You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A tale of two coal economies, one post-industrial, one industrializing.
For those living near the Port of Baltimore, the transportation and storage of coal on its way from mines in the Appalachian Mountains to far-flung foreign kilns is “a mundane but ever-present imposition,” Chloe Ahmann, a Cornell University anthropologist, told me. Ahmann once worked as an elementary school teacher in Curtis Bay, a residential neighborhood adjacent to the working port, and wrote a book on the area’s post-industrial present.
“There are stories going back generation,” she said. “Coal dust covering everything in the neighborhood — bicycles, porches, windowsill. People wipe coal dust off their windows as a daily ritual.”
With the collapse of the Francis Scott Key Bridge and subsequent shutdown of the port, that coal now has nowhere to go for the foreseeable future. Baltimoreans don’t want it, but its intended recipients thousands of miles away in India most certainly do.
“The top recipient of U.S. steam coal shipped from Baltimore by far over the past five years has been India, where the brick manufacturing industry has been a major customer,” the U.S. Energy Information Administration said in a report on the impacts of the bridge disaster. In January alone, the Port of Baltimore exported almost a million tons of coal to India, up almost three-fold from January of last year, according to Argus, a commodity data provider. In total, 17 million tons of thermal coal — the type used in power plants and brick kilns — left the U.S. via Baltimore in 2023, S&P Global found by analyzing Census Bureau data.
India is the world’s second largest consumer of coal after China, and coal accounts for over 70% of India's emissions from burning fuel, according to the International Energy Agency. (In contrast, coal accounts for a fifth of the United States’ emissions from combustion.) About a quarter of India’s emissions come from industry, much of which uses coal in its processes, including steelmaking, and cement and, yes, brick manufacturing.
Brickmaking in India is often done on small scales by local producers, but even so, its energy consumption is “comparable to the organized construction industries such as cement and steel,” according to research published in Nature India. Many of those bricks are used to build homes, part and parcel of the country’s astounding economic growth. Along with its steel and cement industries, brickmaking has transformed India — whose inflation-adjusted per capita GDP of around $1,800 in 1990 would have made it one of the world's poorest countries today — into the third-largest carbon dioxide emitter in the world.
The same brick industry that produces the literal building blocks of India’s homebuilding sector is also responsible for immensely damaging particulate pollution. The combination of coal and biomass used to fire brick kilns is responsible for around 75 million tons of carbon dioxide emissions — comparable to the total emissions of Washington State, Arizona, or the 2021 California wildfires — and 100,000 tons of black carbon emissions, according to the Climate and Clean Air Coalition.
Air pollution in South Asia is one of the largest public health problems in the world. India, Pakistan, Nepal, and Bangladesh all ranked in the bottom 10 of 180 countries for air quality, according to the Yale University Environmental Performance Index. In 2019, air pollution was estimated to account for around 1.7 million premature deaths in India. “Brick kilns, involving the burning of low-grade coal, are one of the major sectors that contribute to air pollution in South Asia,” a World Bank report said, with the brick industry making up over 90% of particulate emissions in some South Asian cities and 15% of the most dangerous small particulate emissions in Delhi.
In a story that will be familiar to much of industrial and post-industrial America, these industrial processes are both an important economic engine and an obvious detriment to health locally and are contributing to the climatic changes that are already having devastating effects in South Asia. Efforts to regulate the brick industry have already run into complaints that efficiency requirements will be too expensive for cash-strapped businesses and will result in lower employment in the sector.
In the vertiginous world of globalized capitalism, different regions using the same resource — the Appalachian coal mines, the Baltimore port, and the Indian brick manufacturers — can all at the same time be at different stages of industrialization and post-industrialization, with differing attitudes toward the coal that powers and pollutes them. In South Baltimore, the people living with the dust from the coal pier no longer sees any positive relationship between industrial activity and their own well-being, Ahmann told me.
The Baltimore and Ohio railroad, which has been part of the rail conglomerate CSX since 1980, began construction in 1827 and has long shipped coal from West Virginia and other Appalachian states to the East Coast. Baltimore’s Curtis Bay neighborhood, where Ahmann lived, is adjacent to a coal pier operated by CSX. “It’s an iconic local scene, right by a local playground, stone throw from several elementary schools and homes,” Ahmann said, making the neighborhood both “heavily industrialized and very much a lived-in place.”
While the Maryland government trumpets direct and indirect employment at the port of around 15,000 people, that’s about half the number that worked there in 1970.
“It’s no longer the case that industry is a major employer in South Baltimore,” Ahmann said. “It’s not like it was 40 years ago, when everybody knew somebody whose livelihood was attached to industrial production in this place.” Instead, people in the area “cobble together lives from low-wage service jobs,” she said. Overall, manufacturing employment in Maryland has been roughly cut in half since 1990.
In late 2021, a CSX coal facility in Curtis Bay exploded, damaging nearby homes and spreading tremors for miles. Following the blast, a coalition of community groups and the Maryland Department of the Environment investigated particulate pollution in Curtis Bay and found coal dust “present throughout the community,” with coal dust coming from the terminal itself, as well as train and truck traffic.
“We should not have open air coal piers period, and certainly not in a residential area behind a playground,” Ahmann said.
Among the many fears locals are nursing as the Key Bridge lies in ruins is that the coal will simply pile up at the port as long as it remains blocked. “These piles are going to grow every day,” Ahmann told me, describing it as “stark visual evidence of the untenability of this situation.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Revoy is already hitching its power packs to semis in one of America’s busiest shipping corridors.
Battery swaps used to be the future. To solve the unsolvable problem of long recharging times for electric vehicles, some innovators at the dawn of this EV age imagined roadside stops where drivers would trade their depleted battery for a fully charged one in a matter of minutes, then be on their merry way.
That vision didn’t work out for passenger EVs — the industry chose DC fast charging instead. If the startup Revoy has its way, however, this kind of idea might be exactly the thing that helps the trucking industry surmount its huge hurdles to using electric power.
Revoy’s creation is, essentially, a bonus battery pack on wheels that turns an ordinary semi into an EV for as long as the battery lasts. The rolling module carries a 525 kilowatt-hour lithium iron phosphate battery pack attaches to the back of the truck; then, the trailer full of cargo attaches to the module. The pack offers a typical truck 250 miles of electric driving. Founder Ian Rust told me that’s just enough energy to reach the next Revoy station, where the trucker could swap their depleted module for a fresh one. And if the battery hits zero charge, that's no problem because the truck reverts to its diesel engine. It’s a little like a plug-in hybrid vehicle, if the PHEV towed its battery pack like an Airstream and could drop it off at will.
“If you run out of battery with us, there's basically no range anxiety,” Rust said. “And we do it intentionally on our routes, run it down to as close to zero as possible before we hit the next Revoy swapping station. That way you can get the maximum value of the battery without having to worry about range.”
To start, a trucker in a normal, everyday semi pulls up to a Revoy station and drops their trailer. A worker attaches a fully charged Revoy unit to the truck and trailer—all in five minutes or less, Revoy promises. Once in place, the unit interfaces seamlessly with the truck’s drivetrain and controls.
“It basically takes over as the cruise control on the vehicle,” he said. “So the driver gets it up to speed, takes their foot off the gas, and then we actually become the primary powertrain on the vehicle. You really only have to burn diesel for the little bit that is getting onto the highway and then getting off the highway, and you get really extreme MPGs with that.”
The Revoy model is going through its real-world paces as we speak. Rust’s startup has partnered with Ryder trucking, whose drivers are powering their semis with Revoy EVs at battery-swap stops along a stretch of Interstate 30 in Texas and Arkansas, a major highway for auto parts and other supplies coming from Mexico. Rust hopes the next Revoy corridor will go into Washington State, where the ample hydropower could help supply clean energy to all those swappable batteries. Happily, he said, Revoy can expand piecemeal like this because its approach negates the chicken-and-egg problem of needing a whole nation of EV chargers to make the vehicles themselves viable. Once a truck leaves a Revoy corridor, it’s just a diesel-powered truck again.
Early data from the Ryder pilot shows that the EV unit slashed how much diesel fuel a truck needs to make it down the designated corridor. “This is a way we can reduce a path to reduce the emissions of our fleet without having to buy anything — and without having to have to worry about how much utilization we're going to have to get,” Mike Plasencia, group director of New Product Strategy at Ryder, told me.
Trucking represents one of the biggest opportunities for cutting the carbon emissions of the transportation sector. It’s also one of the most challenging. Heatmap has covered the problem of oversized SUV and pickup truck EVs, which need larger, more expensive batteries to propel them. The trucking problem is that issue on steroids: A semi can tow up to 80,000 pounds down an American highway.
There are companies building true EV semi trucks despite this tall order — Tesla’s has been road-testing one while hauling Pepsi around, and trucking mainstays like Peterbilt are trying their hand as well. Although the EV model that works for everyday cars — a built-in battery that requires recharging after a couple hundred miles — can work for short-haul trucks that move freight around a city, it is a difficult fit for long-haul trucking where a driver must cover vast distances on a strict timetable. That’s exactly where Revoy is trying to break in.
"We are really focused on long haul,” he told me. “The reason for that is, it's the bigger market. One of the big misconceptions in trucking is that it's dominated by short haul. It's very much the opposite. And it's the bigger emission source, it's the bigger fuel user."
Rust has a background in robotics and devised the Revoy system as a potential solution to both the high cost of EV semis and to the huge chunks of time lost to fueling during long-distance driving. Another part of the pitch is that the Revoy unit is more than a battery. By employing the regenerative braking common in EVs, the Revoy provides a redundancy beyond air brakes for slowing a big semi—that way, if the air brakes fail, a trucker has a better option than the runaway truck lane. The setup also provides power and active steering to the Revoy’s axle, which Rust told me makes the big rig easier to maneuver.
Plasencia agrees. “The feedback from the drivers has been positive,” he said. “You get feedback messages like, it felt like I was driving a car, or like I wasn't carrying anything.”
As it tries to expand to more trucking corridors across the nation, Revoy may face an uphill battle in trying to sell truckers and trucking companies on an entirely new way to think about electrifying their fleets. But Rust has one ace up his sleeve: With Revoy, they get to keep their trucks — no need to buy new ones.
On the DOE’s transmission projects, Cybertruck recalls, and Antarctic greening
Current conditions: Hurricane Kirk, now a Category 4 storm, could bring life-threatening surf and rip currents to the East Coast this weekend • The New Zealand city of Dunedin is flooded after its rainiest day in more than 100 years • Parts of the U.S. may be able to see the Northern Lights this weekend after the sun released its biggest solar flare since 2017.
The Energy Department yesterday announced $1.5 billion in investments toward four grid transmission projects. The selected projects will “enable nearly 1,000 miles of new transmission development and 7,100 MW of new capacity throughout Louisiana, Maine, Mississippi, New Mexico, Oklahoma, and Texas, while creating nearly 9,000 good-paying jobs,” the DOE said in a statement. One of the projects, called Southern Spirit, will involve installing a 320-mile high-voltage direct current line across Texas, Louisiana, and Mississippi that connects Texas’ ERCOT grid to the larger U.S. grid for the first time. This “will enhance reliability and prevent outages during extreme weather events,” the DOE said. “This is a REALLY. BIG. DEAL,” wrote Michelle Lewis at Electrek.
The DOE also released a study examining grid demands through 2050 and concluded that the U.S. will need to double or even triple transmission capacity by 2050 compared to 2020 to meet growing electricity demand.
Duke Energy, one of the country’s largest utilities, appears to be walking back its commitment to ditch coal by 2035. In a new plan released yesterday, Duke said it would not shut down the second-largest coal-fired power plant in the U.S., Gibson Station in Indiana, in 2035 as previously planned, but would instead run it through 2038. The company plans to retrofit the plant to run on natural gas as well as coal, with similar natural-gas conversions planned for other coal plants. The company also slashed projects for expanding renewables. According toBloomberg, a Duke spokeswoman cited increasing power demand for the changes. Electricity demand has seen a recent surge in part due to a boom in data centers. Ben Inskeep, program director at the Citizens Action Coalition of Indiana, a consumer and environmental advocacy group, noted that Duke’s modeling has Indiana customers paying 4% more each year through 2030 “as Duke continues to cling to its coal plants and wastes hundreds of millions on gasifying coal.”
The Edison Electric Institute issued its latest electric vehicle forecast, anticipating EV trends through 2035. Some key projections from the trade group’s report:
Tesla issued another recall for the Cybertruck yesterday, the fifth recall for the electric pickup since its launch at the end of last year. The new recall has to do with the rearview camera, which apparently is too slow to display an image to the driver when shifting into reverse. It applies to about 27,000 trucks (which is pretty much all of them), but an over-the-air software update to fix the problem has already been released. There were no reports of injuries or accidents from the defect.
A new study published in Nature found that vegetation is expanding across Antarctica’s northernmost region, known as the Antarctic Peninsula. As the planet warms, plants like mosses and lichen are growing on rocks where snow and ice used to be, resulting in “greening.” Examining satellite data, the researchers from the universities of Exeter and Hertfordshire, and the British Antarctic Survey, were shocked to discover that the peninsula has seen a tenfold increase in vegetation cover since 1986. And the rate of greening has accelerated by over 30% since 2016. This greening is “creating an area suitable for more advanced plant life or invasive species to get a foothold,” co-author Olly Bartlett, a University of Hertfordshire researcher, told Inside Climate News. “These rates of change we’re seeing made us think that perhaps we’ve captured the start of a more dramatic transformation.”
Moss on Ardley Island in the Antarctic. Dan Charman/Nature
Japan has a vast underground concrete tunnel system that was built to take on overflow from excess rain water and prevent Tokyo from flooding. It’s 50 meters underground, and nearly 4 miles long.
Carl Court/Getty Images
While the impact so far has been light, there are some snarls to watch out for.
The American renewables industry is a global industry. While the Biden administration has devoted three-plus years and billions of dollars to building up wind and solar supply chains in the United States, many of the components of renewable energy generation — whether it’s the cells that make up solar panels or the 1,500-ton monopiles that serve as the foundation for offshore wind turbines — are manufactured overseas in from Spain to Denmark all across East and Southeast Asia.
With the members International Longshoremen Association on strike in the U.S. due to a contract dispute with the United States Maritime Alliance, shutting down ports up and down the Gulf and Atlantic Coast, one might wonder, what happens to U.S. renewables development?
The answer so far is: Not much. The closure of these ports’ cargo operations has not yet had a massive effect on the U.S. economy outside of businesses that work directly with the shipping industry, like trucking. There is no single port — or coast, even — that serves as a chokepoint for renewables-related imports. Many components from East and Southeast Asia come through west coast ports that are staffed by longshoremen in a different union, the International Longshore and Warehouse Union; shipments were being diverted there for weeks leading up to the strike.
That’s not to say the industry can simply coast through a prolonged strike. But there are some differences between different sectors, especially wind and solar.
Much of the wind industry, especially offshore, runs on foreign-manufactured equipmentthat is then processed and assembled in the United States. “Almost 70% of all wind-specific imports that are tracked through trade codes came from Mexico, Germany, Spain, and India, with the remaining imports mostly from Canada and various countries in Europe and Asia,” according to a Lawrence Berkeley National Laboratory report on the wind industry.
At least so far, much of the wind business — including the offshore wind business — appears to have largely dodged substantial issues from the strike so far.
Orsted’s work at three East Coast ports in Connecticut, Rhode Island, and New York has been unaffected, a source familiar with the situation told me. And the Portsmouth Marine Terminal in Virginia, where 70 of those monopiles have been shipped, is continuing to operate normally, according to the Port of Virginia. (Virginia's offshore wind industry is still vulnernable to vagaries of international trade — last year, Siemens Gamesa cancelled a plan to build a blade manufacturing facility in Virginia, where Dominion Energy is working on an offshore wind project.)
While the East Coast is an active hub of offshore wind activity, if the greater wind industry were to be affected by a prolonged strike, it would likely happen in Texas, which is both a major importer of wind equipment and has the country’s largest wind power sector.
Texas is “the dominant entry point” for wind equipment, according to the Lawrence Berkeley report, with almost $1 billion in annual wind imports.
At least one of those ports is still operating. The Port of Galveston is so-far unaffected by the strike, a port spokesperson told me. The port has become a major importer of wind turbines. In June, the port said that 400 wind turbine components had come through the port just since April, and that another 300 or so would flow through “over the coming months.” So far this year, some 25,742 tons of turbine pieces have come through the port, largely from Spain, Denmark, and other countries in Europe.
Neighboring Port Houston, however, is being picketed and “not handling container operations at this time,” the Houston Chronicle reported. In the run-up to the strike, Port Houston said that imports of wind power equipment had “increased notably” in August. In 2020, the port imported some 19,000 tons of wind power equipment.
The Houston area also has a number of recently opened solar manufacturing facilities, where cells, often imported from Asia, are assembled into panels. Proximity to the port was one reason why the manufacturers set up in shop in the area, according to the Houston Chronicle. “When you look at Houston specifically, you have one of the best ports in the country,” SEG Solar chief executive Jim Wood said in a company release when the facility opened. (SEG Solar has said it plans to start manufacturing cells domestically, though it currently makes them in Indonesia.)
Sophie Karp, an analyst at KeyBanc, forecast in a note to clients that some renewables manufacturers could be “disproportionately affected” by the strike. U.S. manufacturer First Solar “is the top importer at the Port of Houston,” Karp wrote, importing the equivalent of 17,200 shipping containers in the last year. The Korean solar company Qcells, meanwhile, which has made massive investments in Georgia, is a major customer of the Port of Savannah, which has been shut down due to the strike and has imported 31,400 container equivalents, according to KeyBanc. Karp also speculated that companies like the inverter manufacturer Enphase or the solar tracking company Array “are likely to have some exposure through their supply chains as well.”
“If the strike continues for an extended period, supply disruptions in the U.S. solar market are likely,” Karp wrote — especially for solar companies “that do not have ample inventory cushion on the ground.”
Trade disruptions are nothing new for the solar industry, which saw imports slow in 2022after the passage of a law meant to ban companies from subsidizing forced labor in Xinjiang in Western China, where much of the raw material for the world’s polysilicon is mined. Just this week, fresh tariffs were slapped on solar cells from manufacturers in Southeast Asia, which officials say function as cover for Chinese solar businesses. In fact, the California Chamber of Commerce specifically warned of congestion in the state’s ports as solar companies hurried up their purchases of panels ahead of the new duty.
So far, the solar and renewables industry has been quiet about the strike, in comparison to their unified voice on tariffs. Other portions of the electrical industry have been more vocal.
“The electroindustry is one of the largest manufacturing sectors of the U.S. economy, with one of the most complex international supply chains of any industry,” Debra Phillips, president of the National Electrical Manufacturers Association, said in a statement. “Over $195 million per day of electroindustry goods, representing nearly 30% of the nation’s electroindustry imports, is now stranded in unloaded cargo ships, threatening widespread disruption to our critical grid infrastructure.”
NEMA was one of more than 250 business groups that signed a letter published Wednesdaythat called on the Biden White House to “to take immediate action to resolve this situation expeditiously.” While one major clean energy group, the American Clean Power Association, signed the letter, others such as the Solar Energy Industries Association and Advanced Energy United, did not.