You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Even critical minerals can get complicated.
In northeastern Minnesota, a fight over the proposed NewRange Copper Nickel mine, better known as PolyMet, has dragged on for nearly two decades. Permits have been issued and revoked; state and federal agencies have been sued. The argument at the heart of the saga is familiar: Whether the pollution and disruption the mine will create are worth it for the jobs and minerals that it will produce.
The arguments are so familiar, in fact, that one wonders why we haven’t come up with a permitting and approval process that accounts for them. In total, the $1 billion NewRange project required more than 20 state and federal permits to move forward, all of which were secured by 2019. But since then, a number have been revoked or remanded back to the permit-issuing agencies. Just last year, for instance, the Army Corps of Engineers rescinded NewRange’s wetlands permit on the recommendation of the Environmental Protection Agency.
The messy history of this mine displays the difficult decisions the U.S. faces when it comes to securing the critical minerals that are key to a clean energy future — and the ways in which our current regulatory and permitting infrastructure is ill-equipped to resolve these tensions.
All sides in this debate recognize that minerals like nickel and copper are vital to the energy transition. Nickel is an integral component in most lithium-ion EV battery chemistries, and copper is used across a whole swath of technologies — electric vehicles, solar panels, and wind turbines, to name a few.
“We recognize that you're going to need copper, nickel, and other minerals in order to have a functioning society and to make the clean energy transition that we're all interested in,” Aaron Klemz, Chief Strategy Officer at the Minnesota Center for Environmental Advocacy, told me. But along with a number of other environmental groups and the Fond du Lac band of the Minnesota Chippewa tribe, which lives downstream of the proposed mine, MCEA opposes the project. “You can’t not mine. We understand that. But you have to take it on a case-by-case basis.”
On the one hand, the Duluth Complex, where the NewRange mine would be sited, contains one of the world’s largest untapped deposits of copper, nickel and other key metals. However, the critical minerals in this water-rich environment are bound to sulfide ores that can release toxic sulfuric acid when exposed to water and air. The proposed mine sits in a watershed that would eventually flow into Lake Superior, a critical source of drinking water for the Upper Midwest.
Many advocacy groups believe water pollution from the mine is inevitable, especially given NewRange’s plans for its waste basin. The current proposal involves covering the waste products, known as tailings, with water and containing the resulting slurry will with a dam. That’s considered much riskier than draining water from the tailings and “dry stacking” them in a pile. NewRange’s upstream dam construction method is also a concern, as the wet tailings can erode the dam’s walls more easily than with other designs. An upstream dam collapsed in Brazil in 2019, leading the country to ban this type of construction altogether.
And lastly, there’s the narrow question of the NewRange dam’s bentonite clay liner. Late last year, an administrative law judge recommended that state regulators refrain from reissuing NewRange’s permit to mine on the grounds that this liner was not a “practical and workable” method of containing the tailings.
Christie Kearney, director of sustainability, environmental and regulatory affairs for NewRange Copper Nickel, called these criticisms “tired and worn talking points” in a follow-up email to me, and said that the concerns simply don’t hold water “after the most comprehensive and lengthy environmental review and permitting process in Minnesota history.” The bentonite issue in particular, she told me, represents one of the main reasons permitting has been so challenging. “Instead of allowing agencies (who have the expertise) to make these decisions as established in Minnesota law, the regulatory decisions get challenged in court by mining opponents, leaving it to judges (who don’t have the technical expertise) to make these determinations,” she wrote.
The whole process could have gone more smoothly if all the stakeholders were involved from the beginning, she told me when we spoke. “In particular, we have a number of state permits that are overseen by the EPA, yet the EPA isn't involved until the very end, which has caused frustration both in our environmental review process as well as our permitting process.”
Klemz has another approach to ending the confusion. What is needed, he said, is a pathway to shut down projects once and for all if they’re deemed too environmentally hazardous. “There is no way to say no under the system we have now,” he told me. While courts can deny or revoke a permit, companies like NewRange can always go back to the drawing board and resubmit. “What we have instead is a system where the company has the incentive to keep on trying over and over and over again, despite whatever setback they encounter.”
While there’s no systematic way to block a mine, myriad avenues can lead to a “no.” Last year, the federal government placed a moratorium on mining on federal lands upstream of Minnesota’s Boundary Waters Canoe Wilderness Area, effectively shutting down another proposed copper-nickel mine. And the EPA banned the disposal of mine waste near Alaska’s proposed Pebble mine, blocking that project as well.
It’s a delicate balancing act, because ultimately the administration does want to incentivize domestic critical minerals production. The Inflation Reduction Act provides generous tax credits for companies involved in minerals processing, cathode materials production, and battery manufacturing. Then there’s the $7,500 credit available to consumers that purchase a qualifying EV, which depends on the automaker sourcing minerals from either the U.S. or a country the U.S. has a free-trade agreement with.
Under the current interpretation of the IRA, it’s possible that none of this money would flow directly to NewRange, since mineral extraction isn’t eligible for a tax credit, and it’s yet unclear whether the company will process the metals to a high enough grade to be eligible for credits there, either. Automakers that source from NewRange could benefit, but the project doesn’t currently have offtake agreements with any electric vehicle or clean energy company. That’s something that critics of the mine point to when NewRange touts its clean energy credentials.
“It's much more likely that this will end up in a string of Christmas lights than it will end up in a wind turbine in the United States,” Klemz told me. Of course, more critical minerals in the market overall will lower prices, thereby benefiting clean energy projects. But NewRange is a less neat proposition than, say, the proposed Talon Metals nickel mine, which is sited about two hours southwest of NewRange. As MIT Technology Review reports, this mine could unlock billions in federal subsidies through its offtake agreement with Tesla.
That hasn’t inoculated Talon from fierce local opposition, either. “As disinterested as the public may be in a lot of things, they are really engaged in a new mining project in their backyard,” said Adrian Gardner, Principal Nickel Markets Analyst at the energy and research consultancy Wood Mackenzie, which has been tracking both the Talon and NewRange mine since they were first proposed.
The Biden administration is also engaged. Two years ago, the Department of the Interior convened an interagency working group to make domestic minerals production more sustainable and efficient, starting with the Mining Law of 1872 — still the law of the land when it comes to new mining projects. The group released a report last September recommending, among other things, that the Bureau of Land Management and U.S. Forest Service provide standardized guidance to prospective developers and require meetings between all relevant agencies and potential developers before any applications are submitted. That means Congress will need to provide more resources to permitting agencies.
Those resources could come from a proposed royalty of between 4% and 8% on the net proceeds of minerals extracted from public lands, a fee that would also go to help communities most impacted by mining. The National Mining Association, of which NewRange is a member, has come out strongly against the report’s recommendations, highlighting the high royalties as a particular point of contention.
But many of the report’s proposals might have helped NewRange in its early days. “There were a lot of early missteps by the company,” Kearney admits. “The first draft [Environmental Impact Statement] that the company went through received a very poor reading from the EPA, and the company went back to its drawing board, changed out its leadership and its environmental leads.”
More stern rebukes, of course, would be the ideal for many advocacy groups. “I don't know how they could redesign it quite honestly, given what we know about the science, to comply with the law,” Klemz said.
Kearney is adamant, though, that even after five years of litigation, NewRange has no plans to give up the fight. “Not many companies can weather that,” Kearney said. Not many companies, however, are backed by mining giant Glencore. PolyMet, the project’s original developer, “really only survived because Glencore came in a few years back and invested over time until the point where they got 100% control,” Kearney told me.
Glencore, a $65 billion Swiss company, is pursuing the NewRange project in partnership with Teck Resources, which is worth $20 billion. The companies can afford to fight for a very long time, meaning nobody knows quite how or when this all ends.
“We do need this material. I get that,” Klemz told me. “So I don't really know if there's going to be some kind of neat future resolution to this.”
Kearney put it simply. “We don't have a timeline right now.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A new list of grant cancellations obtained by Heatmap includes Climeworks and Heirloom projects funded by 2021 infrastructure law.
Trump’s Department of Energy is planning to terminate awards for the two major Direct Air Capture Hubs funded by the Bipartisan Infrastructure Law in Louisiana and Texas, Heatmap has learned.
An internal agency project list shared with Heatmap names nearly $24 billion worth of grants with their status designated as “terminated,” including the Occidental Petroleum’s South Texas DAC Hub as well as Project Cypress, a joint venture between DAC startups Heirloom and Climeworks.
Christoph Gebald, the CEO of Climeworks, acknowledged “market rumors” in an email, but said that the company is “prepared for all scenarios.”
“Demand for removals is increasing significantly, with momentum set to build as governments set their long-term targets,” he said. “The need for DAC is growing as the world falls short of its climate goals and we’re working to achieve the gigaton capacity that will be needed.”
Heirloom’s head of global policy, Vikrum Aiyer, said that the company was not aware of any decision from the DOE and continued “to productively engage with the administration in a project review.” He added that Heirloom remains “incredibly proud to stand shoulder to shoulder with Louisiana energy majors, workforce groups, non-profits, state leaders, the governor and economic development organizations who have strongly advocated for this project.”
Much of the rest of the list overlaps with the project terminations the agency announced last week as part of a spate of retributive actions against Democrats during the government shutdown. “Nearly $8 billion in Green New Scam funding to fuel the Left’s climate agenda is being canceled,” White House Budget Director Russ Vought wrote on social media ahead of the announcement.
DOE spokesperson Ben Dietderich told me by email that the department was “unable to verify” the new list of canceled grants, and that “no further determinations have been made at this time other than those previously announced.”
“As [Secretary of Energy Chris Wright] made clear last week, the Department continues to conduct an individualized and thorough review of financial awards made by the previous administration,” Dietderich said.
Direct air capture is a nascent technology that sucks carbon, as the name suggests, directly from the air, and is one of several carbon removal solutions with potential to slow global warming in the near term, and even reverse it in the long run. The $3.5 billion DAC Hubs program, created by Congress in the 2021 Bipartisan Infrastructure Law, promised to “establish a new sector of the American economy and remake another one, while providing the world with an important tool to fight climate change,” as my colleague Robinson Meyer put it.
After a competitive application process, the Biden administration selected two projects that would receive up to $600 million each to build DAC projects capable of removing more than 1 million tons of carbon from the atmosphere per year and storing it permanently underground. Occidental, which first partnered with and later acquired a Canadian DAC startup called Carbon Engineering, would build its hub in South Texas, near Corpus Christi. Two other leading DAC startups, the California-based Heirloom Carbon and Swiss company Climeworks, would work together to build a hub in Louisiana. After the selections were announced, both projects received an initial $50 million award for their next phase of development, which was set to be matched by private investment.
"These hubs were selected through a rigorous and competitive process designed to identify projects capable of advancing U.S. leadership in carbon removal and industrial decarbonization,” Jennifer Wilcox, the former principal deputy assistant secretary for the DOE’s Office of Fossil Energy and Carbon Management, told me in an email. “The burden should be on DOE to clearly demonstrate why that process is being overturned.”
All three companies already have demonstration plants that are either operating or under construction. Climeworks began operating the world’s first commercial DAC plant in Iceland in 2021, designed to capture about 4,000 tons per year, and has since scaled up to a larger plant more than eight times that size. Heirloom opened the first DAC plant in the U.S. in November 2023, in Tracy, California, capable of capturing 1,000 tons per year. Occidental’s first DAC project, Stratos, in West Texas, will be the largest of the bunch, designed to capture 500,000 tons per year. It is set to be completed in the next few months.
Removing carbon from the air with one of these facilities is currently extremely expensive and energy-intensive. Today, companies pre-sell carbon credits to airlines and tech companies to raise money for the projects, but will likely require government support to continue to innovate and bring the cost down. While both Climeworks and Heirloom announced the sale of credits that would support their DAC hub projects, it’s not clear whether those credits were meant to be fulfilled by the projects themselves.
The DOE grants would have helped prove the viability of the technology at a scale that will make a measurable difference for the climate, while also demonstrating a potential off-ramp for oil companies and the economies they support. Both projects said they expected to create more than 2,000 local jobs in construction, operations, and maintenance.
“The United States, up to this point, was the direct air capture leader and the place where top innovators in the field were choosing to build facilities as well as manufacture the actual components of the units themselves,” Jack Andreasen Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “The cancellation of these grants to high-quality projects ensures that these American jobs will be shipped overseas and cede our broader economic advantage.”
That’s already happening. On the same day last week that the DOE announced it was terminating an award for CarbonCapture Inc., another California-based DAC company, the startup said it would move its first commercial pilot from Arizona to Alberta, Canada. Gebald, of Climeworks, said the company has “a pipeline of other DAC projects around the world,” including opportunities in Canada, the U.K., and Saudi Arabia.
Cavanaugh also pointed out there was a disconnect between the terminations, Congress’ recent actions, and even actions under the first Trump administration. Trump’s DOE revised the 45Q tax credit for carbon capture in 2018 to allow direct air capture projects to qualify. In July, the reconciliation bill preserved that credit and strengthened it. “These were bipartisan-supported projects, and it goes expressly against congressional intent.”
As the DAC hubs program was congressionally mandated and the awards were under contract, the companies may have legal recourse to fight the terminations. The press release from the DOE announcing last week’s terminations said that award recipients had 30 days to appeal the decision. “That process must be meaningful and transparent,” Wilcox said. “If DOE is invoking financial-viability criteria, companies and communities deserve to see the underlying metrics, thresholds, and justification — and to understand whether those criteria are being applied consistently across projects.”
While this isn’t a death knell for DAC in general, it will be a “massive setback for American climate and industrial policy”, Erin Burns, executive director of the carbon removal advocacy group Carbon 180, told me. “The need for carbon removal hasn’t changed. The science hasn’t changed. What’s changed is our political will, and we’ll feel the consequences for years to come.”
Editor’s note: This piece has been updated to add comment from the Department of Energy and to correct the total value of canceled grants.
On Trump’s metal nationalization spree, Tesla’s big pitch, and fusion’s challenges
Current conditions: King tides are raising ocean levels near Charleston, South Carolina, as much as eight feet above low water averages • A blizzard on Mount Everest has trapped hundreds of hikers and killed at least one • A depression that could form into Tropical Storm Jerry is strengthening in the Atlantic as it barrels northward with an unclear path.
Solar and wind outpaced the growth of global electricity demand in the first half of 2025, vaulting renewables toward overtaking coal worldwide for the first time on record, according to analysis published Tuesday by the research outfit Ember. This year’s growth resulted in a small overall decline in both coal and gas-fired power generation, with India and China seeing the most notable reductions, despite the United States and Europe ratcheting up fossil fuel usage. “We are seeing the first signs of a crucial turning point,” Malgorzata Wiatros-Motyka, a senior electricity analyst at Ember, said in a statement. “Solar and wind are now growing fast enough to meet the world’s growing appetite for electricity. This marks the beginning of a shift where clean power is keeping pace with demand growth.”
Wind and solar installations matched 109% of new global demand for power in the first half of 2025.Ember
That growth is projected to continue. Later on Tuesday morning, the International Energy Agency released its own report forecasting that renewable capacity will double over the next five years. Solar is predicted to make up 80% of that growth. But, factoring in the Trump administration’s policies, the forecast roughly cut in half previous projections for U.S. growth. Domestic opposition to renewables runs beyond the White House, too. Exclusive data gathered by Heatmap Pro and published in July showed that a fifth of U.S. counties now restrict development of renewables.
President Donald Trump signed an executive order Monday directing federal agencies to push forward with a controversial 211-mile mining road in Alaska designed to facilitate production of copper, zinc, gallium, and other critical minerals. The project, which the Biden administration halted last year over concerns for permafrost in the fast-warming region, has been at the center of a decadeslong legal battle. As part of the deal, the U.S. government will invest $35.6 million in Alaska’s Ambler Mining District, including taking a 10% stake in the main developer, Trilogy Metals, that includes warrants to buy an additional 7.5% of the company. The road itself will be jointly owned by the state, the federal government, and Alaska Native villages. “It’s a very, very big deal from the standpoint of minerals and energy,” Trump said in the Oval Office.
It’s just the latest stake the Trump administration has taken in a mineral company. In July, the Department of Defense became the largest shareholder of MP Materials, the company producing rare earths in the U.S. at its Mountain Pass mine in California. The move, The Economist noted at the time, marked the biggest American experiment in direct government ownership since the nationalization of the railroads in World War I. Last week, the Department of Energy renegotiated a loan to Lithium Americas’ Thacker Pass project in Nevada to take a stake in what’s set to become the largest lithium mine in the Western Hemisphere when it comes online in the next few years. The White House’s mineral shopping spree isn’t over. On Friday, Reuters reported that the administration is considering buying shares in Critical Metals, the company looking to develop rare earths production in Greenland. In response to the news, shares in the Nasdaq-traded miner surged 62% on Monday. Partial nationalization isn’t the only approach the administration is taking to challenging China’s grip over global mineral supplies. Last month, as I reported for Heatmap, the Defense Logistics Agency awarded money to Xerion, an Ohio startup devising a novel way to process cobalt and gallium.
Tesla looks poised to unveil a cheaper, stripped-down version of its Model Y as early as today. In one of two short videos posted to CEO Elon Musk’s X social media site, the electric automaker showed the midsize SUV’s signature lights beaming through the dark. The design matches what InsideEVs noted were likely images of the prototype spotted on a test drive in Texas. The second teaser video showed what appears to be a fast-spinning, Tesla-branded fan. “Your guess is as good as ours as to what will be revealed,” InsideEVs’ Andrei Nedelea wrote Monday. “Our money is on the Roadster or a new vacuum cleaner design to take on Dyson.”
The new products come amid an historic slump for Tesla. As Heatmap’s Matthew Zeitlin reported, the company’s share of the U.S. electric vehicle sales sank to their lowest-ever level in August despite the surge in purchases as Americans rushed to use the federal tax credits before they expired thanks to Trump’s landmark One Big Beautiful Bill Act law. Yet Musk has managed to steer the automaker’s financial fate through an attention-grabbing maneuver. Last month, the world’s richest man bought $1 billion in Tesla shares in a show of self confidence that managed to rebound the company’s stock price. But Andrew Moseman argued in Heatmap that “the bullish stock market performance is divorced not only from the reality of the company’s electric car sales, but also from, well, everything else that’s happened lately.”
On Monday, Trump warned that medium and heavy-duty trucks imported to the U.S. will face a 25% tariff starting on November 1. The president announced the trade levies in a post on Truth Social on the eve of a White House visit by Canadian Prime Minister Mark Carney, whose country would feel the pinch of tariffs on imported trucks. As the Financial Times noted, Trump had threatened to impose 25% tariffs on some trucks in late September but “failed to implement them, raising questions about his commitment to the policy.”
Fusion startups make a lot of bold claims about how soon a technology long dismissed as the energy source of tomorrow will be able to produce commercial electrons. Though investors are betting that, as Heatmap’s Katie Brigham wrote last year, “it is finally, possibly, almost time for fusion,” a new report from the University of Pennsylvania’s Kleinman Center for Energy Policy shows that supply chain challenges threaten to hold back the nascent industry even if it can bring laboratory breakthroughs to market. Tritium, one of two main fusion fuels, has a half life of just 12.3 years, meaning it does not exist in significant quantities in nature. Today, tritium is primarily produced by 30 pressurized heavy water fission reactors globally, but only at a total of 4 kilograms per year. As a result, “tritium availability could throttle fusion development,” the report found. That’s not the only bottleneck. “The fusion industry will require specialized components that don’t yet have well-established supply chains, like superconducting cables and the aforementioned advanced materials, and shortages of these components would delay development and inflate costs.”
Scientists mapped the RNA — the molecules that carry out DNA’s instructions — of wheat and, for the first time, identified when certain genes are active. The discovery promises to accelerate plant breeders’ efforts to develop more resilient varieties of the world’s most widely cultivated crop that use less fertilizer, resist higher temperatures, and survive with less water as the climate changes. “We discovered how groups of genes work together as regulatory networks to control gene expression,” Rachel Rusholme-Pilcher, the study’s lead author and a researcher at Britain’s Earlham Institute, said in a statement. “Our research allowed us to look at how these network connections differ between wheat varieties, revealing new sources of genetic diversity that could be critical in boosting the resilience of wheat.”
Shine Technologies is getting close to breakeven — on operations, at least — by selling neutrons and isotopes.
Amidst the frenzied investment in fusion and the race to get a commercial reactor on the grid by the 2030s, one under-the-radar fusion company has been making money for years. That’s Shine Technologies, which has been operating in some form or another since 2005, making neutrons for materials testing and nuclear isotopes for medical imaging, all while working toward an eventual energy-generating reactor of its own.
“I think we can moonshot ourselves to net energy,” Greg Piefer, founder and CEO of Shine, told me, referring to the point at which the energy produced from a fusion reaction exceeds the energy required to sustain it. “But I don’t think we can moonshot ourselves to break even costwise.”
Rather than trying to build a full-scale reactor that can produce net energy via a self-sustaining fusion reaction right off the bat, Shine uses a particle accelerator to drive a series of small-scale fusion reactions. When high-energy ions connect with fuels, such as tritium or deuterium, they undergo a fusion reaction that produces high-energy neutrons and specialized isotopes more often generated for use in industry via fission.
Piefer, who has a PhD in nuclear engineering from the University of Wisconsin-Madison, started up his company by making neutrons for materials testing in the aerospace and defense industries. Unlike other forms of radiation, such as X-rays, neutrons can penetrate dense materials such as metals, hydrogen-containing fuels, or ceramics, making it possible to spot hidden flaws. An otherwise invisible crack in a turbine blade, for example, could still block or scatter neutrons, while contamination from water or oil would absorb neutrons — making these faults clear in a radiographic image.
Scientists also use neutrons to test nuclear fission fuel by identifying contamination and verifying uranium enrichment levels. According to Piefer, Shine produces the neutrons used to test half of all fission fuel today. “Fusion actually already enables the production of 50% of the fission fuel in this country,” he told me.
My mind was blown. I didn’t understand how fusion — a famously expensive endeavor — could be an economically viable option for these applications.
Piefer understood. “I’ll sit here in one breath and I’ll tell you fusion is way too expensive to compete making electricity, and in another breath that it’s much cheaper than fission for making isotopes and doing testing,” he said. As Piefer went on to explain, if the goal isn’t net energy, you can strip the fusion reactor of a good deal of complexity — no superconducting magnets, complicated structures to produce tritium fuel, or control systems to keep the burning fusion plasma contained.
With a simplified system, Piefer told me, it’s much easier to produce a fusion reaction than a fission reaction. The latter, he explained, “operates on the razor’s edge of something called criticality” — a self-sustaining reaction that must be precisely balanced. If a fission reaction accelerates too quickly, power surges dangerously and you get a disaster like Chernobyl. If it slows, there’s simply no reaction at all. Plus, even after a fission reactor shuts down, it keeps producing heat, and thus must be actively cooled. But when it comes to fusion, there’s no danger of an out of control power surge, because, unlike fission, it’s not a chain reaction — if the input conditions change, fusion stops immediately. Furthermore, fusion produces no heat after the reaction stops.
Some of Shine’s customers include manufacturers of turbine blades and explosives such as the U.S. Army and GE Hitachi, as well as the biopharmaceutical companies Blue Earth Therapeutics and Telix Pharmaceuticals. Piefer told me that the company is now “on the verge of essentially breakeven” — no fusion pun intended — when it comes to its operating expenses. These days, it’s reinvesting much of its revenue to build out what Piefer says will be the largest isotope production facility in the world in Wisconsin. Isotopes are created when high energy neutrons strike stable elements, causing the nuclei to absorb the neutron and become radioactive. The isotope’s radioactive properties make them useful for targeting particular tissues, cells, or organs in medical imaging or focused therapies..
Shine’s in-progress facility will primarily produce molybdenum‑99, the most commonly used isotope for medical imaging. The company already operates one smaller isotope facility producing lutetium-177, which features in cutting-edge cancer therapies.
Compared to materials testing, producing medical isotopes has required Shine to increase the temperature and thus the efficiency of its fusion target. Subsequent applications will require greater efficiency still. The idea is that as Shine applies its tech to increasingly challenging and energy-intensive tasks, it will also move step by step toward a commercially viable, net-energy-generating fusion reactor. Piefer just doesn’t know what exactly those incremental improvements will look like.
The company hasn’t committed to any specific reactor design for its fusion energy device yet, and Piefer told me that at this stage, he doesn’t think it’s necessary to pick winners. “We don’t have to, and don’t want to,” he said. “We’ve got this flexible manufacturing platform that’s doing all the things you need to do to get really good at making fusion systems, regardless of technology.”
Fusion energy aside, the company doesn’t even know how it’s going to reach the heat and efficiency requirements needed to achieve its next target — recycling spent fission fuel. But Piefer told me that if Shine can get there, scientists do already understand the chemistry. First, Shine would separate out the long-lived, highly radioactive waste products from the spent fuel using much the same approach it uses for isolating medical isotopes, no fusion reaction needed. Then, Piefer told me, “fusion can turn those long-lived wastes into short-lived waste” by using high-energy fusion neutrons to alter the radioactive nuclei in ways that make them decay faster.
If the company pulls that off — a big if indeed — it would then move on to building an energy-generating reactor. Overall, Piefer guesses this final stage will wind up taking the fusion industry “more time and money than most people predict.” Perhaps, he said, investors will prove willing to bankroll buzzy fusion startups far longer than their ambitious timelines currently imply. But perhaps not. And in the meantime, he thinks many companies will end up turning to the very markets that Shine has been exploring for decades now.
“So we’re well positioned to work with them, well positioned to help create mutual success, or well positioned to use our position to move ourselves forward,” Piefer told me, hinting that the company would be interested in making acquisitions.
Indeed, some fusion companies are already following Shine’s lead, eyeing isotopes as an early — or primary — revenue generating opportunity. Microreactor company Avalanche Energy eventually wants to replace diesel generators, but in the meantime plans to produce radioisotopes for medical and energy applications. U.K.-based fusion company Astral Systems is also making desktop-sized reactors, but with the central aim of selling medical isotopes.
If too many companies break their promises or extend their timelines interminably, as Piefer thinks is likely, more and more will come around to the pragmatism of Shine’s approach, he said. “Near term applications are increasingly talked about,” Piefer told me. “They’re not the highlight of the show yet, but I’d say the voice is getting louder.”
So while he still doesn’t have any idea what the final form for Shine’s hypothetical fusion power plant will take, in his mind the company is leading the race. “I believe we’re actually on the fastest path to fusion commercialization for energy of anybody out there,” Piefer told me. “Because commercial is important to us, and it always has been.”