You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Chatting with RE Tech Advisors’ Deb Cloutier about data centers, lifecycle costs, and the value of federal data.
Last fall, my colleagues and I at Heatmap put together a comprehensive (and award-winning!) guide on how to Decarbonize Your Life. Though it contained information on everything from shopping for an EV to which fake meats are actually good, as my colleague Katie Brigham noted, “an energy-efficient home needs energy-efficient … gadgets to fill it up.” So we also curated lists of climate-conscious stoves, heaters, and washer-dryers — recommendations we made by talking to experts, but also by looking closely at appliances’ Energy Star certifications.
You’ve probably relied on these certifications, too. Overseen by the Environmental Protection Agency, Energy Star labels are recognized by 90% of Americans as indicating that an appliance is top of its class when it comes to saving electricity and money. According to the government’s estimates, the voluntary program has saved Americans $500 billion since it began in 1992.
But now all that appears to be reaching its end: Last week, EPA leadership told staff that the division that oversees the Energy Star efficiency certification program for home appliances will be eliminated as part of the Trump administration’s ongoing cuts and reorganization (although the president has also long pursued a vendetta against low-flow showerheads and dishwashers that “don’t work”).
To better understand the ramifications of such a decision, I spoke this week with Deb Cloutier, the president and founder of the sustainability firm RE Tech Advisors and one of the original architects of Energy Star. She provided technical guidance and tools as a consultant during the program’s development stages of the program, and later worked as a strategic advisor for the Department of Energy’s Better Buildings Initiative. Our conversation has been lightly edited and for length and clarity.
You’ve been involved in the Energy Star program since the beginning. Can you tell me a little about what the atmosphere was like when it was established back in 1992? Was there resistance to it from appliance manufacturers or Republicans at that time?
Energy Star represented a voluntary public-private partnership, meaning a nonregulatory approach to engaging the business community and catalyzing the adoption of strategic energy management. So at the time, it was the first of its kind. I wouldn’t say folks were just like, “Yes, let’s do this.” It was really new and different.
The other thing is that at that time, we had come out of the oil crisis of the 1970s, and people were starting to recognize the importance of where and how our energy was being produced. But we weren’t focused on thinking about it as an opportunity. For office buildings, the single largest controllable operating expense is your energy or utilities expenses; if the Environmental Protection Agency or the government could build awareness, develop tools, and help businesses understand how they could invest in energy efficiency and how that would translate to financial performance results for them — it was a great experiment. And it turns out that it’s the single most successful voluntary program we’ve had to date, saving over $5 billion annually.
It’s clear how losing Energy Star would harm consumers, but I’m curious to hear from you about how this is also bad for building owners and residents. What is the cost of losing this program, especially from a climate perspective?
The most important contribution of the EPA’s Energy Star program is that it has created a national standard to benchmark and measure efficiency and energy performance. You can’t manage what you don’t measure, and consistency across building types, ages, and sizes — it’s pretty complicated to make an apples-to-apples comparison.
One of the tools and resources that Energy Star has created, which I see as being embedded in the fabric of American businesses, is their benchmarking tool called Portfolio Manager. It is tied to dozens of state and local jurisdiction policies and legislation that range from building energy disclosure to mandatory best practices to maintaining and operating buildings and emissions thresholds. So the Energy Star rating system is tied not only to how organizations assess their whole building performance, but also to how it tracks and measures progress towards efficiency improvements and then gives a certification or recognition for the most highly efficient ones.
Another thing folks tend not to consider is the relationship between energy efficiency and grid stability. Energy Star-certified appliances, homes, buildings, and industrial facilities help to reduce peak demand, which improves grid stability and resilience. It also lowers the risk of brownouts and blackouts. Think about the growing demands of data center computing and AI models — we need to bring more energy onto the grid and make more space for it. People sometimes don’t realize that it is really dependent on a consistent, impartial standard as a level setting.
If you look at some of the statistics, they’re projecting that investments in new data centers will grow at more than a 20% compound annual growth rate, and that’s equal to $59 billion. It’s just astronomical how much more energy demand there will be. If you try to put that on top of a grid that is fairly antiquated and very inefficient in the way it generates, transmits, and distributes energy, then you are intensifying the potential problem.
I’ve heard about manufacturers or an outside energy or appliance group possibly setting up a replacement program if Energy Star is eliminated. What is the advantage of having the government specifically oversee Energy Star?
Three or four things make the federal government the most unique entity and the most well-equipped to oversee the Energy Star program. First, they have access to large data sets using CBECS, the Commercial Building Energy Consumption Survey, and RECS, the Residential Energy Consumption Survey. The government inherently is an impartial, unbiased group, and entities are willing to share their data with it, and that would not be the same if it were a third party or a privatized group. That data set is instrumental in creating the standards that allow you, for products, to evaluate the most energy efficient, or for buildings, to develop a one-to-100 score. Energy Star allows the top 25% to be recognized as exemplary energy performance.
The government also has access to the National Renewable Energy Laboratory resources; they have the data, and I believe they have the impartiality and the trust. Today, the Energy Star brand has over 90% consumer recognition. I would be concerned if manufacturers or others would produce confusion in the marketplace related to a single little blue label.
Is there anything consumers should know about making decisions or navigating their choices if we return to a pre-1992 landscape?
In the absence of an Energy Star label, one thing we can do is help consumers understand that it is not just about the first cost of a dishwasher or a washing machine or renting an apartment. It’s about total lifecycle costs. What the Energy Star label does is it helps you have confidence that [an appliance] will use the least amount of energy necessary to run over its lifetime. But if your product or apartment is full of less efficient appliances, you have to think about how much more energy you will pay for over that life cycle. That’s sometimes a difficult concept for folks to understand: They think of their first cost, not the cost to operate or maintain something over time, which is higher if it’s not energy efficient.
Is there anything else people often overlook when considering the ramifications of losing Energy Star?
Energy efficiency is important for all constituencies and all sectors of the U.S. economy. Some folks will be harder hit by this, and by that, I mean low-income housing, schools, hospitals, and public sector buildings. Those facilities often have very limited budgets, so energy efficiency is one of the lowest-cost, most effective investments with good returns. But if you’re a low-income family, think about it: If you make less than $33,000 a year for a family of four, your utility bills have an outsized impact on the total cost of living. If the total utility bill is $300 or $400 a month, then utilities represent 10% to 15% of your total income, so efficiency can have an outsized impact.
The other side of that is mission-critical facilities. Having the ability to run lights, air conditioning, and cooling is important for comfort, but in some facilities — like precision manufacturing or biopharmaceuticals, data centers, things of that nature — it becomes a mission-critical area, not a nice-to-have. We can help reduce the amount of energy used by those facilities, extend their useful life, help them maintain their systems longer, and allow those businesses to be more competitive.
What’s your read on how the proposed Energy Star elimination is being discussed right now?
There’s a lot of hyperbole about Energy Star being eliminated — it’s a fait accompli. It is important to note that Energy Star is a line item identified in the statute by Congress for approval for funding. It seems pretty unrealistic, from a judicial standpoint, that it would be able to be eliminated before the end of this fiscal year.
I know that there are many, many representatives, both Republican and Democrats, who support Energy Star. We’ve had 35 years of bipartisan support, and it has been earmarked in congressional law many times, through multiple George H.W. and George W. Bush administrations. And there are a lot of lobbying efforts that I’m personally aware of within the commercial real estate industry and the manufacturing industry, where folks are reaching out and doing calls to action for the House and Senate Appropriations majority members — similar activities to what we did eight years ago when Energy Star was directly under fire.
It seems like such a strange thing for the administration to go after. It’s not like appliance manufacturers were clamoring for this, right?
It’s very vexing to me. I don’t get it. If the Trump administration wants to focus on affordability in American households, energy efficiency isn’t the thing to cut. I’m not sure if it’s getting caught up in the fact that it is in the Office of Atmospheric Pollution Prevention, or because at the Department of Energy’s Better Buildings Program, Biden launched the Better Climate Challenge. I don’t know if it’s because it had some ties to climate, but what’s ironic is that it didn’t start as a climate program. It began as an energy efficiency program, and it’s always been focused on businesses and the financial returns on investment — it helps us attract capital and debt for investment in real estate. It’s really disconnected.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Congress has left well enough alone, but that doesn’t mean funds are necessarily flowing.
The Trump administration and Republicans in Congress have done a pretty good job working in tandem to tear down American climate policy. But one key set of clean energy programs has remained relatively unscathed.
The Inflation Reduction Act’s two home energy efficiency rebate programs — one for carbon-cutting appliances and one for whole-home efficiency upgrades — have not been targeted for agency termination or Congressional repeal, or at least not to date.
Still, that doesn’t mean they haven’t run into roadblocks. The rebate programs are paid for by the federal government and administered by states, which have to apply for the funding and stand up programs to disburse it. While the Biden administration had obligated funding to all 49 states that applied for it, only a small handful of states had fully executed contracts enabling them to use the money by the time Biden left office. The rest are now being stonewalled by the Department of Energy, which is still undertaking a “review” of Biden-era funding decisions. Some officials are wondering whether they’ll ever get their applications approved.
Vermont, for example, is stuck in a holding pattern for its Home Electrification and Appliance Rebates, or HEAR program. HEAR provides low- and moderate-income households cash back on appliances like heat pumps and induction stoves, as well as on insulation, air sealing, and electrical upgrades. The Biden administration “conditionally” approved Vermont’s $58 million application, which focused almost exclusively on heat pumps, according to Melissa Bailey, the director of efficiency and energy resources at the Vermont Department of Public Service. It’s not clear that anything in the application is deficient or needs to be changed, she told me. But the new administration has been unresponsive about next steps.
“Candidly, we were concerned that the funding may just not come through at all, so we essentially have paused our planning efforts,” Bailey said.
Vermont is fortunate in that its application for the other IRA rebate program, known as Home Efficiency Rebates and often referred to as HOMES, was finalized before Biden left office. HOMES offers rebates for upgrades based on the amount of energy the upgrades saved, rather than for specific purchases, and Vermont plans to funnel its $29 million HOMES funding into an existing weatherization program. The state has been able to get administrative expenses reimbursed, but it hasn’t technically launched the program yet, as it’s still waiting on the DOE to approve the modeling software the state plans to use to estimate energy savings.
“DOE is very actively engaging with us on the HOMES application as we move forward,” she said. But on HEAR, which is further back in the approval process, the administration has been much more cagey. “Anytime we bring up HEAR, verbally on calls and email, it’s just this kind of standard language that is, thank you for your patience, we’ll let you know when we’re ready to talk about it.”
By combing through public data and reaching out to state energy offices, I found that just five states plus the District of Columbia have been able to launch both rebate programs. Seven additional states have launched HEAR, but their HOMES applications are in various stages of approvals. But 36 states, plus five U.S. territories, have not launched either program, almost three years after the passage of the IRA.
The Department of Energy did not respond to my questions about the rebate programs. But the agency has been reviewing all Biden-era funding decisions. On June 10, Secretary of Energy Chris Wright told the House Committee on Energy and Commerce that his review was ongoing, but didn’t give a clear indication of how long it would take. “We got a process in place, we have a team in place, we’re getting through maybe a dozen or more projects a week, maybe more than a dozen projects a week,” he said. “And so by the end of this summer or middle of this summer we’re going to have clarity on most of the big projects.”
Since neither the reconciliation bill nor Trump’s budget nor his requested rescissions have threatened the rebate programs, there’s no reason to suspect that the DOE will try to claw back the obligated funds. But the funding review and soft pause on applications has created lingering uncertainty.
Meanwhile, Republicans in Congress are working to strip away other funding for energy efficiency. Both the House and Senate have proposed repealing the federal energy efficiency home improvement tax credit — which has existed in some form since 2005 — as part of Trump’s One, Big Beautiful Bill.
The program helps homeowners reduce their energy use, save money, and make their buildings more comfortable. It also eases strain on the grid. The latest iteration offered 30% off the cost of Energy Star-rated windows and doors, insulation, air sealing, heat pumps, and new electrical panels, up to $3,200 per year.
If Trump signs off on terminating this tax credit and the tax credit for rooftop solar, which also seems doomed, the IRA’s rebate programs will be some of the only subsidies left in many states to help Americans afford home improvements that have high up-front costs but long-term financial benefits.
But the termination of the tax credits could also have a negative impact on the rebate programs. That’s what Brian Kealoha, the Chief Growth and Impact Officer at VEIC, a nonprofit that’s working with seven states and the District of Columbia on their IRA rebate programs, is worried about. “The return on investment is just not going to be attractive enough” for heat pumps, he told me. “Unless you’re passionate about decarbonization … how much participation are you going to get without making the return look good?”
Some of the states that have already launched their IRA rebates were able to move quickly because they had pre-existing energy efficiency programs that they could funnel the funding into, rather than having to develop entirely new initiatives. New York, for example, which launched the first HEAR program in the country, put about $40 million of its $158 million award into its Empower+ program, which already provided incentives to low- and moderate-income New Yorkers for upgrades like insulation and heat pumps. Since then, the program has “supported nearly 5,700 projects, yielding $1.82 million in total energy bill savings,” a NYSERDA spokesperson told me.
The state later launched a second program in November offering rebates for heat pump clothes dryers. That has approved 1,100 applicants so far, 350 of whom have redeemed the rebate.
California, similarly, has launched its appliance rebate program in phases, with only the first phase of funding for heat pumps operating so far. The program is already fully subscribed for single family homes, having approved more than 4,000 applications totaling more than $32 million, but is still accepting applications for multifamily buildings. The California Energy Commission told me the second phase is still under development, and that staff are also working on implementation plans for the HOMES program, which they will submit to DOE later this summer.
Other states have taken the opposite approach, choosing to target projects that were not already served by existing programs. Maine already had a successful rebate for homeowners who switch from fossil fuel heating to heat pumps, for example, so it created two new programs using HEAR funding to get heat pumps to other markets — new multifamily buildings that serve low-income households and manufactured homes, often called mobile homes. To date, it has received 12 multifamily applications and approved five, providing up to $2.5 million to install heat pumps in more than 300 low-income units. It’s also awarded an average of $10,500 to 19 manufactured homeowners to switch their propane or kerosene heating systems to heat pumps.
Afton Vigue, the communications manager for the Governor’s Energy Office, told me in an email that Maine’s application for the HOMES program has been “conditionally awarded” and it is “awaiting guidance from the U.S. Department of Energy” but doesn’t know when that will come.
But it seems that everywhere these programs are operating, they have seen high demand.
Georgia was one of the first states to launch both HEAR and HOMES rebates. As of June 12, the state had paid out 178 HEAR rebate applications totaling $1.6 million, and had 72 more in the pipeline, Shane Hix, the director of public affairs at the Georgia Environmental Finance Authority, told me. Its HOMES program had awarded 93 households totaling $922,500, with 89 applications pending.
North Carolina is also operating both programs, but is rolling them out one county at a time, starting in “high energy burden, disadvantaged communities,” Sascha Medina, the Public Information Officer at the State Energy Office told me. Between the launch in January and June 13, the state had received more than 4,100 applications, she said.
The good news for those living in places that are stuck in limbo is that the funding for the rebate programs was authorized through 2031. As long as Chris Wright doesn’t decide the rebates are a waste of taxpayer dollars, and he ultimately resumes approvals for the programs, you’ll still have a number of years to take advantage.
On a new report from the Energy Institute, high-stakes legislating, and accelerating nuclear development
Current conditions: Monsoon rains hit the southwestern U.S., with flash floods in Roswell, New Mexico, and flooding in El Paso, Texas • The Forsyth Fire in Utah has spread to 9,000 acres and is only 5% contained • While temperatures are falling into the low 80s in much of the Northeast, a high of 96 degrees Fahrenheit is forecast for Washington, D.C., where Republicans in the Senate seek to finish their work on the “One Big, Beautiful Bill.”
The world used more of just about every kind of energy source in 2024, including coal, oil, gas, renewables, hydro, and nuclear, according to the annual Statistical Review of World Energy, released by the Energy Institute. Here are some of the key numbers from the report:
You can read the full report here.
Virginia Republican Jen Kiggans is a vice chair of the Conservative Climate Caucus and a signatory of several letters supporting the preservation of clean energy tax credits in the Inflation Reduction Act, including one letter she co-authored with Pennsylvania’s Brian Fitzpatrick criticizing the House reconciliation bill’s rough approach to slashing the credits. On Wednesday, however, she said on X that the Senate language “responsibly phases out certain tax credits while preserving American investment and innovation in our energy sector.”
The Senate is still pushing to have the reconciliation bill on President Trump’s desk by July 4, and is expected to work through the weekend to get it done. But as Sahil Kapur of NBC News reported Wednesday, House and Senate leaders have been attempting to hash out yet another version of the bill that could pass both chambers quickly, meaning the legislation is still very much in flux.
Shell is in early talks to acquire fellow multinational oil giant BP, the Wall Street Journal reported. While BP declined to comment to the Journal, Shell called the story “market speculation” and said that “no talks are taking place.”
BP is currently valued at $80 billion, which would make a potential tie-up the largest corporate oil deal since the Exxon Mobil merger, according to the Journal.
Both Shell and BP have walked back from commitments to and investments in decarbonization and green energy in recent months. BP said in September of last year that it would divest from its U.S. wind business, while Shell said in January that it would “pause” its investment in the U.S. offshore wind industry and took an accompanying charge of $1 billion.
The combined company would be better positioned to compete with supermajors like Exxon, which is now worth over $450 billion, while Shell and BP have a combined valuation around $285 billion.
The shuttered Three Mile Island in October. Chip Somodevilla/Getty Images
Three Mile Island Unit 1 will restart a year early, its owner Constellation said Wednesday. When Constellation and Microsoft announced the plan to restart the nuclear facility last fall they gave a target date of 2028. More recently, however, PJM Interconnection, the interstate electricity market that includes Pennsylvania, approved a request made from the state’s governor, Josh Shapiro, to fast-track the plant’s interconnection, the company said, meaning it could open as soon as 2027.
Constellation reported “significant progress” on hiring and training new workers, with around 400 workers either hired or due to start new jobs soon. “We’re on track to make history ahead of schedule, helping America achieve energy independence, supercharge economic growth, and win the global AI race,” Constellation’s chief executive Joe Dominguez said.
The Chinese electric carmarker BYD is addressing rising inventory and lower prices by cutting back its production plans. The company “has slowed its production and expansion pace in recent months by reducing shifts at some factories in China and delaying plans to add new production lines,” Reuters reported.
The slowdown comes “as it grapples with rising inventory even after offering deep price cuts in China's cutthroat auto market,” according to the Reuters report.
In 2024, BYD beat out Tesla in annual sales, with over 4 million cars sold, for a total annual revenue over $100 billion. Tesla’s revenue was just short of $100 billion last year.
While BYD’s factories may be slowing down, it is still looking to expand, especially overseas. In April, more than 7,000 BYD battery electric cars were registered in Europe, according to Bloomberg. This more-than-doubling since last year slingshotted BYD past Tesla on the continent, where its sales have fallen by almost 50%.
“Where does the power sector go from here?” an audience member asked at our exclusive Heatmap subscriber event in New York on Wednesday, referring to a potential future without the Inflation Reduction Act. “Higher costs,” Emily Pontecorvo answered. There is one potential bright spot, however, as Robinson Meyer explained: “If I were a Democrat considering running an affordability campaign or a cost-of-living campaign in ’26 or ’28, there’s lots of openings to talk about clean energy — the policy that’s happening right now — utility rates, and energy affordability.”
The science is still out — but some of the industry’s key players are moving ahead regardless.
The ocean is by far the world’s largest carbon sink, capturing about 30% of human-caused CO2 emissions and about 90% of the excess heat energy from said emissions. For about as long as scientists have known these numbers, there’s been intrigue around engineering the ocean to absorb even more. And more recently, a few startups have gotten closer to making this a reality.
Last week, one of them got a vote of confidence from leading carbon removal registry Isometric, which for the first time validated “ocean alkalinity enhancement” credits sold by the startup Planetary — 625.6 to be exact, representing 625.6 metric tons of carbon removed. No other registry has issued credits for this type of carbon removal.
When the ocean absorbs carbon, the CO2 in the air reacts with the water to form carbonic acid, which quickly breaks down into hydrogen ions and bicarbonate. The excess hydrogen increases the acidity of the ocean, changing its chemistry to make it less effective at absorbing CO2, like a sponge that’s already damp. As levels of atmospheric CO2 increase, the ocean is getting more acidic overall, threatening marine ecosystems.
Planetary is working to make the ocean less acidic, so that it can take in more carbon. At its pilot plant in Nova Scotia, the company adds alkalizing magnesium hydroxide to wastewater after it’s been used to cool a coastal power plant and before it’s discharged back into the ocean. When the alkaline substance (which, if you remember your high school chemistry, is also known as a base) dissolves in the water, it releases hydroxide ions, which combine with and neutralize hydrogen ions. This in turn reduces local acidity and raises the ocean’s pH, thus increasing its capacity to absorb more carbon dioxide. That CO2 is then stored as a stable bicarbonate for thousands of years.
“The ocean has just got such a vast amount of capacity to store carbon within it,” Will Burt, Planetary’s vice president of science and product, told me. Because ocean alkalinity enhancement mimics a natural process, there are fewer ecosystem concerns than with some other means of ocean-based carbon removal, such as stimulating algae blooms. And unlike biomass or soil-related carbon removal methods, it has a very minimal land footprint. For this reason, Burt told me “the massiveness of the ocean is going to be the key to climate relevance” for the carbon dioxide removal industry as a whole.
But that’s no guarantee. As with any open system where carbon can flow in and out, how much carbon the ocean actually absorbs is tricky to measure and verify. The best oceanography models we have still don’t always align with observational data.
Given this, is it too soon for Planetary to issue credits? It’s just not possible right now for the startup — or anyone in the field — to quantify the exact amount of carbon that this process is removing. And while the company incorporates error bars into its calculations and crediting mechanisms, scientists simply aren’t certain about the degree of uncertainty that remains.
“I think we still have a lot of work to do to actually characterize the uncertainty bars and make ourselves confident that there aren’t unknown unknowns that we are not thinking about,” Freya Chay, a program lead at CarbonPlan, told me. The nonprofit aims to analyze the efficacy of various carbon removal pathways, and has worked with Planetary to evaluate and inform its approach to ocean alkalinity enhancement.
Planetary’s process for measurement and verification employs a combination of near field observational data and extensive ocean modeling to estimate the rate, efficiency, and permanence of carbon uptake. Close to the point where it releases the magnesium hydroxide, the company uses autonomous sensors at and below the ocean’s surface to measure pH and other variables. This real-time data then feeds into ocean models intended to simulate large-scale processes such as how alkalinity disperses and dissolves, the dynamics of CO2 absorption, and ultimately how much carbon is locked away for the long-term.
But though Planetary’s models are peer-reviewed and best in class, they have their limits. One of the largest remaining unknowns is how natural changes in ocean alkalinity feed into the whole equation — that is, it’s possible that artificially alkalizing the ocean could prevent the uptake of naturally occurring bases. If this is happening at scale, it would call into question the “enhancement” part of alkalinity enhancement.
There’s also the issue of regional and seasonal variability in the efficiency of CO2 uptake, which makes it difficult to put any hard numbers to the efficacy of this solution overall. To this end, CarbonPlan has worked with the marine carbon removal research organization [C]Worthy to develop an interactive tool that allows companies to explore how alkalinity moves through the ocean and removes carbon in various regions over time.
As Chay explained, though, not all the models agree on just how much carbon is removed by a given base in a given location at a given time. “You can characterize how different the models are from each other, but then you also have to figure out which ones best represent the real world,” she told me. “And I think we have a lot of work to do on that front.”
From Chay’s perspective, whether or not Planetary is “ready” to start selling carbon removal credits largely depends on the claims that its buyers are trying to make. One way to think about it, she told me, is to imagine how these credits would stand up in a hypothetical compliance carbon market, in which a polluter could buy a certain amount of ocean alkalinity credits that would then allow them to release an equivalent amount of emissions under a legally mandated cap.
“When I think about that, I have a very clear instinctual reaction, which is, No, we are far from ready,”Chay told me.
Of course, we don’t live in a world with a compliance carbon market, and most of Planetary’s customers thus far — Stripe, Shopify, and the larger carbon removal coalition, Frontier, that they’re members of — have refrained from making concrete claims about how their voluntary carbon removal purchases impact broader emissions goals. But another customer, British Airways, does appear to tout its purchases from Planetary and others as one of many pathways it’s pursuing to reach net zero. Much like the carbon market itself, such claims are not formally regulated.
All of this, Chay told me, makes trying to discern the most responsible way to support nascent solutions all the more “squishy.”
Matt Long, CEO and co-founder of [C]Worthy, told me that he thinks it’s both appropriate and important to start issuing credits for ocean alkalinity enhancement — while also acknowledging that “we have robust reason to believe that we can do a lot better” when it comes to assessing these removals.
For the time being, he calls Planetary’s approach to measurement “largely credible.”
“What we need to adopt is a permissive stance towards uncertainty in the early days, such that the industry can get off the ground and we can leverage commercial pilot deployments, like the one that Planetary has engaged in, as opportunities to advance the science and practice of removal quantification,” Long told me.
Indeed, for these early-stage removal technologies there are virtually no other viable paths to market beyond selling credits on the voluntary market. This, of course, is the very raison d’etre of the Frontier coalition, which was formed to help emerging CO2 removal technologies by pre-purchasing significant quantities of carbon removal. Today’s investors are banking on the hope that one day, the federal government will establish a domestic compliance market that allows companies to offset emissions by purchasing removal credits. But until then, there’s not really a pool of buyers willing to fund no-strings-attached CO2 removal.
Isometric — an early-stage startup itself — says its goal is to restore trust in the voluntary carbon market, which has a history of issuing bogus offset credits. By contrast, Isometric only issues “carbon removal” credits, which — unlike offsets — are intended to represent a permanent drawdown of CO2 from the atmosphere, which the company defines as 1,000 years or longer. Isometric’s credits also must align with the registry’s peer-reviewed carbon removal protocols, though these are often written in collaboration with startups such as Planetary that are looking to get their methodologies approved.
The initial carbon removal methods that Isometric dove into — bio-oil geological storage, biomass geological storage, direct air capture — are very measurable. But Isometric has since branched beyond the easy wins to develop protocols for potentially less permanent and more difficult to quantify carbon removal methods, including enhanced weathering, biochar production, and reforestation.
Thus, the core tension remains. Because while Isometric’s website boasts that corporations can “be confident every credit is a guaranteed tonne of carbon removal,” the way researchers like Chay and Long talk about Planetary makes it sound much more like a promising science project that’s being refined and iterated upon in the public sphere.
For his part, Burt told me he knows that Planetary’s current methodologies have room for improvement, and that being transparent about that is what will ultimately move the company forward. “I am constantly talking to oceanography forums about, Here’s how we’re doing it. We know it’s not perfect. How do we improve it?” he said.
While Planetary wouldn’t reveal its current price per ton of CO2 removed, the company told me in an emailed statement that it expects its approach “to ultimately be the lowest-cost form” of carbon removal. Burt said that today, the majority of a credit’s cost — and its embedded emissions — comes from transporting bases from the company’s current source in Spain to its pilot project in Nova Scotia. In the future, the startup plans to mitigate this by co-locating its projects and alkalinity sources, and by clustering project sites in the same area.
“You could probably have another one of these sites 2 kilometers down the coast,” he told me, referring to the Nova Scotia project. “You could do another 100,000 tonnes there, and that would not be too much for the system, because the ocean is very quickly diluted.”
The company has a long way to go before reaching that type of scale though. From the latter half of last year until now, Planetary has released about 1,100 metric tons of material into the ocean, which it says will lead to about 1,000 metric tons of carbon removal.
But as I was reminded by everyone, we’re still in the first inning of the ocean alkalinity enhancement era. For its part, [C]Worthy is now working to create the data and modeling infrastructure that startups such as Planetary will one day use to more precisely quantify their carbon removal benefits.
“We do not have the system in place that we will have. But as a community, we have to recognize the requirement for carbon removal is very large, and that the implication is that we need to be building this industry now,” Long told me.
In other words: Ready or not, here we come.