You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
“At least 14 Tarrant County residents died from extreme heat last summer … Of those who died from heat, at least eight cases included residents with no air conditioning, no working air conditioning, or who had their air conditioning turned off at the time of their death…” –The Fort Worth Star-Telegram, June 25, 2023
Air conditioners aren’t supposed to make that sound. The gray-white box in the window had always rattled, but this morning it has begun to grind. The grandmother puts her hand in front of the AC’s dust-covered gills, feels nothing but a weak, lukewarm breeze.
She thinks about calling her daughter, whose husband installed the unit in her trailer’s living room window the summer before. She shakes her head to herself: No, they have the baby; it’s a 40-minute drive; she’s a burden enough as it is. She doesn’t have internet in the trailer to see the day’s excessive heat warning. Her cell phone, another gift from her daughter, is dead more often than it’s not, and she can’t find the weather app on it half of the time, anyway.
But the grandmother has been hot before — prides herself, even, on her 68 Texan summers. Besides, she’s not planning anything strenuous today, which would elevate her chances of exertional, or “activity-induced,” heat stroke — the kind that makes the news for killing the young, fit, and healthy, like the California couple who were found dead on a trail with their 1-year-old baby and dog in 2021, or the stepfather who died last month while trying to rescue his 14-year-old stepson, who also died, while hiking in 119-degree weather in Texas’ Big Bend National Park. Like the dozens of promising high school and college athletes who collapse during training, games, and meets every year.
Or like the characters in longtime Outside correspondent and adventure historian Peter Stark’s cautionary tales about succumbing to the elements. Stark is perhaps best known for his second-person narrative about what it’s like to die from hypothermia, which recirculates every winter, but he has a particular, morbid fascination with heat strokes, having now written two different versions (a competitive cyclist dies in one; a hungover, hiking surfer is brought back from the brink in the other). “Out of all the research I’ve done into ways to die — or come close to dying — heat stroke is the one I found the scariest,” Stark told an Outside interviewer last year.
Like Stark’s characters, the grandmother is fictional and illustrative. Unlike Stark’s characters, she has not elected into risk. Exertional heat stroke is often described as “sporadic” because it is circumstantial; it is also less deadly since an athlete often begins to feel terrible, or collapses, before the point-of-no-return. “Classic” heat stroke, which results from unbearably high temperatures, “occurs in epidemic form” in the sense that it strikes the vulnerable at once and all together: the ill, the elderly, the unhoused, the bedridden, the prepubescent. Though heat-related mortality can be hard to pin down, by some estimates classic heat stroke is fatal in over 60% of intensive care cases — part of the reason extreme heat is credited as the deadliest weather phenomenon in the United States.
The grandmother goes to her sink and fills a glass of water. She looks out the window, at the tall grass growing alongside her neighbor’s trailer, and thinks about her grandbaby. Her trailer, which had stayed cool overnight before the AC conked out, has already begun to feel muggy, but she isn’t alarmed.
It is 97 degrees outside and getting hotter.
The human body is a contradiction: It can run a marathon in under two hours; it can scale the tallest mountain in the world; and it can survive episodes of extreme cold and starvation. At the same time, it is hilariously delicate: Only about 8.2 degrees separate our core body temperature of 98.6 from multi-organ dysfunction, which begins somewhere around 106 degrees, depending on the person and circumstances. Because this leaves little margin for error, our bodies spring into a well-rehearsed response when blood warmed by our environments at the surface of our skin makes its way to our brain, causing our hypothalamus to rustle through its bag of cooling tricks.
The grandmother’s body begins to run through them as the trailer’s temperature rises to 100 degrees, the point at which the body ceases to give off heat and begins to absorb it. Her hair follicles relax to release any trapped warm air against her skin. Her sweat glands are activated, and soon she’s covered in a light sheen that serves to transport heat away from her body via evaporation. Crucially, her blood vessels dilate so that the warmed blood can pass closer to the surface of the skin, where it will ideally be cooled by the heat pulling away from her body.
But as an older adult, the grandmother’s blood vessels don’t dilate as well as they used to. Her body strains to cool itself and her heart pumps harder. And despite her glass of water, the grandmother begins to notice she feels … off. She is experiencing some of the most common heat-related symptoms, the ones most of us are probably familiar with: Her stomach starts to cramp and she feels slightly nauseous as blood is redirected from her gut to the surface of her skin. She begins, also, to feel fatigued — unbeknownst to her, the drowsiness is because her body is running its cooling mechanisms full-blast, compensating for the broken AC.
But today, these systems are fighting an uphill battle. The trailer is humid, meaning the grandmother’s sweat isn’t evaporating as efficiently as it would in dry air. She has a sunburn from sitting on her lawn the day before, and her body is using water to try to heal it, leaving her with less liquid overall to sweat out. She can’t drink enough water to replenish what she’s lost, either, since the human body can only absorb, at max, one liter of water an hour, and those in extreme heat conditions can lose that or more in the same span of time.
Little does the grandmother know, either, that because it’s now over 95 degrees in her trailer, the fan she’s turned on is no longer having any cooling effect. Her core temperature tips toward 100 degrees.
Heat exhaustion sets in when the core body temperature is between 101°F and 104°F, as the grandmother’s is now. (Core body temperature cannot reliably be read on an oral thermometer, which is part of why the Centers for Disease Control and Prevention recommends watching for symptoms of heat exhaustion and heat stroke rather than taking your own measurements). In addition to her fatigue, she now feels dizzy. Her heart is pounding as her body tries to regulate itself; if she had a preexisting cardiac condition, she would be in even more danger than she already is. She stands up to get more water and feels a woosh of lightheadedness — a result of low pressure stemming from her dilated vessels — and her vision momentarily goes black. She nearly faints, but steadies herself with a hand on the back of a chair.
If a neighbor checked in on her, as the weathermen on TV are advising good samaritans do, they would see that the grandmother looks pale, that she’s grown irritable and unfocused. The neighbor might suggest she take a cold shower before asking her to come to their air-conditioned trailer, or a local cooling center, for the rest of the day. The most crucial thing, though, would be that she gets to a safe temperature, and fast, before her core hits 104, the threshold of heat stroke.
In her delirium, the grandmother thinks to take an Advil, foggily hoping a fever-reducer might help lower her core body temperature. And though the damage wrought by extreme heat is similar internally to that inflicted by a dangerously high fever, the response systems at play in each case are completely different. For extreme heat, there is no magic pill, no shut-off switch for how the grandmother is feeling aside from getting somewhere cool.
It might seem like a simple thing: getting somewhere cool. In this sense, classic heat stroke is, agonizingly, preventable. Though most Americans have air conditioning, over a quarter — 34 million households — “said they could not [financially] meet their energy needs at some point” during 2020, according to Energy Information Administration data. Of those who were struggling, 10% reported enduring dangerously high temperatures in their homes due to concerns about cost.
Because Americans typically do have access to AC, though, losing air conditioning for reasons beyond their control — say, due to grid failure, a localized blackout, or a mechanical issue — actually makes people more susceptible to dangerous heat-related illness, in part because acclimation has such a large role in how well we tolerate heat. The shock of living in climate-controlled rooms and suddenly finding yourself without one can be deadly.
The grandmother’s internal temperature is now over 105 degrees and still rising; she is well within the realm of heat stroke. Her pulse is rapid and now she is confused and agitated — she stumbles, directionless, toward her living room and collapses on the floor. Her body is rationing water away from vital organs, like her kidneys, which begin to shut down. Her brain is swollen. She cycles in and out of consciousness on the floor.
Her body is past the point of being able to bring its temperature back down by itself. A heat stroke victim may stop sweating. Their cells begin to die — the cerebellum, which controls motor functions, is one of the earliest parts of the brain to fail. They may have seizures or hallucinate or, nearing the end, feel a soaring sense of euphoria. Internally, the body is in freefall; by one estimate, there are 27 different pathways to death once heat stroke sets in, ranging from heart failure to the proteins that control blood clotting becoming overactive and cutting off flow to vital organs.
When the grandmother’s daughter arrives and calls the paramedics, it will only have been two hours since the grandmother first noticed her air conditioner’s grinding. “That’s part of what makes [heat stroke] so lethal,” Willamette Week wrote after the heat wave in the Pacific Northwest in 2021 killed an estimated 250 Americans: “You can go from feeling bothered by the heat to dead in 90 minutes.”
Victims of classic heat stroke are often elderly, often have pre-existing health conditions, often are socially isolated, and often are low-income. In an analysis of heat deaths in Multnomah County (where Portland, Oregon, is located) in 2021, The Washington Post found 61 percent of confirmed deaths were in areas with above-average poverty rates. In the same story, the reporters found that a “direct outreach” program in Philadelphia — which includes a “mass notification system,” “the number for a 24-hour hotline staffed by nurses [flashing] from one of the city’s tallest high rises,” and a 5,000-strong volunteer team that mobilizes “to check on high-risk neighbors” — saves an average of 45 lives per year.
If the grandmother had been younger, she might have been treated with “cold-water immersion,” which is one of the fastest and most reliable ways to address heat stroke. (Willamette Week reports Oregon paramedics resourcefully filled body bags with ice and had those suffering from heat stroke crawl inside). In the case of the elderly, though, it is advised to treat heat stroke with more easily tolerable cooling methods, like the application of ice packs and cold, wet gauze.
Either way, the outcome past the threshold of heat stroke is uncertain. As Stark, the master of the cautionary tale, writes, “A study reviewing 58 of the severe heat stroke victims [after a 1995 Chicago heat wave] found that 21 percent died in the hospital soon after admission, 28 percent died within a year, and all the remaining subjects experienced organ dysfunction and neurological impairments.”
But he sees a grim silver lining. “It could be a small measure of good fortune,” writes Stark, “that confusion, semiconsciousness, or coma overcome victims as they succumb to severe heatstroke.”
The laborer puts the nail gun down on the nearest cinderblock and sweeps the back of his hand across his brow, a portrait of I’m hot. Though the elimination of water breaks won’t go into effect until the fall, his employer has threatened to fire anyone who “slacks off” anyway, and the laborer needs this job. He watches for a moment as the heat makes strange shapes in the air above the new asphalt driveway. He thinks he might have a headache coming on.
There are five more hours to go. It’s 96 degrees out with 66% humidity.
And tomorrow will be another scorcher.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Want to understand what’s happening to electric cars? Look at the Golden State.
As California goes, so goes the American car scene. This sentiment has long been true, given that the Golden State is the country’s biggest automotive market and its emissions rules have helped to drag the car industry toward more efficient vehicles.
It is doubly true in the EV era, since California is where electric vehicles first went big and where electric adoption far outpaces the rest of the nation. A look at the car sales data from the first half of 2024 shows us a few things about what the electric car market is and where it’s headed.
Electric cars went mainstream in a hurry here, growing from 5.8% of California car sales in 2020 to 21.5% in 2023. Then the graph flattens out: For the first half of this year, EVs made up 21.4% of new registrations. That would seem to support the gloomy narrative of a supposed EV sales slump. The truth, as it tends to be, is more complicated.
Look at the numbers broken down by quarters, rather than years, and the chart looks a little different. EV sales reached a peak in the third quarter of 2023, dipped a bit, and then jumped back up in April to June 2024 to the second-best quarter ever. That’s a blip, not a crisis, as EVs appear poised for slow growth but growth nonetheless.
Consider the context for a moment: California reached a place where 1 in 5 new cars sold are electric even with the EV affordability problem. That trend wasn’t going to continue unabated up to 30, 40, or 50% of auto sales without the industry putting out vehicles that can compete on cost with a $25,000 Honda Civic or a $30,000 Toyota RAV4. In its summary of the numbers, the California New Car Dealers Association blames inflation and rising monthly car payments for suppressing all vehicle sales at the moment, EVs included. Money matters will decide where things go from here.
The flipside of this year’s EV doomerism is the notion that drivers are turning to hybrids instead. The numbers bear out that sentiment for thethis moment in California. Traditional hybrid vehicles (excluding plug-in hybrids) more than doubled their market share from 6.1% in 2020 to 13.2% in the first half of 2024. Not too surprising, considering their wide availability and how appealing they are for California drivers who buy some of the nation’s most expensive gasoline.
Plug-in hybrids accounted for 3.4% of sales in the first half of this year, not far from the number they posted back in 2021. That might sound odd, given automakers’ rumblings about turning to these vehicles instead of true EVs, but a new wave of PHEVs is still in development. For now, the difficult calculus remains: Plug-in hybrids are a great choice for a lot of drivers, but they are significantly more expensive than combustion cars for not much electric range, and PHEVs can be hard to come by.
Take all these electrified powertrains together, however, and the picture is clear. Compared to 2018, when gas- and diesel-burners made up 88.4% of auto sales, that number is down to 62% for the first half of this year. Combustion-only is sinking fast, a trend that will spread from the West Coast to the rest of the nation.
My eyes don’t deceive me. Since the start of 2024, it has felt like Rivian’s trucks and especially SUVs are all over Los Angeles, driven by the kind of people who used to own Range Rovers. It turns out RJ Scaringe’s company is the fastest-growing car brand of any kind in California, with sales up nearly 77% in the first half of 2024 compared to the same period in 2023.
Now, that number is deceiving. It’s easy to grow by big percentages at the beginning, and Rivian’s sales numbers are relatively small: It moved just shy of 7,000 vehicles through June, which pales in comparison to the 100,000 Teslas and 150,000 Toyotas registered in California during the same period. But Rivian’s early success in California suggests the brand is finding traction and that it might pick off plenty of drivers from Tesla's bread-winning Model Y once the more reasonably priced R2 and R3 arrive.
After all, the story of the supposed EV slump is actually the story of Tesla squandering its huge halftime lead. Ford, Toyota, Mercedes, Rivian, BMW, and Hyundai/Kia EV sales are up this year, but Tesla’s slump wipes out much of their gains.
The Model Y and Model 3 remain California’s best-selling EVs by far, with the second-place Model 3 selling three times the volume of the third-place finisher, Hyundai’s Ioniq 5. Yet Tesla sales in California are down 17% from the first half of 2023, and its market share dropped from 64.6% to 53.4%. Its only new model, the Cybertruck, sold 3,048 in the first half of this year. Californians bought nearly a thousand more Chevy Bolts — and GM isn’t even building that car right now.
Current conditions: More than 300,000 people in Louisiana are without power after Hurricane Francine • Hungarian lawmakers met in a dried riverbed yesterday to draw attention to the country’s extreme drought • An Arctic blast could bring snow to parts of the U.K.
More than 60 scientists have co-authored a new study, published in The Lancet Planetary Health, warning that human activity is damaging the natural systems that support life on Earth. Almost all of these support systems – including the climate, soil nutrient cycles, and freshwater – have been pushed into danger zones as humans strive for ever more economic growth. Thus, the researchers say, the health of the planet and its people are at risk, and the poor are the most vulnerable. The study concludes “fundamental system-wide transformations are needed” to address overconsumption, overhaul economic systems, improve technologies, and transform governance.
The Lancet
Carmaker Stellantis announced yesterday it is pouring more than $400 million into three facilities in Michigan to ramp up electric vehicle production and boost the company’s “multi-energy strategy.” The Sterling Heights Assembly Plant will be Stellantis’ first U.S. facility to build a fully electric vehicle, the Ram 1500 REV. The Warren Truck Assembly Plant will be “retooled” to produce the upcoming electric Jeep Wagoneer. And the Dundee Engine Plant will be upgraded for parts production for the company’s STLA Frame architecture. As The Associated Pressexplained, Stellantis “is taking a step toward meeting some commitments that it agreed to in a new contract ratified last fall by the United Auto Workers union after a bitter six-week strike.” The company is aiming for 50% of its passenger car and light-duty truck sales in the U.S. to be electric by 2030.
Police arrested a 34-year-old man suspected of starting a wildfire in California that has now burned more than 36,000 acres and is less than 20% contained. The Line fire is one of several large blazes burning in the state and threatening thousands of structures. Last month another man was charged with arson on suspicion of igniting the Park fire, which consumed 430,000 acres in Northern California. As Heatmap’s Jeva Lange reported, arson officially accounts for only about 10% of fires handled by Cal Fire. But when there are thousands of fires across the state during a given season, that’s not an inconsequential number. And a warmer world has made extreme fire conditions more common, as have decades of misbegotten fire suppression policies in the Western United States. As a result, arson fires in rural areas are more likely to burn out of control than they would have been half a century ago, Lange wrote. Experts warn that California’s fire season, fueled by “weather whiplash,” is only just ramping up and is likely to intensify with the arrival of the Santa Ana winds.
Brazil’s President Luiz Inácio Lula da Silva has pledged to finish the paving of a controversial road through the Amazon rainforest. The BR-319 highway would connect some major cities and improve cargo movement, which has been disrupted by record-low water levels in the Amazon River due to drought. But its construction could also hasten deforestation, including in old growth forests. “Without the forest, there is no water, it’s interconnected,” said Suely Araújo, a public policy coordinator. “The paving of the middle section of BR-319, without ensuring environmental governance and the presence of the government in the region, will lead to historic deforestation, as pointed out by many specialists and by Brazil’s federal environmental agency in the licensing process.” Lula made the pledge during a visit to assess the damage from massive fires in the rainforest, which his Environment Minister Marina Silva blamed on extreme drought caused by climate change.
A new survey of more than 1,000 EV owners in California has some interesting insights into what these drivers want from a charging station. It found they were 37% more likely to choose a charger with additional amenities like restrooms and convenience stores. “This symbiotic relationship between businesses and EV chargers may benefit both EV chargers and local businesses,” said Alan Jenn, assistant professor at the Electric Vehicle group of the Institute of Transportation Studies at UC Davis.
Next 10
Also, California’s EV drivers really don’t want to wait to charge up, and are willing to pay almost a dollar more per 100 miles of charge if there’s no wait time at the charger. With every minute of extra wait time, a driver’s willingness to use a charger falls by 6%. The survey was conducted by the non-profit Next 10 and the Institute for Transportation Studies at UC Davis.
“If Harris is now bragging about her administration’s support for fossil fuels, if she is casting the Inflation Reduction Act as a law that helped fracking, that means climate activists have much more work to do to persuade the public on what they believe. The Democratic Party’s candidate will not do that persuasion for them.” –Heatmap’s Robinson Meyer on Kamala Harris’ energy playbook.
The rapid increase in demand for artificial intelligence is creating a seemingly vexing national dilemma: How can we meet the vast energy demands of a breakthrough industry without compromising our energy goals?
If that challenge sounds familiar, that’s because it is. The U.S. has a long history of rising to the electricity demands of innovative new industries. Our energy needs grew far more quickly in the four decades following World War II than what we are facing today. More recently, we have squared off against the energy requirements of new clean technologies that require significant energy to produce — most notably hydrogen.
Courtesy of Rhodium Group
The lesson we have learned time and again is that it is possible to scale technological innovation in a way that also scales energy innovation. Rather than accepting a zero-sum trade-off between innovation and our clean energy goals, we should focus on policies that leverage the growth of AI to scale the growth of clean energy.
At the core of this approach is the concept of additionality: Companies operating massive data centers — often referred to as “hyperscalers” — as well as utilities should have incentives to bring online new, additional clean energy to power new computing needs. That way, we leverage demand in one sector to scale up another. We drive innovation in key sectors that are critical to our nation’s competitiveness, we reward market leaders who are already moving in this direction with a stable, long-term regulatory framework for growth, and we stay on track to meet our nation’s climate commitments.
All of this is possible, but only if we take bold action now.
AI technologies have the potential to significantly boost America’s economic productivity and enhance our national security. AI also has the potential to accelerate the energy transition itself, from optimizing the electricity grid, to improving weather forecasting, to accelerating the discovery of chemicals and material breakthroughs that reduce reliance on fossil fuels. Powering AI, however, is itself incredibly energy intensive. Projections suggest that data centers could consume 9% of U.S. electricity generation by 2030, up from 4% today. Without a national policy response, this surge in energy demand risks increasing our long-term reliance on fossil fuels. By some estimates, around 20 gigawatts of additional natural gas generating capacity will come online by 2030, and coal plant retirements are already being delayed.
Avoiding this outcome will require creative focus on additionality. Hydrogen represents a particularly relevant case study here. It, too, is energy-intensive to produce — a single kilogram of hydrogen requires double the average household’s electricity consumption. And while hydrogen holds great promise to decarbonize parts of our economy, hydrogen is not per se good for our clean energy goals. Indeed, today’s fossil fuel-driven methods of hydrogen production generate more emissions than the entire aviation sector. While we can make zero-emissions hydrogen by using clean electricity to split hydrogen from water, the source of that electricity matters a lot. Similar to data centers, if the power for hydrogen production comes from the existing electricity grid, then ramping up electrolytic production of hydrogen could significantly increase emissions by growing overall energy demand without cleaning the energy mix.
This challenge led to the development of an “additionality” framework for hydrogen. The Inflation Reduction Act offers generous subsidies to hydrogen producers, but to qualify, they must match their electricity consumption with additional (read: newly built) clean energy generation close enough to them that they can actually use it.
This approach, which is being refined in proposed guidance from the U.S. Treasury Department, is designed to make sure that hydrogen’s energy demand becomes a catalyst for investment in new clean electricity generation and decarbonization technologies. Industry leaders are already responding, stating their readiness to build over 50 gigawatts of clean electrolyzer projects because of the long term certainty this framework provides.
While the scale and technology requirements are different, meeting AI’s energy needs presents a similar challenge. Powering data centers from the existing electricity grid mix means that more demand will create more emissions; even when data centers are drawing on clean electricity, if that energy is being diverted from existing sources rather than coming from new, additional clean electricity supply, the result is the same. Amazon’s recent $650 million investment in a data center campus next to an existing nuclear power plant in Pennsylvania illustrates the challenge: While diverting those clean electrons from Pennsylvania homes and businesses to the data center reduces Amazon’s reported emissions, by increasing demand on the grid without building additional clean capacity, it creates a need for new capacity in the region that will likely be met by fossil fuels (while also shifting up to $140 million of additional costs per year onto local customers).
Neither hyperscalers nor utilities should be expected to resolve this complex tension on their own. As with hydrogen, it is in our national interest to find a path forward.
What we need, then, is a national solution to make sure that as we expand our AI capabilities, we bring online new clean energy, as well, strengthening our competitive position in both industries and forestalling the economic and ecological consequences of higher electricity prices and higher carbon emissions.
In short, we should adopt a National AI Additionality Framework.
Under this framework, for any significant data center project, companies would need to show how they are securing new, additional clean power from a zero-emissions generation source. They could do this either by building new “behind-the-meter” clean energy to power their operations directly, or by partnering with a utility to pay a specified rate to secure new grid-connected clean energy coming online.
If companies are unwilling or unable to secure dedicated additional clean energy capacity, they would pay a fee into a clean deployment fund at the Department of Energy that would go toward high-value investments to expand clean electricity capacity. These could range from research and deployment incentives for so-called “clean firm” electricity generation technologies like nuclear and geothermal, to investments in transmission capacity in highly congested areas, to expanding manufacturing capacity for supply-constrained electrical grid equipment like transformers, to cleaning up rural electric cooperatives that serve areas attractive to data centers. Given the variance in grid and transmission issues, the fund would explicitly approach its investment with a regional lens.
Several states operate similar systems: Under Massachusetts’ Renewable Portfolio Standard, utilities are required to provide a certain percentage of electricity they serve from clean energy facilities or pay an “alternative compliance payment” for every megawatt-hour they are short of their obligation. Dollars collected from these payments go toward the development and expansion of clean energy projects and infrastructure in the state. Facing increasing capacity constraints on the PJM grid, Pennsylvania legislators are now exploring a state Baseload Energy Development Fund to provide low-interest grants and loans for new electricity generation facilities.
A national additionality framework should not only challenge the industry to scale innovation in a way that scales clean technology, it must also clear pathways to build clean energy at scale. We should establish a dedicated fast-track approval process to move these clean energy projects through federal, state, and local permitting and siting on an accelerated basis. This will help companies already investing in additional clean energy to move faster and more effectively – and make it more difficult for anyone to hide behind the excuse that building new clean energy capacity is too hard or too slow. Likewise, under this framework, utilities that stand in the way of progress should be held accountable and incentivized to adopt innovative new technologies and business models that enable them to move at historic speed.
For hyperscalers committed to net-zero goals, this national approach provides both an opportunity and a level playing field — an opportunity to deliver on those commitments in a genuine way, and a reliable long-term framework that will reward their investments to make that happen. This approach would also build public trust in corporate climate accountability and diminish the risk that those building data centers in the U.S. stand accused of greenwashing or shifting the cost of development onto ratepayers and communities. The policy clarity of an additionality requirement can also encourage cutting edge artificial intelligence technology to be built here in the United States. Moreover, it is a model that can be extended to address other sectors facing growing energy demand.
The good news is that many industry players are already moving in this direction. A new agreement between Google and a Nevada utility, for example, would allow Google to pay a higher rate for 24/7 clean electricity from a new geothermal project. In the Carolinas, Duke Energy announced its intent to explore a new clean tariff to support carbon-free energy generation for large customers like Google and Microsoft.
A national framework that builds on this progress is critical, though it will not be easy; it will require quick Congressional action, executive leadership, and new models of state and local partnership. But we have a unique opportunity to build a strange bedfellow coalition to get it done – across big tech, climate tech, environmentalists, permitting reform advocates, and those invested in America’s national security and technology leadership. Together, this framework can turn a vexing trade-off into an opportunity. We can ensure that the hundreds of billions of dollars invested in building an industry of the future actually accelerates the energy transition, all while strengthening the U.S.’s position in innovating cutting- edge AI and clean energy technology.