Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Fervo Snags $206 Million for Cape Station Geothermal

The new funding comes as tax credits for geothermal hang in the balance.

Fervo geothermal.
Heatmap Illustration/Fervo

The good news is pouring in for the next-generation geothermal developer Fervo Energy. On Tuesday the company reported that it was able to drill its deepest and hottest geothermal well to date in a mere 16 days. Now on Wednesday, the company is announcing an additional $206 million in financing for its Cape Station project in Utah.

With this latest tranche of funding, the firm’s 500-megawatt development in rural Beaver County is on track to deliver 24/7 clean power to the grid beginning in 2026, reaching full operation in 2028. The development is shaping up to be an all-too-rare phenomenon: A first-of-a-kind clean energy project that has remained on track to hit its deadlines while securing the trust of institutional investors, who are often wary of betting on novel infrastructure projects.

The bulk of this latest financing comes from the Bill Gates-backed Breakthrough Energy Catalyst program, which provided $100 million in project-level equity funding. The energy and commodity trading company Mercuria provided $60 million in corporate loans, increasing its existing fixed-term loan from $40 million to $100 million. An additional $45.6 million in short-term debt financing came from XRL-ALC, an affiliate of X-Caliber Rural Capital, which provides loans to infrastructure projects in rural areas. That comes on top of a previous $100 million loan from the firm.

The plan is for Cape Station to deliver 100 megawatts of grid power in 2026, with the additional 400 megawatts by 2028. The facility has the necessary permitting to expand production to two gigawatts — twice the size of a standard nuclear reactor. And on Monday, the company announced that an independent report from the consulting firm DeGolyer & MacNaughton confirms that the project could expand further still — eventually supporting over 5 gigawatts of clean power at depths of up to 13,000 feet. The company’s latest drilling results, which reached 15,765 feet at 520 degrees Fahrenheit, could push the project’s potential power output even higher.

Traditional geothermal wells normally max out at around 10,000 feet, and must be built in locations where a lucky confluence of geological features come together: high temperatures, porous rock, and naturally occurring water or steam. But because Fervo can drill thousands of feet deeper, it’s able to access hot rocks in locations that weren’t previously suitable for geothermal development, pumping high-pressure water down into the wells to fracture rocks and thus create its own geothermal reservoirs.

The primary customer for Fervo’s Cape Station project is Southern California Edison, which signed a 320-megawatt power purchase agreement with the company last year, advertised as the largest geothermal PPA ever. Shell was also announced as a customer this year. Fervo is already providing 3.5 megawatts of power to Google via a pilot project in Nevada, which it’s seeking to expand, entering into a 115 megawatt PPA with NV Energy and the tech giant to further build out production at this location.

Fervo’s latest funding comes on top of last February’s $244 million Series D round led by Devon Energy, as well as an additional $255 million in corporate equity and debt financing that it announced last December. On top of investments from well known climate tech venture firms such as Breakthrough Energy Ventures and Galvanize Climate Solutions, the company has secured institutional investment from Liberty Mutual as well as public pension funds such as the California State Teachers’ Retirement System and the Canada Pension Plan Investment Board.

Fervo, like all clean energy startups, also stands to benefit greatly from the Inflation Reduction Act’s clean energy tax credits, which are now in jeopardy as President Trump’s One Big, Beautiful Bill works its way through the Senate. While Secretary of Energy Chris Wright has traditionally been a booster of geothermal energy and is advocating to keep tax incentives for the technology in place through 2031, the bill as it stands would essentially erase incentives for all geothermal projects that start construction more than 60 days after the bill’s passage.

Fervo broke ground on Cape Station in 2023, so that project will make the cut. For future Fervo developments, it’s much less clear. But for now, the company seems to be flush with cash and potential in a climate tech world awash in ill omens.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

Avalanche Energy Gets $10 Million to Test Micro-Fusion Reactors

The grant from Washington State will fund a facility where all kinds of fusion labs can run tests of their own.

The Washington state capitol and nuclear technology.
Heatmap Illustration/Getty Images, Avalanche Energy

Flash back to four summers ago, when aspiring fusion pioneers Robin Langtry and Brian Riordan were stuck designing rockets at Blue Origin, Amazon CEO Jeff Bezos’ aerospace and space tourism company. More specifically, they were ruminating on how their engine’s large size was preventing the team from iterating quickly.

“If your rocket engine is 12 feet tall, there’s like, three places in the country where you can get castings,” Langtry told me. One simple design change could mean another eight to nine months before the redesigned part came in. Smaller designs, they hypothesized, would lead to faster development cycles.

Keep reading...Show less
Blue
Climate

AM Briefing: EPA Eyes A Climate Kill Shot

On House drama, the good and bad of solar, and earnings season

EPA Seeks to Wipe Out Climate Rules With One Shot
Heatmap Illustration/Getty Images

Current conditions: Djibouti, eastern Ethiopia, and southern Eritrea are roasting in higher-than-average triple-digit temperatures • Argentina’s brutal cold snap is back after a brief pause, threatening gas infrastructure and freezing crops • Millions of Americans are facing a new round of heat waves from the upper Midwest down to the Gulf.

THE TOP FIVE

1. EPA aims for a climate kill shot by targeting endangerment finding

The Environmental Protection Agency is days away from proposing a rule to rescind the endangerment finding, the 2009 decision that established the federal government’s legal right to regulate greenhouse gas emissions under the Clean Air Act. That’s according to a scoop late last night in The New York Times, confirmed hours later by The Washington Post. The finding came in response to the 2007 Supreme Court case Massachusetts v. EPA, in which the nation’s highest court ruled that the danger planet-heating emissions posed to human health made them subject to limits under the same law that restricts other forms of air pollution. The endangerment finding was previously considered so untouchable that the first Trump administration tried to work within the parameters of the rule rather than eliminate it outright.

Keep reading...Show less
Yellow
Podcast

Shift Key Summer School: How Sun and Wind Become Electricity

Jesse teaches Rob all about where solar and wind energy come from.

Early solar panels.
Heatmap Illustration/Getty Images

The two fastest-growing sources of electricity generation in the world represent a radical break with the energy technologies that came before them. That’s not just because their fuels are the wind and the sun.

This is our third episode of Shift Key Summer School, a series of “lecture conversations” about the basics of energy, electricity, and the power grid. This week, we dive into the history and mechanics of wind turbines and solar panels, the two lynchpin technologies of the energy transition. What do solar panels have in common with semiconductors? Why did it take so long for them to achieve scale? And what’s an inverter and why is it so important for the grid of the future?

Keep reading...Show less
Green