You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
As climate writers, my colleagues and I spend a lot of time telling readers that places are hot. The Arabian Peninsula? It’s hot. The Atlantic Ocean? It’s hot. The southern U.S. and northern Mexico? Hot and getting hotter.
But here’s a little secret: “Hot” doesn’t really mean … anything. The word is, of course, of critical importance when it comes to communicating that global temperatures are the highest they’ve been in 125,000 years because of greenhouse gases in the atmosphere, or for public health officials to anticipate and prevent deaths when the environment reaches the point where human bodies start malfunctioning. But when you hear it’s “100 degrees out,” what does that really tell you?
Beyond that you’re a fellow member of the Fahrenheit cult, the answer is: not a lot. Humans can “probably avoid overheating” in temperatures of 115 degrees — but only if they’re in a dry room with 10 percent relative humidity, wearing “minimal” clothing, and not moving, The New York Times reports. On the other hand, you have a high chance of life-threatening heat stroke when it’s a mere 90 degrees out … if the humidity is at 95%. Then there are all the variables in between: if there’s a breeze, if you’re pregnant, if you’re standing in the shade or the sun, if you’re a child, if you’re running a 10K or if you’re napping on your couch in front of a swamp cooler.
In order to better specify how hot “hot” is, a number of different equations and techniques have been developed around the world. In general, this math takes into account two main variables: temperature (the one we all use, also known as “dry bulb” or “ambient air temperature,” which is typically measured five feet above the ground in the shade) and relative humidity (the percentage of air saturated with water vapor, also known as the ugly cousin of the trendier dew point; notably Canada’s heat index equivalent, the Humidex, is calculated from the dew point rather than the relative humidity).
In events like the already deadly heat dome over the southern United States and northern Mexico this week, you typically hear oohing and ahhing about the “heat index,” which is sometimes also called the “apparent temperature,” “feels like temperature,” “humiture,” or, in AccuWeather-speak, the “RealFeel® temperature.”
But what does that mean and how is it calculated?
The heat index roughly approximates how hot it “actually feels.”
This is different than the given temperature on the thermometer because the amount of humidity in the air affects how efficiently sweat evaporates from our skin and in turn keeps us cool. The more humidity there is, the less efficiently our bodies can cool themselves, and the hotter we feel; in contrast, when the air is dry, it’s easier for our bodies to keep cool. Regrettably, this indeed means that insufferable Arizonans who say “it’s a dry heat!” have a point.
The heat index, then, tells you an estimate of the temperature it would have to be for your body to be similarly stressed in “normal” humidity conditions of around 20%. In New Orleans this week, for example, the temperature on the thermometer isn’t expected to be above 100°F, but because the humidity is so high, the heat toll on the body will be as if it were actually 115°F out in normal humidity.
Importantly, the heat index number is calculated as if you were standing in the shade. If you’re exposed to the sun at all, the “feels like” is, of course, actually higher — potentially as many as 15 degrees higher. Someone standing in the New Orleans sun this week might more realistically feel like they’re in 130-degree heat.
The heat index graph.NOAA
Here’s the catch, though: The heat index is “purely theoretical since the index can’t be measured and is highly subjective,” as meteorologist Chris Robbins explains. The calculations are all made under the assumption that you are a 5’7”, 147-pound healthy white man wearing short sleeves and pants, and walking in the shade at the speed of 3.1 mph while a 6-mph wind gently ruffles your hair.
Wait, what?
I’m glad you asked.
In 1979, a physicist named R. G. Steadman published a two-part paper delightfully titled “The Assessment of Sultriness.” In it, he observed that though many approaches to measuring “sultriness,” or the combined effects of temperature and humidity, can be taken, “it is best assessed in terms of its physiological effect on humans.” He then set out, with obsessive precision, to do so.
Steadman came up with a list of approximately 19 variables that contribute to the overall “feels like” temperature, including the surface area of an average human (who is assumed to be 1.7 meters tall and weigh 67 kilograms); their clothing cover (84%) and those clothes’ resistance to heat transfer (the shirt and pants are assumed to be 20% fiber and 80% air); the person’s core temperature (a healthy 98.6°F) and sweat rate (normal); the effective wind speed (5 knots); the person’s activity level (typical walking speed); and a whole lot more.
Here’s an example of what just one of those many equations looked like:
One of the many equations in “The Assessment of Sultriness: Part I,”R.G. Steadman
Needless to say, Steadman’s equations and tables weren’t exactly legible for a normal person — and additionally they made a whole lot of assumptions about who a “normal person” was — but Steadman was clearly onto something. Describing how humidity and temperature affected the human body was, at the very least, interesting and useful. How, then, to make it easier?
In 1990, the National Weather Service’s Lans P. Rothfusz used multiple regression analysis to simplify Steadman’s equations into a single handy formula while at the same time acknowledging that to do so required relying on assumptions about the kind of body that was experiencing the heat and the conditions surrounding him. Rothfusz, for example, used Steadman’s now-outdated calculations for the build of an average American man, who as of 2023 is 5’9” and weighs 198 pounds. This is important because, as math educator Stan Brown notes in a blog post, if you’re heavier than the 147 pounds assumed in the traditional heat index equation, then your “personal heat index” will technically be slightly hotter.
Rothfusz’s new equation looked like this:
Heat index = -42.379 + 2.04901523T + 10.14333127R - 0.22475541TR - 6.83783x10-3T 2 - 5.481717x10-2R 2 + 1.22874x10-3T 2R + 8.5282x10-4TR2 - 1.99x10-6T 2R 2
So much easier, right?
If your eyes didn’t totally glaze over, it actually sort of is — in the equation, T stands for the dry bulb temperature (in degrees Fahrenheit) and R stands for the relative humidity, and all you have to do is plug those puppies into the formula to get your heat index number. Or not: There are lots of online calculators that make doing this math as straightforward as just typing in the two numbers.
Because Rothfusz used multiple regression analysis, the heat index that is regularly cited by the government and media has a margin of error of +/- 1.3°F relative to a slightly more accurate, albeit hypothetical, heat index. Also of note: There are a bunch of different methods of calculating the heat index, but Rothfusz’s is the one used by the NWS and the basis for its extreme heat alerts. The AccuWeather “RealFeel,” meanwhile, has its own variables that it takes into account and that give it slightly different numbers.
Midday Wednesday in New Orleans, for example, when the ambient air temperature was 98°F, the relative humidity was 47%, and the heat index hovered around 108.9°F, AccuWeather recorded a RealFeel of 111°F and a RealFeel Shade of 104°F.
You might also be wondering at this point, as I did, that if Steadman at one time factored out all these variables individually, wouldn’t it be possible to write a simple computer program that is capable of personalizing the “feel like” temperature so they are closer to your own physical specifications? The answer is yes, although as Randy Au writes in his excellent Substack post on the heat index equation, no one has seemingly actually done this yet. Math nerds, your moment is now.
Because we’re Americans, it is important that we use the weirdest possible measurements at all times. This is probably why the heat index is commonly cited by our government, media, and meteorologists when communicating how hot it is outside.
But it gets weirder. Unlike the heat index, though, the “wet-bulb globe temperature” (sometimes abbreviated “WBGT”) is specifically designed to understand “heat-related stress on the human body at work (or play) in direct sunlight,” NWS explains. In a sense, the wet-bulb globe temperature measures what we experience after we’ve been cooled by sweat.
The Kansas State High School Activities Association thresholds for wet-bulb globe temperature.Weather.gov
The “bulb” we’re referring to here is the end of a mercury thermometer (not to be confused with a lightbulb or juvenile tulip). Natural wet-bulb temperature (which is slightly different from the WBGT, as I’ll explain in a moment) is measured by wrapping the bottom of a thermometer in a wet cloth and passing air over it. When the air is dry, it is by definition less saturated with water and therefore has more capacity for moisture. That means that under dry conditions, more water from the cloth around the bulb evaporates, which pulls more heat away from the bulb, dropping the temperature. This is the same reason why you feel cold when you get out of a shower or swimming pool. The drier the air, the colder the reading on the wet-bulb thermometer will be compared to the actual air temperature.
Wet bulb temperature - why & when is it used?www.youtube.com
If the air is humid, however, less water is able to evaporate from the wet cloth. When the relative humidity is at 100% — that is, the air is fully saturated with water — then the wet-bulb temperature and the normal dry-bulb temperature will be the same.
Because of this, the wet-bulb temperature is usually lower than the relative air temperature, which makes it a bit confusing when presented without context (a comfortable wet-bulb temperature at rest is around 70°F). Wet-bulb temperatures over just 80, though, can be very dangerous, especially for active people.
The WBGT is, like the heat index, an apparent temperature, or “feels like,” calculation; generally when you see wet-bulb temperatures being referred to, it is actually the WBGT that is being discussed. This is also the measurement that is preferred by the military, athletic organizations, road-race organizers, and the Occupational Safety and Health Administration because it helps you understand how, well, survivable the weather is, especially if you are moving.
Our bodies regulate temperature by sweating to shed heat, but sweat stops working “once the wet-bulb temperature passes 95°F,” explains Popular Science. “That’s because, in order to maintain a normal internal temperature, your skin has to stay at 95°F degrees or below.” Exposure to wet-bulb temperatures over 95°F can be fatal within just six hours. On Wednesday, when I was doing my readings of New Orleans, the wet-bulb temperature was around 88.5°F.
The WBGT is helpful because it takes the natural wet-bulb temperature reading a step further by factoring in considerations not only of temperature and humidity, but also wind speed, sun angle, and solar radiation (basically cloud cover). Calculating the WBGT involves taking a weighted average of the ambient, wet-bulb, and globe temperature readings, which together cover all these variables.
That formula looks like:
Wet-bulb globe temperature = 0.7Tw + 0.2Tg + 0.1Td
Tw is the natural wet-bulb temperature, Tg is the globe thermometer temperature (which measures solar radiation), and Td is the dry bulb temperature. By taking into account the sun angle, cloud cover, and wind, the WBGT gives a more nuanced read of how it feels to be a body outside — but without getting into the weeds with 19 different difficult-to-calculate variables like, ahem, someone we won’t further call out here.
Thankfully, there’s a calculator for the WBGT formula, although don’t bother entering all the info if you don’t have to — the NWS reports it nationally, too.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Trump’s ‘windmill’ ban, FEMA turnover, and PNW power
Current conditions: Physical activity is “discouraged” at the Grand Canyon today as temperatures climb toward 110 degrees Fahrenheit • Tropical Storm Wutip could dump 7 inches of rain in six hours over parts of Vietnam • Investigators are looking into whether this week’s triple-digit heat in Ahmedabad, India, was a factor in Thursday’s deadly plane crash.
Noah Buscher/Unsplash
President Trump said Thursday that his administration is “not going to approve windmills unless something happens that’s an emergency.” The comments — made during the White House East Room signing of legislation overturning California’s authority to set its own car pollution standards — were Trump’s clearest confirmation yet of my colleague Jael Holzman’s reporting, which this week found that “the wind industry’s worst fears are indeed coming to pass.” As Jael went on in The Fight, the Fish and Wildlife Service and the U.S. Army Corps of Engineers have “simply stopped processing wind project permit applications after Trump’s orders — and the freeze appears immovable, unless something changes.”
Trump justified the pause by adding that “we’re not going to let windmills get built because we’re not going to destroy our country any further than it’s already been destroyed,” repeating his long-held grievance that “you go and look at these beautiful plains and valleys, and they’re loaded up with this garbage that gets worse and worse looking with time.” Trump’s aesthetic objections have already blocked at least three wind projects in New York alone — a move that has impacts beyond future energy generation, Jael further notes. According to the Alliance for Clean Energy New York, the policy has impacted “more than $2 billion in capital investments, just in the land-based wind project pipeline, and there’s significant reason to believe other states are also experiencing similar risks.” Read Jael’s full report here.
Turnover at the Federal Emergency Management Agency continued this week after the head of the National Response Coordination Center — responsible for overseeing the federal response to major storms — submitted his resignation, CBS News reported Thursday. Jeremy Greenberg, who’s worked various roles at FEMA for nearly a decade, will stay on for another two weeks but ultimately depart less than a month into hurricane season. “He’s irreplaceable,” one current FEMA official told CBS News, adding that “the brain drain continues and the public will pay for it.” Greenberg’s resignation follows comments President Trump made to the press earlier this week about the need to “wean off of FEMA” after hurricane season is over in November. “A governor should be able to handle” disaster response, the president told reporters on Tuesday, “and frankly, if they can’t handle it, the aftermath, then maybe they shouldn’t be governor.”
Also on Thursday, President Trump issued a presidential memorandum revoking a $1 billion Biden-era agreement to restore salmon and invest in tribally sponsored clean energy infrastructure in the Columbia River Basin, The Seattle Times reports. Biden’s agreement had “placed concerns about climate change above the nation’s interests in reliable energy sources,” the White House claimed.
The 2023 agreement resulted from three decades of opposition to the dams on the Lower Snake River by local tribes and environmental groups. While the Biden administration hadn’t committed to a dam removal, it did present a potential pathway to do so, since Washington State politicians have said that hydropower would need to be replaced by another power source before they’d consider a dam removal plan. The government’s billion-dollar investment would have aided in the construction of up to 3 gigawatts of alternative renewable energy in the region. Kurt Miller, the CEO of the Northwest Public Power Association, celebrated Trump’s action, saying, “In an era of skyrocketing electricity demand, these dams are essential to maintaining grid reliability and keeping energy bills affordable.” But Washington Senator Patty Murray, a Democrat, vowed to fight the “grievously wrong” decision, arguing, “Donald Trump doesn’t know the first thing about the Northwest and our way of life — so of course, he is abruptly and unilaterally upending a historic agreement.”
Two years after we wrote the eulogy for the Chevrolet Bolt EV — “the cheap little EV we need” — General Motors has announced that it will launch the second generation of the car for the 2027 model year. Though “no other details were provided about this next iteration of the Bolt,” Car and Driver wrote that “we expect it to continue as a tall subcompact hatchback, although it could be positioned as a subcompact SUV like the previous generation's EUV model.” A reveal could be coming in the next several months ahead of a likely on-sale date in mid-2026.
Energy developer Scale Microgrids announced Thursday that its latest round of financing, which closed at $275 million, has brought its total to date to over $1 billion. KeyBanc Capital Markets, Cadence Bank, and New York Green Bank led the round, with Greg Berman, the managing director in KeyBanc Capital Markets Utilities, saying in a statement, “We value our relationship with Scale and congratulate their team as they execute on their strategy to deliver high-quality distributed energy assets to the market.” Scale Microgrids said the financing will “support 140 megawatts of distributed generation projects, including microgrids, community-scale solar and storage, and battery storage installations,” many of which are already under construction in the Northeast and California.
“Our best chance is to get a group of critical mass of Republican senators to go to [Senate Majority Leader John] Thune and [Senate Finance Committee Chair Mike] Crapo and say, You’ve got to change this. We can’t vote for it the way it is.” —Democratic Majority Leader Chuck Schumer in conversation with Heatmap’s Robinson Meyer about the Senate math and strategy behind saving the Inflation Reduction Act.
And more of the week’s top news about renewable energy fights.
1. Jefferson County, New York – Two solar projects have been stymied by a new moratorium in the small rural town of Lyme in upstate New York.
2. Sussex County, Delaware – The Delaware legislature is intervening after Sussex County rejected the substation for the offshore MarWin wind project.
3. Clark County, Indiana – A BrightNight solar farm is struggling to get buy-in within the southern region of Indiana despite large 650-foot buffer zones.
4. Tuscola County, Michigan – We’re about to see an interesting test of Michigan’s new permitting primacy law.
5. Marion County, Illinois – It might not work every time, but if you pay a county enough money, it might let you get a wind farm built.
6. Renville County Minnesota – An administrative law judge has cleared the way for Ranger Power’s Gopher State solar project in southwest Minnesota.
7. Knox County, Nebraska – I have learned this county is now completely banning new wind and solar projects from getting permits.
8. Fresno County, California – The Golden State has approved its first large-scale solar facility using the permitting overhaul it passed in 2022, bypassing local opposition to the project. But it’s also prompting a new BESS backlash.
A conversation with Robb Jetty, CEO of REC Solar, about how the developer is navigating an uncertain environment.
This week I chatted with REC Solar CEO Robb Jetty, who reached out to me through his team after I asked for public thoughts from renewables developers about their uncertain futures given all the action in Congress around the Inflation Reduction Act. Jetty had a more optimistic tone than I’ve heard from other folks, partially because of the structure of his business – which is actually why I wanted to include his feelings in this week’s otherwise quite gloomy newsletter.
The following conversation has been lightly edited for clarity. Shall we?
To start, how does it feel to be developing solar in this uncertain environment around the IRA?
There’s a lot of media out there that’s oftentimes trying to interpret something that’s incredibly complex and legalese to begin with, so it’s difficult to really know what the exact impacts are in the first place or what the macroeconomic impacts would be from the policy shifts that would happen from the legislation being discussed right now.
But I’ll be honest, the thing I reinforce the most right now with our team is that you cannot argue with solar being the lowest cost form of electrical generation in the United States and it’s the fastest source of power generation to be brought online. So there’s a reason why, regardless of what happens, our industry isn’t going to go away. We’ve dealt with all kinds of policy changes and I’ve been doing this since 2002. We’ve had lots of changes that have been disruptive to the industry.
You can argue some of the things that are being discussed are more disruptive. But there’s lots of things we’ve faced. Even the pandemic and the fallout on inflation and labor. We’ve navigated through hard times before.
What’s been the tangible impact to your business from this uncertainty?
I would say it has shifted our focus. We sell electricity to our customers that are both commercial customers, using that power behind the meter and on site for their own facilities, or we’re selling electricity to utilities, or virtually through the grid. Right now we’ve shifted some of our strategy toward the acquisition of operating assets instead of buying projects from other developers that could be more impacted by the uncertainty or have economics that are more sensitive to the timing and uncertainty that could come out of the policy. It’s had an impact on our business but, back to my earlier comment, the industry is so big at this point that we’re seeing lots of opportunity for us to provide value to an investor.
As a company that works in different forms of solar development – from small-scale utility to commercial to community solar – do you see any changes in terms of what projects are developed if what’s in the House bill becomes law?
I’m not seeing anything at the moment.
I think most of the activity I’ve been involved in is waiting for this to settle. The disruption is the volatile nature, the uncertainty. We need certainty. Any business needs certainty to plan and operate effectively. But I’m honestly not seeing anything that’s having that impact right now in terms of where investment is flowing, whether its utility scale to the smaller behind-the-meter commercial scale we support in certain markets.
We are seeing it in the residential side of the solar industry. Those are more concerning, because you only have a short amount of time to claim the [investment tax credit] ITC for a residential system.