You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new study from the University of California, Berkeley, breaks down the issues, while also stirring up a controversy of its own.
A new study casts doubt on the integrity of yet another type of carbon offset.
Researchers from the University of California, Berkeley, investigated clean cookstove projects, in which companies distribute stoves that require less or cleaner types of fuel to people who cannot afford them and sell carbon credits based on the resulting emission reductions. These projects have generated, on average, nine times more carbon credits than they should have based on their climate benefits, the researchers found.
This kind of credit inflation obscures climate progress, as the individuals and businesses who buy these credits do so to justify their own emissions under the belief that they are funding climate action elsewhere.
It also threatens a key source of funding to remedy a major public health problem. Nearly a third of the global population — some 2.3 billion people — cook with wood and charcoal burned on open fires or in very basic stoves that expose people to dangerous levels of pollution, including particulate matter and carbon monoxide. The smoke contributes to respiratory and cardiovascular problems and leads to an estimated 4 million premature deaths every year. On top of that, this form of cooking releases roughly 2% of global greenhouse gas emissions.
Companies have jumped at the opportunity to finance solutions by selling carbon offsets, with great success. Between 2017 and 2022, the volume of finance secured for clean cookstoves through the carbon market increased 45-fold, according to a report by the Clean Cookstove Alliance published last fall. Now, cookstove projects make up some 10% of all credits on the carbon market. And they’re one of the fastest growing types of offset projects.
The new study, published in the peer-reviewed journal Nature Sustainability on Wednesday, finds that the methods developers are using to measure the amount of carbon these projects avoid are deeply flawed.
The first red flag the researchers identified was that academic studies of clean cookstoves report much lower adoption rates (whether the new stove was used) and usage rates (how often the new stove was used) than offset projects do. A representative sample of offset projects reported an 86% adoption rate and 98% usage rate, whereas the research literature reported a 58% adoption rate and 52% usage rate.
“The literature at large has found, honestly, devastatingly low rates of adoption and usage,” Annelise Gill-Wiehl, a PhD student at Berkeley and the lead author of the study told me. Some families totally abandon their new stoves, while others continue to use traditional cooking methods in addition to the clean stove. That’s because the new stoves might have smaller burners, not get as hot, change the taste of traditional foods, or else just create more work for cooks. “The first thing you have to ask yourself is, have these offset projects just solved it?” Gill-Wiehl said. “Or are there limitations in their methods?”
One big limitation, according to Gill-Wiehl and her coauthors, is the way offset data is collected. To measure adoption, many project managers use a simple one-time survey that asks households if they used the new stove in the last week or month. If they reply yes, the developer will generate credits as if the household used the stove 100% of the time. Not only is this not exactly robust methodologically, but it may also result in participants inflating their usage to please the survey collectors — a common effect known as “social desirability bias.”
Another major issue stems from the way these projects account for larger environmental impacts. One of the key ways clean cookstove initiatives cut emissions is by reducing the degradation of forests that results from the gathering of fuel to make fires. It would be impossible to measure these cuts directly, but the default estimates that project developers use vastly overstate the level of degradation that would otherwise occur compared to what the peer-reviewed literature has found.
But like anything offsets-related, this study, too, has attracted fierce scrutiny. After an earlier version of it was published a year ago, offset project developers responded with an open letter calling it “misguided.” For instance, the letter calls it inappropriate to compare carbon offset projects to non-commercial projects analyzed in the academic literature. It also accuses the Berkeley researchers of selectively choosing studies and carbon offset projects to include. Finally, the letter also points to the fact that the Better Cooking Company, a cookstove company that is trying to sell credits, provided funding for the study and asserts that the findings benefit that company.
Gill-Wiehl pushed back on all points. The Better Cookstove Company provided less than 5% of the funding, she said, and had no influence over the findings. She added that the results didn’t benefit the company — the study implied that it, too, was guilty of over-crediting, primarily due to inflated forest conservation estimates. (The Better Cookstove Company has since updated its forest conservation estimates to align with the findings in the study, decreasing its sellable credits.)
“We did not write this to burn cookstoves to the ground,” she told me. “This is an incredibly important project type, and it’s so incredibly important that it can't be based on a house of cards.”
Gill-Wiehl said she and her co-authors want the carbon market registries — the groups that design the methodologies project developers must follow to generate and sell credits — to adopt stronger rules that improve the integrity of the market. For example, to measure usage, they could require developers to collect metered data from the stoves or to use fuel sales data. They also want the registries to require that developers use more accurate estimates from the literature for forest degradation. Without significant change, buyers could lose confidence and funding could dry up.
Some of the issues with clean cookstove projects were already known, if not quantified to the extent in this new paper, and there are some ongoing efforts in the industry to improve them. An influential United Nations body recently supported research to establish more accurate estimates of forest degradation, and a consortium of government groups and NGOs is working to develop stronger rules for crediting cookstove projects.
The authors of the study hope this increased attention on cookstoves doesn’t just lead to more legitimate offset projects, but also to ones that better prioritize public health. The vast majority of the cookstoves handed out for offset projects are designed to run more efficiently, but still expose users to dangerous levels of pollution. As of November 2022, only 4% of projects provided the types of stoves that the World Health Organization deems “clean for health at point of use.”
“I feel like at this moment when there’s a shake up of the offset market in general — but also, right now around cookstoves — we have an opportunity to direct all of this finance to projects that have a transformative benefit to people’s lives and health,” Barbara Haya, director of the Berkeley Carbon Trading Project and one of the study’s authors, told me. “And we have an obligation to do that if we’re going to use those credits to make claims of reducing emissions.”
Editor’s note: This story has been updated to correct the proportion of funding the Better Cookstove Company provided for the study and to reflect changes the company has made to its offset methodology since the study’s completion. We regret the error.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.