You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
“At least 14 Tarrant County residents died from extreme heat last summer … Of those who died from heat, at least eight cases included residents with no air conditioning, no working air conditioning, or who had their air conditioning turned off at the time of their death…” –The Fort Worth Star-Telegram, June 25, 2023
Air conditioners aren’t supposed to make that sound. The gray-white box in the window had always rattled, but this morning it has begun to grind. The grandmother puts her hand in front of the AC’s dust-covered gills, feels nothing but a weak, lukewarm breeze.
She thinks about calling her daughter, whose husband installed the unit in her trailer’s living room window the summer before. She shakes her head to herself: No, they have the baby; it’s a 40-minute drive; she’s a burden enough as it is. She doesn’t have internet in the trailer to see the day’s excessive heat warning. Her cell phone, another gift from her daughter, is dead more often than it’s not, and she can’t find the weather app on it half of the time, anyway.
But the grandmother has been hot before — prides herself, even, on her 68 Texan summers. Besides, she’s not planning anything strenuous today, which would elevate her chances of exertional, or “activity-induced,” heat stroke — the kind that makes the news for killing the young, fit, and healthy, like the California couple who were found dead on a trail with their 1-year-old baby and dog in 2021, or the stepfather who died last month while trying to rescue his 14-year-old stepson, who also died, while hiking in 119-degree weather in Texas’ Big Bend National Park. Like the dozens of promising high school and college athletes who collapse during training, games, and meets every year.
Or like the characters in longtime Outside correspondent and adventure historian Peter Stark’s cautionary tales about succumbing to the elements. Stark is perhaps best known for his second-person narrative about what it’s like to die from hypothermia, which recirculates every winter, but he has a particular, morbid fascination with heat strokes, having now written two different versions (a competitive cyclist dies in one; a hungover, hiking surfer is brought back from the brink in the other). “Out of all the research I’ve done into ways to die — or come close to dying — heat stroke is the one I found the scariest,” Stark told an Outside interviewer last year.
Like Stark’s characters, the grandmother is fictional and illustrative. Unlike Stark’s characters, she has not elected into risk. Exertional heat stroke is often described as “sporadic” because it is circumstantial; it is also less deadly since an athlete often begins to feel terrible, or collapses, before the point-of-no-return. “Classic” heat stroke, which results from unbearably high temperatures, “occurs in epidemic form” in the sense that it strikes the vulnerable at once and all together: the ill, the elderly, the unhoused, the bedridden, the prepubescent. Though heat-related mortality can be hard to pin down, by some estimates classic heat stroke is fatal in over 60% of intensive care cases — part of the reason extreme heat is credited as the deadliest weather phenomenon in the United States.
The grandmother goes to her sink and fills a glass of water. She looks out the window, at the tall grass growing alongside her neighbor’s trailer, and thinks about her grandbaby. Her trailer, which had stayed cool overnight before the AC conked out, has already begun to feel muggy, but she isn’t alarmed.
It is 97 degrees outside and getting hotter.
The human body is a contradiction: It can run a marathon in under two hours; it can scale the tallest mountain in the world; and it can survive episodes of extreme cold and starvation. At the same time, it is hilariously delicate: Only about 8.2 degrees separate our core body temperature of 98.6 from multi-organ dysfunction, which begins somewhere around 106 degrees, depending on the person and circumstances. Because this leaves little margin for error, our bodies spring into a well-rehearsed response when blood warmed by our environments at the surface of our skin makes its way to our brain, causing our hypothalamus to rustle through its bag of cooling tricks.
The grandmother’s body begins to run through them as the trailer’s temperature rises to 100 degrees, the point at which the body ceases to give off heat and begins to absorb it. Her hair follicles relax to release any trapped warm air against her skin. Her sweat glands are activated, and soon she’s covered in a light sheen that serves to transport heat away from her body via evaporation. Crucially, her blood vessels dilate so that the warmed blood can pass closer to the surface of the skin, where it will ideally be cooled by the heat pulling away from her body.
But as an older adult, the grandmother’s blood vessels don’t dilate as well as they used to. Her body strains to cool itself and her heart pumps harder. And despite her glass of water, the grandmother begins to notice she feels … off. She is experiencing some of the most common heat-related symptoms, the ones most of us are probably familiar with: Her stomach starts to cramp and she feels slightly nauseous as blood is redirected from her gut to the surface of her skin. She begins, also, to feel fatigued — unbeknownst to her, the drowsiness is because her body is running its cooling mechanisms full-blast, compensating for the broken AC.
But today, these systems are fighting an uphill battle. The trailer is humid, meaning the grandmother’s sweat isn’t evaporating as efficiently as it would in dry air. She has a sunburn from sitting on her lawn the day before, and her body is using water to try to heal it, leaving her with less liquid overall to sweat out. She can’t drink enough water to replenish what she’s lost, either, since the human body can only absorb, at max, one liter of water an hour, and those in extreme heat conditions can lose that or more in the same span of time.
Little does the grandmother know, either, that because it’s now over 95 degrees in her trailer, the fan she’s turned on is no longer having any cooling effect. Her core temperature tips toward 100 degrees.
Heat exhaustion sets in when the core body temperature is between 101°F and 104°F, as the grandmother’s is now. (Core body temperature cannot reliably be read on an oral thermometer, which is part of why the Centers for Disease Control and Prevention recommends watching for symptoms of heat exhaustion and heat stroke rather than taking your own measurements). In addition to her fatigue, she now feels dizzy. Her heart is pounding as her body tries to regulate itself; if she had a preexisting cardiac condition, she would be in even more danger than she already is. She stands up to get more water and feels a woosh of lightheadedness — a result of low pressure stemming from her dilated vessels — and her vision momentarily goes black. She nearly faints, but steadies herself with a hand on the back of a chair.
If a neighbor checked in on her, as the weathermen on TV are advising good samaritans do, they would see that the grandmother looks pale, that she’s grown irritable and unfocused. The neighbor might suggest she take a cold shower before asking her to come to their air-conditioned trailer, or a local cooling center, for the rest of the day. The most crucial thing, though, would be that she gets to a safe temperature, and fast, before her core hits 104, the threshold of heat stroke.
In her delirium, the grandmother thinks to take an Advil, foggily hoping a fever-reducer might help lower her core body temperature. And though the damage wrought by extreme heat is similar internally to that inflicted by a dangerously high fever, the response systems at play in each case are completely different. For extreme heat, there is no magic pill, no shut-off switch for how the grandmother is feeling aside from getting somewhere cool.
It might seem like a simple thing: getting somewhere cool. In this sense, classic heat stroke is, agonizingly, preventable. Though most Americans have air conditioning, over a quarter — 34 million households — “said they could not [financially] meet their energy needs at some point” during 2020, according to Energy Information Administration data. Of those who were struggling, 10% reported enduring dangerously high temperatures in their homes due to concerns about cost.
Because Americans typically do have access to AC, though, losing air conditioning for reasons beyond their control — say, due to grid failure, a localized blackout, or a mechanical issue — actually makes people more susceptible to dangerous heat-related illness, in part because acclimation has such a large role in how well we tolerate heat. The shock of living in climate-controlled rooms and suddenly finding yourself without one can be deadly.
The grandmother’s internal temperature is now over 105 degrees and still rising; she is well within the realm of heat stroke. Her pulse is rapid and now she is confused and agitated — she stumbles, directionless, toward her living room and collapses on the floor. Her body is rationing water away from vital organs, like her kidneys, which begin to shut down. Her brain is swollen. She cycles in and out of consciousness on the floor.
Her body is past the point of being able to bring its temperature back down by itself. A heat stroke victim may stop sweating. Their cells begin to die — the cerebellum, which controls motor functions, is one of the earliest parts of the brain to fail. They may have seizures or hallucinate or, nearing the end, feel a soaring sense of euphoria. Internally, the body is in freefall; by one estimate, there are 27 different pathways to death once heat stroke sets in, ranging from heart failure to the proteins that control blood clotting becoming overactive and cutting off flow to vital organs.
When the grandmother’s daughter arrives and calls the paramedics, it will only have been two hours since the grandmother first noticed her air conditioner’s grinding. “That’s part of what makes [heat stroke] so lethal,” Willamette Week wrote after the heat wave in the Pacific Northwest in 2021 killed an estimated 250 Americans: “You can go from feeling bothered by the heat to dead in 90 minutes.”
Victims of classic heat stroke are often elderly, often have pre-existing health conditions, often are socially isolated, and often are low-income. In an analysis of heat deaths in Multnomah County (where Portland, Oregon, is located) in 2021, The Washington Post found 61 percent of confirmed deaths were in areas with above-average poverty rates. In the same story, the reporters found that a “direct outreach” program in Philadelphia — which includes a “mass notification system,” “the number for a 24-hour hotline staffed by nurses [flashing] from one of the city’s tallest high rises,” and a 5,000-strong volunteer team that mobilizes “to check on high-risk neighbors” — saves an average of 45 lives per year.
If the grandmother had been younger, she might have been treated with “cold-water immersion,” which is one of the fastest and most reliable ways to address heat stroke. (Willamette Week reports Oregon paramedics resourcefully filled body bags with ice and had those suffering from heat stroke crawl inside). In the case of the elderly, though, it is advised to treat heat stroke with more easily tolerable cooling methods, like the application of ice packs and cold, wet gauze.
Either way, the outcome past the threshold of heat stroke is uncertain. As Stark, the master of the cautionary tale, writes, “A study reviewing 58 of the severe heat stroke victims [after a 1995 Chicago heat wave] found that 21 percent died in the hospital soon after admission, 28 percent died within a year, and all the remaining subjects experienced organ dysfunction and neurological impairments.”
But he sees a grim silver lining. “It could be a small measure of good fortune,” writes Stark, “that confusion, semiconsciousness, or coma overcome victims as they succumb to severe heatstroke.”
The laborer puts the nail gun down on the nearest cinderblock and sweeps the back of his hand across his brow, a portrait of I’m hot. Though the elimination of water breaks won’t go into effect until the fall, his employer has threatened to fire anyone who “slacks off” anyway, and the laborer needs this job. He watches for a moment as the heat makes strange shapes in the air above the new asphalt driveway. He thinks he might have a headache coming on.
There are five more hours to go. It’s 96 degrees out with 66% humidity.
And tomorrow will be another scorcher.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The failure of the once-promising sodium-ion manufacturer caused a chill among industry observers. But its problems may have been more its own.
When the promising and well funded sodium-ion battery company Natron Energy announced that it was shutting down operations a few weeks ago, early post-mortems pinned its failure on the challenge of finding a viable market for this alternate battery chemistry. Some went so far as to foreclose on the possibility of manufacturing batteries in the U.S. for the time being.
But that’s not the takeaway for many industry insiders — including some who are skeptical of sodium-ion’s market potential. Adrian Yao, for instance, is the founder of the lithium-ion battery company EnPower and current PhD student in materials science and engineering at Stanford. He authored a paper earlier this year outlining the many unresolved hurdles these batteries must clear to compete with lithium-iron-phosphate batteries, also known as LFP. A cheaper, more efficient variant on the standard lithium-ion chemistry, LFP has started to overtake the dominant lithium-ion chemistry in the electric vehicle sector, and is now the dominant technology for energy storage systems.
But, he told me, “Don’t let this headline conclude that battery manufacturing in the United States will never work, or that sodium-ion itself is uncompetitive. I think both those statements are naive and lack technological nuance.”
Opinions differ on the primary advantages of sodium-ion compared to lithium-ion, but one frequently cited benefit is the potential to build a U.S.-based supply chain. Sodium is cheaper and more abundant than lithium, and China hasn’t yet secured dominance in this emerging market, though it has taken an early lead. Sodium-ion batteries also perform better at lower temperatures, have the potential to be less flammable, and — under the right market conditions — could eventually become more cost-effective than lithium-ion, which is subject to more price volatility because it’s expensive to extract and concentrated in just a few places.
Yao’s paper didn’t examine Natron’s specific technology, which relied on a cathode material known as “Prussian Blue Analogue,” as the material’s chemical structure resembles that of the pigment Prussian Blue. This formula enabled the company’s batteries to discharge large bursts of power extremely quickly while maintaining a long cycle life, making it promising for a niche — but crucial — domestic market: data center backup power.
Natron’s batteries were designed to bridge the brief gap between a power outage and a generator coming online. Today, that role is often served by lead-acid batteries, which are cheap but bulky, with a lower energy density and shorter cycle life than sodium-ion. Thus, Yao saw this market — though far smaller than that of grid-scale energy storage — as a “technologically pragmatic” opportunity for the company.
“It’s almost like a supercapacitor, not a battery,” one executive in the sodium-ion battery space who wished to remain anonymous told me of Natron’s battery. Supercapacitors are energy storage devices that — like Natron’s tech — can release large amounts of power practically immediately, but store far less total energy than batteries.
“The thing that has been disappointing about the whole story is that people talk about Natron and their products and their journey as if it’s relevant at all to the sodium-ion grid scale storage space,” the executive told me. The grid-scale market, they said, is where most companies are looking to deploy sodium-ion batteries today. “What happened to Natron, I think, is very specific to Natron.”
But what exactly did happen to the once-promising startup, which raised over $363 million in private investment from big name backers such as Khosla Ventures and Prelude Ventures? What we know for sure is that it ran out of money, canceling plans to build a $1.4 billion battery manufacturing facility in North Carolina. The company was waiting on certification from an independent safety body, which would have unleashed $25 million in booked orders, but was forced to fold before that approval came through.
Perhaps seeing the writing on the wall, Natron’s founder, Colin Wessells, stepped down as CEO last December and left the company altogether in June.
“I got bored,” Wessels told The Information of his initial decision to relinquish the CEO role. “I found as I was spending all my time on fundraising and stockholder and board management that it wasn’t all that much fun.”
It’s also worth noting, however, that according to publicly available data, the investor makeup of Natron appears to have changed significantly between the company’s $35 million funding round in 2020 and its subsequent $58 million raise in 2021, which could indicate qualms among early backers about the direction of the company going back years. That said, not all information about who invested and when is publicly known. I reached out to both Wessels and Natron’s PR team for comment but did not receive a reply.
The company submitted a WARN notice — a requirement from employers prior to mass layoffs or plant closures — to the Michigan Department of Labor and Economic Opportunity on August 28. It explained that while Natron had explored various funding avenues including follow-on investment from existing shareholders, a Series B equity round, and debt financing, none of these materialized, leaving the company unable “to cover the required additional working capital and operational expenses of the business.”
Yao told me that the startup could have simply been a victim of bad timing. “While in some ways I think the AI boom was perfect timing for Natron, I also think it might have been a couple years too early — not because it’s not needed, but because of bandwidth,” he explained. “My guess is that the biggest thing on hyperscalers’ minds are currently still just getting connected to the grid, keeping up with continuous improvements to power efficiency, and how to actually operate in an energy efficient manner.” Perhaps in this environment, hyperscalers simply viewed deploying new battery tech for a niche application as too risky, Yao hypothesized, though he doesn’t have personal knowledge of the company’s partnerships or commercial activity.
The sodium-ion executive also thought timing might have been part of the problem. “He had a good team, and the circumstances were just really tough because he was so early,” they said. Wessells founded Natron in 2012, based on his PhD research at Stanford. “Maybe they were too early, and five years from now would have been a better fit,” the executive said. “But, you know, who’s to say?”
The executive also considers it telling that Natron only had $25 million in contracts, calling this “a drop in the bucket” relative to the potential they see for sodium-ion technology in the grid-scale market. While Natron wasn’t chasing the big bucks associated with this larger market opportunity, other domestic sodium-based battery companies such as Inlyte Energy and Peak Energy are looking to deploy grid-scale systems, as are Chinese battery companies such as BYD and HiNa Battery.
But it’s certainly true that manufacturing this tech in the U.S. won’t be easy. While Chinese companies benefit from state support that can prop up the emergent sodium-ion storage industry whether it’s cost-competitive or not, sodium-ion storage companies in the U.S. will need to go head-to-head with LFP batteries on price if they want to gain significant market share. And while a few years ago experts were predicting a lithium shortage, these days, the price of lithium is about 90% off its record high, making it a struggle for sodium-ion systems to match the cost of lithium-ion.
Sodium-ion chemistry still offers certain advantages that could make it a good option in particular geographies, however. It performs better in low-temperature conditions, where lithium-ion suffers notable performance degradation. And — at least in Natron’s case — it offers superior thermal stability, meaning it’s less likely to catch fire.
Some even argue that sodium-ion can still be a cost-effective option once manufacturing ramps up due to the ubiquity of sodium, plus additional savings throughout the batteries’ useful life. Peak Energy, for example, expects its battery systems to be more expensive upfront but cheaper over their entire lifetime, having designed a passive cooling system that eliminates the need for traditional temperature control components such as pumps and fans.
Ultimately, though, Yao thinks U.S. companies should be considering sodium-ion as a “low-temperature, high-power counterpart” — not a replacement — for LFP batteries. That’s how the Chinese battery giants are approaching it, he said, whereas he thinks the U.S. market remains fixated on framing the two technologies as competitors.
“I think the safe assumption is that China will come to dominate sodium-ion battery production,” Yao told me. “They already are far ahead of us.” But that doesn’t mean it’s impossible to build out a domestic supply chain — or at least that it’s not worth trying. “We need to execute with technologically pragmatic solutions and target beachhead markets capable of tolerating cost premiums before we can play in the big leagues of EVs or [battery energy storage systems],” he said.
And that, he affirmed, is exactly what Natron was trying to do. RIP.
They may not refuel as quickly as gas cars, but it’s getting faster all the time to recharge an electric car.
A family of four pulls their Hyundai Ioniq 5 into a roadside stop, plugs in, and sits down to order some food. By the time it arrives, they realize their EV has added enough charge that they can continue their journey. Instead of eating a leisurely meal, they get their grub to go and jump back in the car.
The message of this ad, which ran incessantly on some of my streaming services this summer, is a telling evolution in how EVs are marketed. The game-changing feature is not power or range, but rather charging speed, which gets the EV driver back on the road quickly rather than forcing them to find new and creative ways to kill time until the battery is ready. Marketing now frequently highlights an electric car’s ability to add a whole lot of miles in just 15 to 20 minutes of charge time.
Charging speed might be a particularly effective selling point for convincing a wary public. EVs are superior to gasoline vehicles in a host of ways, from instantaneous torque to lower fuel costs to energy efficiency. The one thing they can’t match is the pump-and-go pace of petroleum — the way combustion cars can add enough fuel in a minute or two to carry them for hundreds of miles. But as more EVs on the market can charge at faster speeds, even this distinction is beginning to disappear.
In the first years of the EV race, the focus tended to fall on battery range, and for good reason. A decade ago, many models could travel just 125 or 150 miles on a charge. Between the sparseness of early charging infrastructure and the way some EVs underperform their stated range numbers at highway speeds, those models were not useful for anything other than short hauls.
By the time I got my Tesla in 2019, things were better, but still not ideal. My Model 3’s 240 miles of max range, along with the expansion of the brand’s Supercharger network, made it possible to road-trip in the EV. Still, I pushed the battery to its limits as we crossed worryingly long gaps between charging stations in the wide open expanses of the American West. Close calls burned into my mind a hyper-awareness of range, which is why I encourage EV shoppers to pay extra for a bigger battery with additional range if they can afford it. You just had to make it there; how fast the car charged once you arrived was a secondary concern. But these days, we may be reaching a point at which how fast your EV charges is more important than how far it goes on a charge.
For one thing, the charging map is filling up. Even with an anti-EV American government, more chargers are being built all the time. This growth is beginning to eliminate charging deserts in urban areas and cut the number of very long gaps between stations out on the highway. The more of them come online, the less range anxiety EV drivers have about reaching the next plug.
Super-fast charging is a huge lifestyle convenience for people who cannot charge at home, a group that could represent the next big segment of Americans to electrify. Speed was no big deal for the prototypical early adopter who charged in their driveway or garage; the battery recharged slowly overnight to be ready to go in the morning. But for apartment-dwellers who rely on public infrastructure, speed can be the difference between getting a week’s worth of miles in 15 to 20 minutes and sitting around a charging station for the better part of an hour.
Crucially, an improvement in charging speed makes a long EV journey feel more like the driving rhythm of old. No, battery-powered vehicles still can’t get back on the road in five minutes or less. But many of the newer models can travel, say, three hours before needing to charge for a reasonable amount of time — which is about as long as most people would want to drive without a break, anyway.
An impressive burst of technological improvement is making all this possible. Early EVs like the original Chevy Bolt could accept a maximum of around 50 kilowatts of charge, and so that was how much many of the early DC fast charging stations would dispense. By comparison, Tesla in the past few years pushed Supercharger speed to 250 kilowatts, then 325. Third-party charging companies like Electrify America and EVgo have reached 350 kilowatts with some plugs. The result is that lots of current EVs can take on 10 or more miles of driving range per minute under ideal conditions.
It helps, too, that the ranges of EVs have been steadily improving. What those car commercials don’t mention is that the charging rate falls off dramatically after the battery is half full; you might add miles at lightning speed up to 50% of charge, but as it approaches capacity it begins to crawl. If you have a car with 350 miles of range, then, you probably can put on 175 miles in a heartbeat. (Efficiency counts for a lot, too. The more miles per kilowatt-hour your car can get, the farther it can go on 15 minutes of charge.)
Yet here again is an area where the West is falling behind China’s disruptive EV industry. That country has rolled out “megawatt” charging that would fill up half the battery in just four minutes, a pace that would make the difference between a gasoline pit stop and a charging stop feel negligible. This level of innovation isn’t coming to America anytime soon. But with automakers and charging companies focused on getting faster, the gap between electric and gas will continue to close.
On the need for geoengineering, Britain’s retreat, and Biden’s energy chief
Current conditions: Hurricane Gabrielle has strengthened into a Category 4 storm in the Atlantic, bringing hurricane conditions to the Azores before losing wind intensity over Europe • Heavy rains are whipping the eastern U.S. • Typhoon Ragasa downed more than 10,000 trees in Yangjiang, in southern China, before moving on toward Vietnam.
The White House Office of Management and Budget directed federal agencies to prepare to reduce personnel during a potential government shutdown, targeting employees who work for programs that are not legally required to continue, Politico reported Wednesday, citing a memo from the agency.
As Heatmap’s Jeva Lange warned in May, the Trump administration’s cuts to the federal civil service mean “it may never be the same again,” which could have serious consequences for the government’s response to an unpredictable disaster such as a tsunami. Already the administration has hollowed out entire teams, such as the one in charge of carbon removal policy, as our colleague Katie Brigham wrote in February, shortly after the president took office. And Latitude Media reported on Wednesday, the Department of Energy has issued a $50 million request for proposals from outside counsel to help with the day-to-day work of the agency.
At the Heatmap House event at New York Climate Week on Wednesday, Senate Minority Leader Chuck Schumer kicked things off by calling out President Donald Trump’s efforts to “kill solar, wind, batteries, EVs and all climate friendly technologies while propping up fossil fuels, Big Oil, and polluting technologies that hurt our communities and our growth.” The born and raised Brooklynite praised his home state. “New York remains the climate leader,” he said, but warned that the current administration was pushing to roll back the progress the state had made.
Yet as Heatmap’s Charu Sinha wrote in her recap of the event, “many of the panelists remained cautiously optimistic about the future of decarbonization in the U.S.” Climate tech investors Tom Steyer and Dawn Lippert charted a path forward for decarbonization technology even in an antagonistic political environment, while PG&E’s Carla Peterman made a case for how data centers could eventually lower energy costs. You can read about all these talks and more here.
Nearly 100 scientists, including President Joe Biden’s chief climate science adviser, signed onto a letter Wednesday endorsing more federal research into geoengineering, the broad category of technologies to mitigate the effects of climate change that includes the controversial proposal to inject sulfur dioxide into the atmosphere to reflect the sun’s heat back into space. In an open letter, the researchers said “it is very unlikely that current” climate goals “will keep the global mean temperature below the Paris Agreement target” of 1.5 degrees Celsius above pre-industrial averages. The world has already warmed by more than 1 degree Celsius.
Earlier this month, a paper in the peer-reviewed journal Frontiers argued against even researching technologies that could temporarily cool the planet while humanity worked to cut planet-heating emissions. But Phil Duffy, Biden’s former climate adviser, said in a statement to Heatmap that the paper “opposes research … that might help protect or restore the polar regions.” He went on via email, “As the climate crisis accelerates, we all agree that we need to rapidly scale up mitigation efforts. But the stakes are too high not to also investigate other possible solutions.”
President Trump and Prime Minister Keir Starmer. Leon Neal/Getty Images
UK Prime Minister Keir Starmer plans to skip the United Nations annual climate summit in Brazil in November, the Financial Times reported on Wednesday. He will do so despite criticizing his predecessor Rishi Sunak a few years ago for a “failure of leadership” after the conservative leader declined to attend the annual confab. One leader in the ruling Labour party said there was a “big fight inside the government” between officials pushing Starmer to attend the event those “wanting him to focus on domestic issues.”
Polls show approval for Starmer among the lowest of any leaders in the West. But he has recently pushed for more clean energy, including signing onto a series of nuclear power deals with the U.S.
The Tennessee Valley Authority has assumed the role of the nation’s testbed for new nuclear fission technologies, agreeing to build what are likely to be the nation’s first small modular reactors, including the debut fourth-generation units that use a coolant other than water. Now the federally-owned utility is getting into fusion. On Wednesday, the TVA inked a deal with fusion startup Type One Energy to develop a 350-megawatt plant “using the company’s stellarator fusion technology.” The deal, first brokered last week but reported Tuesday in World Nuclear News, promises to deploy the technology “once it is commercially ready.” It also follows the announcement just a few days ago of a major offtake agreement for fusion leader Commonwealth Fusion Systems, which will sell $1 billion of electricity to oil giant Eni.
Climate change is good news for foreign fish. A new study in Nature found that warming rivers have brought about the introduction of new invasive species. This, the researchers wrote, shows “an increase in biodiversity associated with improvement of water in many European rivers since the late twentieth century.”