You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
On Crux’s growth, Tesla’s slow ‘death,’ and a carbon storage warning
Current conditions: In the Pacific, Hurricane Kiko has strengthened into a Category 2 storm, and is on track to reach “major storm” status • In the Atlantic, moisture is moving into an area with a lot of dry air, posing a “high risk” of developing into a tropical storm • Northern India is facing intense monsoon winds and deadly landslides.
The White House has taken what The New York Times described as “the extraordinary step” of ordering half a dozen agencies to draft plans to thwart the country’s offshore wind industry. Helming the effort are White House Chief of Staff Susie Wiles and Deputy Chief of Staff Stephen Miller. While the assault on the wind industry has largely taken place at the Department of the Interior, the departments of Transportation and Commerce joined the effort in the past two weeks, as this newsletter reported yesterday. Now the Trump administration is tapping in even more agencies, including those that traditionally have little jurisdiction over marine energy production. The Department of Health and Human Services has begun a study into whether wind turbines emit electromagnetic fields that could damage human health. The Department of Defense, meanwhile, is probing whether the projects pose a risk to national security. “We’re all working together on this issue,” Robert F. Kennedy Jr., the secretary of health and human services, said during a cabinet meeting last week.
Heatmap’s Jael Holzman has been following the administration’s increasingly outlandish efforts to squelch wind projects in her newsletter, The Fight. Last week, discussing the potential redesignation of incidental bird deaths as purposeful under the Migratory Bird Treaty Act, she wrote, “It’s worth acknowledging just how bonkers this notion is on first blush.” The move would make operating a wind farm effectively illegal, depriving numerous states of a major source of electricity. “Even I, someone who has broken quite a few eye-popping stories about Trump’s war on renewables, struggle to process the idea of the government truly going there,” she said.
Until earlier this year, clean-energy finance startup Crux was a digital marketplace exclusively for buying and selling tax credits made available by the Inflation Reduction Act. When Republicans in Congress threatened to eliminate tax credit transferability in March, however, the company moved into debt financing, a market that CEO Alfred Johnson told Heatmap’s Katie Brigham was seven times bigger. Now, in an exclusive interview Katie published yesterday, Crux said it’s expanding yet again into the tax and preferred equity markets. “The tax equity market was a $20 billion market before the IRA, and is now a $32 billion to $35 billion market,” Johnson told Katie, citing numbers from the company’s forthcoming mid-year market intelligence report. That’s a 10% to 20% increase over last year. Crux’s overall goal is to make itself a one-stop shop for project financing.
Australian rooftop solar is roughly half the price of Americans pay. Tesla
Tesla’s energy division released a new white paper warning that U.S. regulations were imposing “death by a thousand cuts” on the rooftop solar industry. In a post on LinkedIn, Tesla’s senior director of residential solar Colby Hastings said the “regulatory landscape slows progress, and we need more than one rule change to solve this.”
“Solar insiders have long lamented that residential deployments in the U.S. are too expensive compared to overseas. With the passage of the OBBB and tax credits expiring, it is imperative that we take a hard look at how the industry will navigate the next decade,” she wrote. “We must ensure that consumers have competitive choices for energy. This means affordable solar and storage at home.” Among the changes she proposed were enacting national code standards “that simplify rules, keep pace with hardware innovation, and limit regional variation.” She also called for reducing tariff on imported components to lower the cost of hardware. “Bottom line — we see an opportunity to cut ~40% from the cost stack, reducing average solar + storage installation from > $5/W today to ~$3/W.”
More than 85 climate scientists signed onto a line-by-line critique of the Department of Energy’s recent report sowing doubt over the severity and causes of rising global temperatures. The analysis pointed out that the federal report was written by a “tiny team of hand-picked contrarians” known for “often writing outside their areas of expertise.” The controversial government study had “no peer review of transparency,” they wrote, “unlike legitimate assessments,” and relied on “cherry-picked evidence and miscitations” to reach a “predetermined outcome.”
It’s far from the only criticism Secretary of Energy Chris Wright is attracting. In a Tuesday post on X, Wright claimed that “if you wrapped the entire planet in a solar panel, you would only be producing 20% of global energy,” arguing that “one of the biggest mistakes politicians can make is equating the ELECTRICITY with ENERGY!” A community note X users appended to the agency chief’s post pointed out that this wildly undercounted the potential to capture energy from the sun, which covers the planet in enough solar potential to meet “3,000x global energy use.” Yet even that failed to capture how “funny and sad” Wright’s “silly and unsophisticated” post really was, said electricity analyst David Fishman. In particular, Fishman noted, Wright seemed to underestimate how much total energy usage worldwide could be converted to electricity. “That's thinking like a guy who spent his whole career drilling for gas, but never learned much about physics, electricity, industry, or energy systems,” he wrote. “Really not what you want to see from someone in such a position.”
The amount of carbon emissions that the world can safely store is just a 10th of industry estimates, according to a Bloomberg writeup of a new study in the journal Nature. Researchers at the International Institute for Applied Systems Analysis and Imperial College London found “a prudent global limit” of around 1.46 trillion tons of CO2 that can be safely stored in geologic formations. That’s “almost 10 times smaller than estimates proposed by industry that have not considered risks to people and the environment.” Utilizing all the practical areas to store carbon would curb global warming by 0.7 degrees Celsius, compared to industry estimates of 6 degrees Celsius or higher.
Cooling data centers consumes a huge amount of electricity, and nearly half of that energy is lost as low-temperature waste heat that’s simply vented into the air. But a new study from Rice University found a way to close the loops and channel that heat into more electricity. “There’s an invisible river of warm air flowing out of data centers,” Laura Schaefer, the chair of the mechanical engineering program at Rice and co-author of the paper, said in a press release. “Our question was: Can we nudge that heat to a slightly higher temperature with sunlight and convert a lot more of it into electricity? The answer is yes, and it’s economically compelling.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: A major Pacific storm is drenching California and bringing several inches of snow to Montana, Idaho, and Wyoming • A tropical storm in the Atlantic dumped nearly a foot of water on South Carolina over three days • Algeria is roasting in temperatures of more than 105 degrees Fahrenheit.
The Department of Energy notified workers in multiple offices Friday that they were likely to be fired or reassigned to another part of the agency, E&E News reported Tuesday. Staffers at the Office of Clean Energy Demonstrations and the Office of State and Community Energy Programs received notices stating that the offices would “be undergoing a major reorganization and your position may be reassigned to another organization, transferred to another function or abolished.” Still, the notice said “no determination has been made concerning your specific position” just yet.
At least five offices received “general reduction in force notices,” as opposed to official notification of a reduction in force, according to a Latitude Media report. These included the Office of Clean Energy Demonstrations, the Office of Energy Efficiency and Renewable Energy, the Office of State and Community Energy Plans, and the Office of Fossil Energy. Nearly 200 Energy Department employees received direct layoff notices.
Catastrophic floods brought on by the remnants of a typhoon devastated the Alaska Native village of Kipnuk on Sunday. Five months ago, the Trump administration canceled a $20 million grant intended to protect the community against exactly this kind of extreme flooding, The New York Times reported Tuesday. The grant from the Environmental Protection Agency was meant to stabilize the riverbank on which Kipnuk is built. But in May, the agency yanked back the Biden-era grant, which EPA Administrator Lee Zeldin said was “no longer consistent” with the government’s priorities. In a post on X, Zeldin said the award was part of "wasteful DEI and Environmental Justice grants,” suggesting the funding was part of an ideological push for diversity, equity, and inclusion rather than a practical infrastructure boost to an Indigenous community facing serious challenges.
Zealan Hoover, a Biden-era senior adviser at the EPA, accused Zeldin of using “inflammatory rhetoric” that misrepresented the efforts in places like Kipnuk. “For decades, E.P.A. has been a partner to local communities,” Hoover said. “For the first time under this administration, E.P.A. has taken an aggressively adversarial posture toward the very people and communities that it is intended to protect.”
Get Heatmap AM directly in your inbox every morning:
Late last Thursday, Heatmap’s Jael Holzman observed that the status of the 6.2-gigawatt Esmeralda 7, the nation’s largest solar project, had changed on the Bureau of Land Management’s website to “canceled.” The news sent shockwaves nationwide and drew blowback even from Republicans, including Utah Governor Spencer Cox, as I reported in this newsletter. Now, however, the bureau’s parent agency is denying that it made the call to cancel the project. “During routine discussions prior to the lapse in appropriations, the proponents and BLM agreed to change their approach for the Esmeralda 7 Solar Project in Nevada,” a spokesperson for the Department of the Interior told Utility Dive. “Instead of pursuing a programmatic level environmental analysis, the applicants will now have the option to submit individual project proposals to the BLM to more effectively analyze potential impacts.”
That means the project could still move forward with a piecemeal approach to permitting rather than one overarching approval, which aligns with what one of the developers involved told Jael last week. A representative for NextEra said that it is “in the early stage of development” with its portion of the Esmeralda 7 mega-project, and that the company is “committed to pursuing our project’s comprehensive environmental analysis by working closely with the Bureau of Land Management.” Still, the move represents a devastating setback for the solar installation, which may never fully materialize.
Ethane exports are rising as export capacity soars.EIA
U.S. exports of ethane, a key petrochemical feedstock extracted from raw natural gas during processing, are on track for “significant growth” through 2026, according to new analysis from the Energy Information Administration. Overseas sales are projected to grow 14% this year compared to the previous year, and another 16% next year. Ethane is mostly used as a feedstock for ethylene, a key ingredient in plastics, resins, and synthetic rubber. China has been the fastest growing source of demand for American ethane in recent years, rising to the largest single destination with 47% of exports last year.
Spain’s electricity-grid operator shrugged off concerns of another major blackout after detecting two sharp voltage variations in recent weeks. Red Electrica, which operates Spain’s grid, said that what The Wall Street Journal described as “recent voltage swings” didn’t threaten to knock out the grid because they stayed within acceptable limits. But the operator warned that variations could jeopardize the electricity supply if the grid didn’t overhaul its approach to managing a system that increasingly relies on intermittent, inverter-based generating sources such as solar panels. Red, which is 20% owned by the Spanish government, acknowledged that the high penetration of renewables was responsible for the recent fluctuations. Among the changes needed to improve the grid: real-time monitoring, which Heatmap’s Matthew Zeitlin noted in April “is necessary because traditionally, grid inertia is just thought of as an inherent quality of the system, not something that has to be actively ensured and bolstered.”
It’s not just Spain facing blackouts. New York City will have a power deficiency equivalent to the energy needed to power between 410,000 and 650,000 homes next summer — and that number could double by 2050, the state’s grid operator warned this week in its latest five-year report. “The grid is at a significant inflection point,” Zach Smith, senior vice president of system and resource planning for NYISO, said in a statement to Gothamist. “Depending on future demand growth and generator retirements, the system may need several thousand megawatts of new dispatchable generation within the next 10 years.”
Sodium-ion batteries are all the rage, as Heatmap’s Katie Brigham reported yesterday about the commercial breakthrough by the startup Alsym. But a major challenge facing sodium-ion batteries compared to lithium-ion rivals is the stability of the cathode material in air and water, which can degrade the battery’s performance and lifespan. A new study by researchers at Tokyo University of Science found that one ingredient can solve the problem: Calcium. By discovering the protective effects of calcium doping in the batteries, “this study could pave the way for the widespread adoption” of sodium-ion batteries.
Rob talks with the author and activist about his new book, We Survived the Night.
Julian Brave NoiseCat is a writer, Oscar-nominated filmmaker, champion powwow dancer, and student of Salish art and history. His first book, We Survived the Night, was released this week — it uses memoir, reporting, and literary anthology to tell the story of Native families across North America, including his own.
NoiseCat was previously an environmental and climate activist at groups including 350.org and Data for Progress. On this week’s episode of Shift Key, Rob talks with Julian about Native American nations and politics, the complexity and reality of Native life in 2025, and the “trickster” as a recurring political archetype.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: What were lessons that you took away from the writing of the book, or from the reporting of the book, that changed how you thought about climate or the environment in some way that maybe wasn’t the case when you were working on these issues full time?
Julian Brave NoiseCat: I would say that while I was working on climate issues, I was actually, myself, really changing a lot in terms of my thoughts on how politics worked and did not work. I think I came into my period of my life as a climate activist really believing in the power of direct action, and protest, and, you know, if you get enough people in the streets and you get enough politicians on your side, you eventually can change the laws. And I think that there is some truth to that view.
But I think being in DC for four years, being really involved in this movement, conversation — however you want to put that — around the Green New Deal, around eventually a Biden administration and how that would be shaped around how they might go about actually taking on climate change for the first time in U.S. history in a significant way, really transformed my understanding of how change happens. I got a greater appreciation, for example, for the importance of persuading people to your view, particularly elites in decision-making positions. And I also started to understand a little bit more of the true gamesmanship of politics — that there is a bit of tricks and trickery, and all kinds of other things that are going on in our political system that are really fundamental to how it all works.
And I bring that last piece up because while I was writing the book, I was also thinking really purposefully about my own people’s narrative traditions, and how they get at transformations and how they happen in the world. And it just so happens that probably the most significant oral historical tradition of my own people is a story called a coyote story, which is about a trickster figure who makes change in the world through cunning and subterfuge and tricks, and also who gets tricked himself a fair amount.
And I think that in that worldview, I actually found a lot of resonance with my own observations on how political change happened when I was in Washington, D.C., and so that insight did really deeply shape the book.
Mentioned:
We Survived the Night, by Julian Brave NoiseCat
How Deb Haaland Became the First Native American Cabinet Secretary
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
A warmer world is here. Now what? Listen to Shocked, from the University of Chicago’s Institute for Climate and Sustainable Growth, and hear journalist Amy Harder and economist Michael Greenstone share new ways of thinking about climate change and cutting-edge solutions. Find it here.
Music for Shift Key is by Adam Kromelow.
Long-duration storage is still an awkward fit in most U.S. electricity markets.
It’s hard to imagine a decarbonized grid without batteries that can last longer — far longer — than the four hours today’s grid-scale, lithium-ion batteries can pump power onto the grid. But who’s going to pay for it?
That’s the question developers and researchers are puzzling over as the U.S. electricity grid struggles to replace aging generation and transmission infrastructure. At the same time, forecast demand for electricity is surging thanks to electrification of transportation and home heating, factory construction, and, of course, data centers. With solar (still) coming online, there’s a need to spread out the plentiful power generated in the middle of the day — or even year — across other hours and seasons.
In much of the country, electricity markets are set up to optimize the delivery of energy on very short time frames at the lowest cost, and to ensure ancillary services that can keep the grid stable from second to second. Then there are capacity markets, where electricity generators receive payments in exchange for their future availability in order to maintain long-term reliability.
Molly Robertson, an associate fellow studying electricity market design at Resources for the Future, a nonprofit research institution, is skeptical about how long-duration energy storage can fit into this market. “If we think about the market as compensating for those three things, there’s two questions,” she told me. “One is, is the market covering all of the things that the grid needs? And are there enough products that are being purchased that actually cover all of the needs of the grid?”
Long-duration batteries fit awkwardly into that equation. “Right now, I think you don’t see long duration storage because there are resources that are more cost competitive” for what existing wholesale markets reward, Robertson told me.
But the grid today may not be the grid of tomorrow — or at least that’s the argument of the long-duration energy storage industry.
“This energy transition was always going to be necessary around this time frame, regardless of the decarbonization agenda or anything like that,” Jon Norman, the president of Hydrostor, a Canadian company developing large-scale, compressed air batteries, told me. “Most of the infrastructure was built in the 80s and 90s and it’s hitting its natural end-of-life cycle. So these traditional coal-fired power plants, gas-fired power plants would either need to be rebuilt or new infrastructure built.”
“There’s no way of avoiding that,” he added.
Norman, of course, thinks that long-duration storage is a “good replacement for a lot of those assets.” Large-scale batteries like Hydrostor’s can store surplus electricity from when renewables are producing more than the grid needs, and then discharge that energy when needed — and for far longer than today’s batteries.
Lithium-ion is the dominant chemistry for battery energy storage systems today, thanks to its high energy density and ability to withstand many charging and discharging cycles, the same factors that have made it the default choice for electric cars. Because of both lithium-ion’s physical limits and the specific needs of the grid, however, the vast majority of grid-scale systems top out at four hours of discharge.
From a grid planning perspective, the difference between those batteries and long-duration storage, which can discharge for 10 or more hours at a time, means that the latter “can reliably replace” existing fossil fuel generation, Norman said. That makes Hydrostor’s batteries less like an “energy” product and more like capacity — a role typically filled by coal and natural gas, which get paid handsomely for doing so.
Restructured electricity markets work fine at wholesale electricity pricing for infrastructure that already exists, Norman argued. In the late 1990s and early 2000s, when electricity markets were deregulated, “you didn’t need a lot of buildout,” he said. Instead, the question was, “How can we most efficiently dispatch this stuff? How do we send the right signals to the generators?”
But sudden demand growth and the ravages of time have brought a new set of challenges. “The issue that we’ve seen over the past 10 years — and it’s coming to a head now — is, how do you build new capacity? Nobody’s really investing in these markets because there’s a real disconnect between those power market signals that are in real time and short term and the long-run cost of building infrastructure,” Norman told me.
Relying on market forces to come up with new capacity has not worked, he said. “This experiment has failed.”
Management of the PJM Interconnection, the country’s largest electricity market, has practically had to beg developers to bring more firm power onto the grid. It’s also overhauling its internal processes to get projects approved for interconnection more quickly.
In the meantime, as capacity payments and reliability worries continue to spiral, the market’s managers have introduced a pair of proposals that would subject new large sources of electricity demand (i.e. data centers) to mandatory shutoffs and allow utilities to get back into building generation. The former would essentially undo the foundational “duty to serve” model that’s been at the heart of electricity policy for over a century, and the other would reverse decades of electricity market deregulation and restructuring.
Suppliers and customers alike revolted against the idea of mandatory curtailment, and both proposals are now on hold. Whether or not either is ever realized, the fact that they’re even being discussed shows how dire the capacity crisis is.
Even in Texas, the most deregulated market in the country, a plan to offer cheap financing to natural gas-fired power plants to shore up the reliability following the 2021 Winter Storm Elliott disaster has found few takers and few viable projects. You have to get outside restructured electricity markets in states like Tennessee or Georgia, where utilities also control the generation of electricity, to find any appetite for large-scale generation projects like nuclear power plants. These markets are able — for better or worse — to pass along the cost of new power plants to ratepayers. It’s no coincidence that all the new nuclear power — a large source of firm power on the grid that takes a notoriously long time to develop — built this century has come in vertically integrated markets.
Everywhere else, building long-lasting infrastructure assets requires planning to lead the market, Norman told me. “Run really sophisticated competitive procurements — competitive mechanisms that allow you to hit a particular objective instead of the objective supposedly being decided by the market in real time,” he explained.
He pointed to California, where regulators tell utilities to procure clean firm generation like geothermal and long-term energy storage (or the state does it itself). Virginia, which is a vertically integrated market within PJM, has targets for energy storage procurement by its utilities.
Norman’s critique of restructured power markets rhymes with those of former Federal Energy Regulatory Commission Chairman Mark Christie, who said that there’s “missing money” in the electricity markets that exposes consumers to financial and reliability risks. He also asked whether restructured electricity markets, “especially the multi-state capacity markets, have been successful in ensuring a sufficient supply of the power necessary to sustain reliability,” as he wrote in widely noted in a 2023 law review paper.
For her part, Robertson cautioned that there are real technological and logistical questions for how long-duration storage would work in an electricity market, even if you can figure out a way to get them on the grid.
“When we think about longer-duration storage, we have to think about, how would those generators operate, and what timelines are they operating on? If you have a multi-day storage opportunity, how are you going to determine the best time to charge and discharge over that long of an opportunity window?” she asked.
In a RFF paper, Robertson and her co-authors argue that long-duration batteries “likely will not be sufficiently incentivized by price fluctuations within a 24-hour period,” as four-hour batteries are, and will instead have to “take greater advantage of long-term revenue opportunities like capacity markets.” But even then, she cautioned, markets would need to see big swings in prices over potentially multi-day periods to make the charging and discharging cycles of long-duration batteries economical.
Norman, however, had harsh words for critics who say this kind of procurement and planning will lead to inflated costs for infrastructure that may or may not be useful in the future. “What bugs me about keeping our head in the sand is that then results in us saying, Well, we just don’t want to pay for that, so we’re not going to set this target, and we’re going to let the markets decide,” he told me. “All we’re doing is deferring the problem and causing it to cost way more. And so I think we need a bit of a wakeup call.”