5 billion annually.
It’s clear how losing Energy Star would harm consumers, but I’m curious to hear from you about how this is also bad for building owners and residents. What is the cost of losing this program, especially from a climate perspective?
The most important contribution of the EPA’s Energy Star program is that it has created a national standard to benchmark and measure efficiency and energy performance. You can’t manage what you don’t measure, and consistency across building types, ages, and sizes — it’s pretty complicated to make an apples-to-apples comparison.
One of the tools and resources that Energy Star has created, which I see as being embedded in the fabric of American businesses, is their benchmarking tool called Portfolio Manager. It is tied to dozens of state and local jurisdiction policies and legislation that range from building energy disclosure to mandatory best practices to maintaining and operating buildings and emissions thresholds. So the Energy Star rating system is tied not only to how organizations assess their whole building performance, but also to how it tracks and measures progress towards efficiency improvements and then gives a certification or recognition for the most highly efficient ones.
Another thing folks tend not to consider is the relationship between energy efficiency and grid stability. Energy Star-certified appliances, homes, buildings, and industrial facilities help to reduce peak demand, which improves grid stability and resilience. It also lowers the risk of brownouts and blackouts. Think about the growing demands of data center computing and AI models — we need to bring more energy onto the grid and make more space for it. People sometimes don’t realize that it is really dependent on a consistent, impartial standard as a level setting.
If you look at some of the statistics, they’re projecting that investments in new data centers will grow at more than a 20% compound annual growth rate, and that’s equal to $59 billion. It’s just astronomical how much more energy demand there will be. If you try to put that on top of a grid that is fairly antiquated and very inefficient in the way it generates, transmits, and distributes energy, then you are intensifying the potential problem.
I’ve heard about manufacturers or an outside energy or appliance group possibly setting up a replacement program if Energy Star is eliminated. What is the advantage of having the government specifically oversee Energy Star?
Three or four things make the federal government the most unique entity and the most well-equipped to oversee the Energy Star program. First, they have access to large data sets using CBECS, the Commercial Building Energy Consumption Survey, and RECS, the Residential Energy Consumption Survey. The government inherently is an impartial, unbiased group, and entities are willing to share their data with it, and that would not be the same if it were a third party or a privatized group. That data set is instrumental in creating the standards that allow you, for products, to evaluate the most energy efficient, or for buildings, to develop a one-to-100 score. Energy Star allows the top 25% to be recognized as exemplary energy performance.
The government also has access to the National Renewable Energy Laboratory resources; they have the data, and I believe they have the impartiality and the trust. Today, the Energy Star brand has over 90% consumer recognition. I would be concerned if manufacturers or others would produce confusion in the marketplace related to a single little blue label.
Is there anything consumers should know about making decisions or navigating their choices if we return to a pre-1992 landscape?
In the absence of an Energy Star label, one thing we can do is help consumers understand that it is not just about the first cost of a dishwasher or a washing machine or renting an apartment. It’s about total lifecycle costs. What the Energy Star label does is it helps you have confidence that [an appliance] will use the least amount of energy necessary to run over its lifetime. But if your product or apartment is full of less efficient appliances, you have to think about how much more energy you will pay for over that life cycle. That’s sometimes a difficult concept for folks to understand: They think of their first cost, not the cost to operate or maintain something over time, which is higher if it’s not energy efficient.
Is there anything else people often overlook when considering the ramifications of losing Energy Star?
Energy efficiency is important for all constituencies and all sectors of the U.S. economy. Some folks will be harder hit by this, and by that, I mean low-income housing, schools, hospitals, and public sector buildings. Those facilities often have very limited budgets, so energy efficiency is one of the lowest-cost, most effective investments with good returns. But if you’re a low-income family, think about it: If you make less than $33,000 a year for a family of four, your utility bills have an outsized impact on the total cost of living. If the total utility bill is $300 or $400 a month, then utilities represent 10% to 15% of your total income, so efficiency can have an outsized impact.
The other side of that is mission-critical facilities. Having the ability to run lights, air conditioning, and cooling is important for comfort, but in some facilities — like precision manufacturing or biopharmaceuticals, data centers, things of that nature — it becomes a mission-critical area, not a nice-to-have. We can help reduce the amount of energy used by those facilities, extend their useful life, help them maintain their systems longer, and allow those businesses to be more competitive.
What’s your read on how the proposed Energy Star elimination is being discussed right now?
There’s a lot of hyperbole about Energy Star being eliminated — it’s a fait accompli. It is important to note that Energy Star is a line item identified in the statute by Congress for approval for funding. It seems pretty unrealistic, from a judicial standpoint, that it would be able to be eliminated before the end of this fiscal year.
I know that there are many, many representatives, both Republican and Democrats, who support Energy Star. We’ve had 35 years of bipartisan support, and it has been earmarked in congressional law many times, through multiple George H.W. and George W. Bush administrations. And there are a lot of lobbying efforts that I’m personally aware of within the commercial real estate industry and the manufacturing industry, where folks are reaching out and doing calls to action for the House and Senate Appropriations majority members — similar activities to what we did eight years ago when Energy Star was directly under fire.
It seems like such a strange thing for the administration to go after. It’s not like appliance manufacturers were clamoring for this, right?
It’s very vexing to me. I don’t get it. If the Trump administration wants to focus on affordability in American households, energy efficiency isn’t the thing to cut. I’m not sure if it’s getting caught up in the fact that it is in the Office of Atmospheric Pollution Prevention, or because at the Department of Energy’s Better Buildings Program, Biden launched the Better Climate Challenge. I don’t know if it’s because it had some ties to climate, but what’s ironic is that it didn’t start as a climate program. It began as an energy efficiency program, and it’s always been focused on businesses and the financial returns on investment — it helps us attract capital and debt for investment in real estate. It’s really disconnected.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Half of all Americans are sweating under one right now.
Like a bomb cyclone, a polar vortex, or an atmospheric river, a heat dome is a meteorological phenomenon that feels, well, a little made up. I hadn’t heard the term before I found myself bottled beneath one in the Pacific Northwest in 2021, where I saw leaves and needles brown on living trees. Ultimately, some 1,400 people died from the extreme heat in British Columbia, Washington, and Oregon that summer weekend.
Since that disaster, there have been a number of other high-profile heat dome events in the United States, including this week, over the Midwest and now Eastern and Southeastern parts of the country. On Monday, roughly 150 million people — about half the nation’s population — faced extreme or major heat risks.
“I think the term ‘heat dome’ was used sparingly in the weather forecasting community from 10 to 30 years ago,” AccuWeather senior meteorologist Brett Anderson told me, speaking with 36 years as a forecaster under his belt. “But over the past 10 years, with global warming becoming much more focused in the public eye, we are seeing ‘heat dome’ being used much more frequently,” he went on. “I think it is a catchy term, and it gets the public’s attention.”
Catching the public’s attention is critical. Heat is the deadliest weather hazard in the U.S., killing more people annually than hurricanes, floods, tornadoes, or extreme cold. “There is a misunderstanding of the risk,” Ashley Ward, the director of the Heat Policy Innovation Hub at Duke University, told me. “A lot of people — particularly working age or younger people — don’t feel like they’re at risk when, in fact, they are.”
While it seems likely that the current heat dome won’t be as deadly as the one in 2021 — not least because the Midwest and Southeastern regions of the country have a much higher usage of air conditioning than the Pacific Northwest — the heat in the eastern half of the country is truly extraordinary. Tampa, Florida reached 100 degrees Fahrenheit on Sunday for the first time in its recorded history. Parts of the Midwest last week, where the heat dome formed before gradually moving eastward, hit a heat index of 128 degrees.
Worst of all, though, have been the accompanying record-breaking overnight temperatures, which Ward told me were the most lethal characteristics of a heat dome. “When there are both high daytime temperatures and persistently high overnight temperatures, those are the most dangerous of circumstances,” Ward said.
Although the widespread usage of the term “heat dome” may be relatively new, the phenomenon itself is not. The phrase describes an area of “unusually strong” high pressure situated in the upper atmosphere, which pockets abnormally warm air over a particular region, Anderson, the forecaster, told me. “These heat domes can be very expansive and can linger for days, and even a full week or longer,” he said.
Anderson added that while he hasn’t seen evidence of an increase in the number of heat domes due to climate change, “we may be seeing more extreme and longer-lasting heat domes” due to the warmer atmosphere. A heat dome in Europe this summer, which closed the Eiffel Tower, tipped temperatures over 115 degrees in parts of Spain, and killed an estimated 2,300 people, has been linked to anthropogenic warming. And research has borne out that the temperatures and duration reached in the 2021 Pacific Northwest heat dome would have been “virtually impossible without human-caused climate change.”
The link between climate change and heat domes is now strong enough to form the basis for a major legal case. Multnomah County, the Oregon municipality that includes Portland, filed a lawsuit in 2023 against 24 named defendants, including oil and gas companies ExxonMobil, Shell, and BP, seeking $50 million in damages and $1.5 billion in future damages for the defendants’ alleged role in the deaths from the 2021 heat dome.
“As we learned in this country when we took on Big Tobacco, this is not an easy step or one I take lightly, but I do believe it’s our best way to fight for our community and protect our future,” Multnomah County Chair Jessica Vega Pederson said in a statement at the time. The case is now in jeopardy following moves by the Trump administration to prevent states, counties, and cities from suing fossil fuel companies for climate damages. (The estate of a 65-year-old woman who died in the heat dome filed a similar wrongful death lawsuit in Seattle’s King County Superior Court against Big Oil.)
Given the likelihood of longer and hotter heat dome events, then, it becomes imperative to educate people about how to stay safe. As Ward mentioned, many people who are at risk of extreme heat might not even know it, such as those taking commonly prescribed medications for anxiety, depression, PTSD, diabetes, and high blood pressure, which interfere with the body’s ability to thermoregulate. “Let’s just say recently you started taking high blood pressure medicine,” Ward said. “Every summer prior, you never had a problem working in your garden or doing your lawn work. You might this year.”
Air conditioning, while life-saving, can also stop working for any number of reasons, from a worn out machine part to a widespread grid failure. Vulnerable community members may also face hurdles in accessing reliable AC. There’s a reason the majority of heat-related deaths happen indoors.
People who struggle to manage their energy costs should prioritize cooling a single space, such as a bedroom, and focus on maintaining a cool core temperature during overnight hours, when the body undergoes most of its recovery. Blotting yourself with a wet towel or washcloth and sitting in front of a fan can help during waking hours, as can visiting a traditional cooling center, or even a grocery store or movie theater.
Health providers also have a role to play, Ward stressed. “They know who has chronic underlying health conditions,” she said. “Normalize asking them about their situation with air conditioning. Normalize asking them, ‘Do you feel like you have a safe place to go that’s cool, that you can get out of this heat?’”
For the current heat dome, at least, the end is in sight: Incoming cool air from Canada will drop temperatures by 10 to 20 degrees in cities like Philadelphia and Washington, D.C., with lows potentially in the 30s by midweek in parts of New York. And while there are still hot days ahead for Florida and the rest of the Southeast, the cold front will reach the region by the end of the week.
But even if this ends up being the last heat dome of the summer, it certainly won’t be in our lifetimes. The heat dome has become inescapable.
On betrayed regulatory promises, copper ‘anxiety,’ and Mercedes’ stalled EV plans
Current conditions: New York City is once again choking on Canadian wildfire smoke • Torrential rain is flooding southeastern Slovenia and northern Croatia • Central Asia is bracing for the hottest days of the year, with temperatures nearing 100 degrees Fahrenheit in Uzbekistan’s capital of Tashkent all week.
In May, the Trump administration signaled its plans to gut Energy Star, the energy efficiency certification program administered by the Environmental Protection Agency. Energy Star is extremely popular — its brand is recognized by nearly 90% of Americans — and at a cost to the federal government of just $32 million per year, saves American households upward of $40 billion in energy costs per year as of 2024, for a total of more than $500 billion saved since its launch in 1992, by the EPA’s own estimate. Not only that, as one of Energy Star’s architects told Heatmap’s Jeva Lange back in May, more energy efficient appliances and buildings help reduce strain on the grid. “Think about the growing demands of data center computing and AI models,” RE Tech Advisors’ Deb Cloutier told Jeva. “We need to bring more energy onto the grid and make more space for it.”
That value has clearly resonated with lawmakers on the Hill. Legislators tasked with negotiating appropriations in both the Senate and the House of Representatives last week proposed fully funding Energy Star at $32 million for the next fiscal year. It’s unclear how the House’s decision to go into recess until September will affect the vote, but Ben Evans, the federal legislative director at the U.S. Green Building Council, said the bill is “a major step in the right direction demonstrating that ENERGY STAR has strong bipartisan support on Capitol Hill.”
A worker connects panels on floating solar farm project in Huainan, China. Kevin Frayer/Getty Images
The United States installed just under 11 gigawatts of solar panels in the first three months of this year, industry data show. In June alone, China installed nearly 15 gigawatts, PV Tech reported. And, in a detail that demonstrates just how many panels the People’s Republic has been deploying at home in recent years, that represented an 85% drop from the previous month and close to a 40% decline compared to June of last year.
The photovoltaic installation plunge followed Beijing’s rollout of two new policies that changed the renewables business in China. The first, called the 531 policy, undid guaranteed feed-in tariffs and required renewable projects to sell electricity on the spot market. That took effect on June 1. The other, called the 430 policy, took effect on May 1 and mandated that new distributed solar farms consume their own power first before allowing the sale of surplus electricity to the grid. As a result of the stalled installations, a top panel manufacturer warned the trade publication Opis that companies may need to raise prices by as much as 10%.
For years now, Fortescue, the world’s fourth-biggest producer of iron ore, has directed much of the earnings from its mines in northwest Australia and steel mills in China toward building out a global green hydrogen business. But changes to U.S. policy have taken a toll. Last week, Fortescue told investors it was canceling its green hydrogen project in Arizona, which had been set to come online next year. It’s also abandoning its plans for a green hydrogen plant on Australia’s northeastern coast, The Wall Street Journal reported.
“A shift in policy priorities away from green energy has changed the situation in the U.S.,” Gus Pichot, Fortescue’s chief executive of growth and energy, told analysts on a call. “The lack of certainty and a step back in green ambition has stopped the emerging green-energy markets, making it hard for previously feasible projects to proceed.” But green hydrogen isn’t dead everywhere. Just last week, the industrial gas firm Air Liquide made a final decision to invest in a 200-megawatt green hydrogen plant in the Netherlands.
The Trump administration put two high-ranking officials at the National Oceanic and Atmospheric Administration on administrative leave, CNN reported. The reasoning behind the move wasn’t clear, but both officials — Steve Volz, who leads NOAA’s satellites division, and Jeff Dillen, NOAA’s deputy general counsel — headed up the investigation into whether President Donald Trump violated NOAA’s scientific integrity policies during his so-called Sharpiegate scandal.
The incident from September 2019, during Trump’s first term, started when the president incorrectly listed Alabama among the states facing a threat from Hurricane Dorian. Throughout the following week, Trump defended the remark, insisting he had been right, and ultimately showed journalists a weather map that had been altered with a black Sharpie market to show the path of the storm striking Alabama. NOAA’s investigation into the incident concluded that Neil Jacobs, the former agency official who backed Trump at the time and is now nominated to serve as chief, succumbed to political pressure and violated scientific integrity rules.
In March, North Carolina’s Republican-controlled Senate passed a bill to repeal the state’s climate law and scrap the 2030 deadline by which the monopoly utility Duke Energy had to slash its planet-heating emissions by 70% compared to 2005 levels. Governor Josh Stein, a Democrat, vetoed the legislation. But on Tuesday, the GOP majorities in both chambers of the legislature plan to vote to override the veto.
Doing so and enacting the bill could cost North Carolina more than 50,000 jobs annually and cause tens of billions of dollars in lost investments, Canary Media’s Elizabeth Ouzts reported. That’s according to a new study from a consultancy commissioned by clean-energy advocates in the state. The analysis is based on data from the state-sanctioned consumer advocate, Public Staff.
For years, a mystery has puzzled scientists: Why did Neanderthal remains show levels of a nitrogen isotope only seen among carnivores like hyenas and wolves that eat more meat than a hominid could safely consume? New research finally points to an answer: Neanderthals were eating putrefying meat garnished with maggots, said Melanie Beasley, an anthropologist at Purdue University. “When you get the lean meat and the fatty maggot, you have a more complete nutrient that you’re consuming.”
Oregon’s Cram Fire was a warning — the Pacific Northwest is ready to ignite.
What could have been the country’s first designated megafire of 2025 spluttered to a quiet, unremarkable end this week. Even as national headlines warned over the weekend that central Oregon’s Cram Fire was approaching the 100,000-acre spread usually required to achieve that status, cooler, damper weather had already begun to move into the region. By the middle of the week, firefighters had managed to limit the Cram to 95,736 acres, and with mop-up operations well underway, crews began rotating out for rest or reassignment. The wildfire monitoring app Watch Duty issued what it said would be its final daily update on the Cram Fire on Thursday morning.
By this time in 2024, 10 megafires had already burned or ignited in the U.S., including the more-than-million-acre Smokehouse Creek fire in Texas last spring. While it may seem wrong to describe 2025 as a quieter fire season so far, given the catastrophic fires in the Los Angeles area at the start of the year, it is currently tracking below the 10-year average for acres burned at this point in the season. Even the Cram, a grassland fire that expanded rapidly due to the hot, dry conditions of central Oregon, was “not [an uncommon fire for] this time of year in the area,” Bill Queen, a public information officer with the Pacific Northwest Complex Incident Management Team 3, told me over email.
At the same time, the Cram Fire can also be read as a precursor. It was routine, maybe, but also large enough to require the deployment of nearly 900 fire personnel at a time when the National Wildland Fire Preparedness Level is set to 4, meaning national firefighting resources were already heavily committed when it broke out. (The preparedness scale, which describes how strapped federal resources are, goes up to 5.) Most ominous of all, though, is the forecast for the Pacific Northwest for “Dirty August” and “Snaptember,” historically the two worst months of the year in the region for wildfires.
National Interagency Coordination Center
“Right now, we’re in a little bit of a lull,” Jessica Neujahr, a public affairs officer with the Oregon Department of Forestry, acknowledged to me. “What comes with that is knowing that August and September will be difficult, so we’re now doing our best to make sure that our firefighters are taking advantage of having time to rest and get rejuvenated before the next big wave of fire comes through.”
That next big wave could happen any day. The National Interagency Fire Center’s fire potential outlook, last issued on July 1, describes “significant fire potential” for the Northwest that is “expected to remain above average areawide through September.” The reasons given include the fact that “nearly all areas” of Washington and Oregon are “abnormally dry or in drought status,” combined with a 40% to 60% probability of above-average temperatures through the start of the fall in both states. Moisture from the North American Monsoon, meanwhile, looks to be tracking “largely east of the Northwest.” At the same time, “live fuels in Oregon are green at mid to upper elevations but are drying rapidly across Washington.”
In other words, the components for a bad fire season are all there — the landscape just needs a spark. Lightning, in particular, has been top of mind for Oregon forecasters, given the tinderbox on the ground. A single storm system, such as one that rolled over southeast and east-central Oregon in June, can produce as many as 10,000 lightning strikes; over the course of just one night earlier this month, thunderstorms ignited 72 fires in two southwest Oregon counties. And the “kicker with lightning is that the fires don’t always pop up right away,” Neujahr explained. Instead, lightning strike fires can simmer for up to a week after a storm, evading the detection of firefighting crews until it’s too late. “When you have thousands of strikes in a concentrated area, it’s bound to stretch the local resources as far as they can go,” Neujahr said.
National Interagency Coordination Center
The National Interagency Fire Center has “low confidence … regarding the number of lightning ignitions” for the end of summer in the Northwest, in large part due to the incredible difficulty of forecasting convective storms. Additionally, the current neutral phase of the El Niño-Southern Oscillation means there is a “wide range of potential lightning activity” that adds extra uncertainty to any predictions. The NIFC’s higher confidence in its temperature and precipitation outlooks, in turn, “leads to a belief that the ratio of human to natural ignitions will remain high and at or above 2024 levels.” (An exploding transformer appears to have been the ignition source for the Cram Fire; approximately 88% of wildfires in the United States have human-caused origins, including arson.)
Periodic wildfires are a naturally occurring part of the Western ecosystem, and not all are attributable to climate change. But before 1995, the U.S. averaged fewer than one megafire per year; between 2005 and 2014, that average jumped to 9.8 such fires per year. Before 1970, there had been no documented megafires at all.
Above-average temperatures and drought conditions, which can make fires larger and burn hotter, are strongly associated with a warming atmosphere, however. Larger and hotter fires are also more dangerous. “Our biggest goal is always to put the fires out as fast as possible,” Neujahr told me. “There is a correlation: As fires get bigger, the cost of the fire grows, but so do the risks to the firefighters.”
In Oregon, anyway, the Cram Fire’s warning has registered. Shortly after the fire broke out, Oregon Governor Tina Kotek declared a statewide emergency with an eye toward the months ahead. “The summer is only getting hotter, drier, and more dangerous — we have to be prepared for worsening conditions,” she said in a statement at the time.
It’s improbable that there won’t be a megafire this season; the last time the U.S. had a year without a fire of 100,000 acres or more was in 2001. And if or when the megafire — or megafires — break out, all signs point to the “where” being Oregon or Washington, concentrating the area of potential destruction, exhausting local personnel, and straining federal resources. “When you have two states directly next to each other dealing with the same thing, it just makes it more difficult to get resources because of the conflicting timelines,” Neujahr said.
By October, at least, there should be relief: The national fire outlook describes “an increasing frequency of weather systems and precipitation” that should “signal an end of fire season” for the Northwest once fall arrives. But there are still a long 68 days left to go before then.