You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why power lines are harder to build than pipelines

How hard is it to build big clean-energy infrastructure in America? Look at SunZia.
When completed, the more-than-500-mile power line is meant to ferry electricity from a massive new wind farm in New Mexico to the booming power markets of Arizona and California. When finally built, SunZia will be the largest renewable project in the United States, if not the Western Hemisphere.
But as I detail in a recent investigation for Heatmap, it has taken too long — much too long — to build. Nearly two decades have elapsed since a project developer first asked the federal government for permission to build SunZia.
Since it was first proposed, SunZia has endured seemingly endless environmental studies and lawsuits. It has been bought, sold, and bargained over. The end result is that a project first conceived in 2006 — which was expected to operate in 2013 — is now due to open in 2026.
That is a massive problem, because confronting climate change will require the country to build dozens of new long-distance power lines like SunZia. If the United States wants to meet its Paris Agreement goal by 2050, then it will have to triple the size of its power grid in just 26 years, according to Princeton’s Net Zero America study. (That research was led by Jesse Jenkins, who co-hosts Heatmap’s “Shift Key” podcast with me.)
The country is not on track to meet that goal. My story on SunZia set out to determine why.
Here are three major takeaways from my investigation:
At a fundamental level, a power line and a natural gas pipeline aren’t so different: Both move a large amount of energy over a long distance.
Yet it is much easier to build a natural gas pipeline than a transmission line, and they face very different regulatory hurdles in America. When a company proposes a new transmission line, it must get permission from every state whose borders it plans to cross. This can result in an arduous, years-long process of application, study, and approval.
That same obstacle does not hinder gas developers. When a company proposes a new natural gas pipeline, it can get many of its permits handled by a single federal agency, the Federal Energy Regulatory Commission. FERC is a one-stop shop for gas pipeline developers, organizing and granting state-level permits through a streamlined process.
(To be sure, natural gas pipelines sometimes need permits from other federal agencies — such as the Bureau of Land Management — before they can begin construction. But transmission developers need to get permits from those other federal agencies, too.)
But not all of the obstacles are regulatory. Transmission and renewable projects simply look different than pipelines, which can make environmentalists and the public more skeptical of them. Even though pipelines can leak or spill, they can be buried or built closer to the ground than power lines, and therefore pose less of a visual disturbance to the landscape.
In recent years, much of the controversy around SunZia has focused on the San Pedro Valley, a gorgeous desert landscape northeast of Tucson, Arizona. SunZia must pass through the valley to connect to a power station near Phoenix.
Two Native American tribes — the Tohono O'odham Nation and the San Carlos Apache Tribe — sued to block SunZia last year. They argue that the valley has cultural value and must be preserved intact and undiminished.
But the valley is already home to a large natural gas pipeline, mostly — but not entirely — buried underground. (The pipeline is on pylons near Redington, Arizona, where it crosses the San Pedro River.)
In an interview, a leader at the Center for Biological Diversity, an environmentalist group that joined the tribes’ lawsuit, said that SunZia’s proposed power line is problematic in part because it will be so tall.
“There are no 200-foot large power lines going through the San Pedro Valley,” Robin Silver, the leader, told me. “The gas pipeline doesn’t have 200 foot towers.”
If environmentalists focus on a project’s visual prominence, then pipelines will virtually always win out over transmission lines.
A federal judge dismissed the tribes’ lawsuit last month. A representative of the Tohono O'odham Nation did not respond to multiple requests for comment.
In permitting debates, conservationists and clean energy developers can often become enemies. Traditional conservationists seek to slow down the permitting process as much as possible and move a project away from a treasured or sensitive area, while developers and climate hawks want to build clean energy infrastructure quickly and efficiently.
These fights often play out as costly lawsuits over the National Environmental Policy Act, a 1970 law that requires the government to study the environmental impact of every decision that it makes. Advocates and opponents wind up battling in court over whether or not a project’s environmental impact has been sufficiently studied.
That’s not what happened with SunZia. Some environmentalists and traditional conservation groups, such as the Audubon Society, now praise SunZia’s process.
It wasn’t always that way. During the early 2010s, SunZia’s proposal to cross the Rio Grande in New Mexico was just as controversial as its San Pedro Valley route. The project’s developer wanted to build power lines near a site where tens of thousands of migratory birds, including sandhill cranes, spend the winter.
That changed after the Defense Department forced a major rethink of the line in 2018. Soon after that, Pattern Energy, a San Francisco-based energy developer, took over the project.
Pattern took a different approach than its predecessor and partnered with environmental groups to learn how it could build the power line in the least intrusive way.
It conducted original research on how sandhill cranes fly, and — based on that research — moved the power line to the place where it would interfere with birds the least. It also purchased and donated an old farm property and the accompanying water rights so a wildlife refuge could rebuild habitat for the birds.
Pattern also agreed to illuminate the transmission line with an experimental infrared system to make it more visible to birds.
These changes, which also allowed Pattern to avoid a Defense Department site, were so extensive that it had to apply for a new federal permit.
“Pattern being a company that was willing to have discussions with us in good faith — and that conversation happening before the re-permitting process — was, I think, really important,” Jon Hayes, a wildlife biologist and the executive director of Audubon Southwest, told me.
This collaborative relationship was possible in part because it was facilitated by Senator Martin Heinrich, a Democrat who represents New Mexico.
Heinrich, a climate hawk and the son of a utility worker, had long championed the SunZia project. So when the project ran into obstacles, he pushed the developer, environmentalists, and the Pentagon to negotiate over a better solution. His office remained deeply involved in the process throughout the 2010s, ultimately helping to broker an agreement over the Rio Grande that all parties supported.
“I firmly believe that when we work together, we can build big things in this country,” Heinrich told me in a statement.
Silver, the Center for Biological Diversity leader, told me that Heinrich’s involvement is the principal reason why SunZia has been praised in New Mexico but criticized in Arizona.
The Grand Canyon State doesn’t have elected officials who were willing to get involved in SunZia and push for a mutually beneficial solution, he said. (For much of the 2010s, Republicans held both of the state’s Senate seats.)
But a project’s ultimate success cannot rest on the quality or curiosity of its senators. Martin Heinrich, as a climate solution, doesn’t scale, and not every clean energy project will have a federal chaperone.
What’s more, America’s existing permitting system — which is channeled through its adversarial legal system — practically discourages cooperation. It pushes developers and their opponents to pursue aggressive and expensive legal campaigns against each other. These campaigns burn huge amounts of time and millions of dollars in legal fees — money that could be spent on decarbonizing the economy.
In order to meet America’s climate goals, developers must build dozens of projects like SunZia, all around the country, in the years to come. That will not happen under today’s permitting system. The country needs something better.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
We knew the revived Chevrolet Bolt might have a limited run. Nobody knew it would be this limited.
General Motors began manufacturing the updated version of its small electric car late last year to begin deliveries this month. Already the news of its potential demise is here. GM says the Kansas factory that’s churning out Bolts will be repurposed to make combustion cars, including a Buick, of all things. Now, just as the arrival of the sub-$30,000 Bolt heralded a new age of more affordable electric cars, Chevy is dropping out of the race and putting its beloved little electric car on the backburner. Again.
The culprits in this case are clear. With the federal tax credit for buying EVs dead and gone, and with weakened emissions rules removing the incentive for car companies to pursue an aggressive electrification strategy, automakers are running back to the familiar embrace of fossil fuels. GM has already said it expects to lose billions as it adjusts its business strategy, curbing its EV push to meet the new reality under President Trump, where gas-burning cars remain much more profitable to build and sell.
The Bolt’s fate is the immediate fallout from that move. The Buick Envision, part of America’s army of indistinguishable gas-powered crossovers, had been built at a GM plant in China. Trump’s tariffs, however, incentivized the company to move production back to the U.S. The fact that GM repatriated the Envision at the expense of the Bolt tells you what you need to know about this moment in the U.S. auto market.
GM never promised that the Bolt would be back for good, and its return to limbo is par for the course when it comes to this plucky little car. The original Bolt EV had its problems, including a battery recall and glacial charging speeds by today’s standards. But the Bolt established GM’s place in the new EV age and found a flock of fans. At the time it was discontinued in 2023, it was the top-selling non-Tesla EV in America, selling more than 60,000 cars that year.
Fans clamored to get the car back. GM listened, and built a new version on the Ultium platform that forms the basis of its current generation of EVs. When I attended Chevy’s big reveal party for the new Bolt last year, it handed out merch reading “back by popular demand.” Yet GM always referred to the vehicle’s revival as a special run, as if not to get anyone’s hopes up that the Bolt would become a mainstay in the Chevy lineup.
Things could have been different, of course. GM has hinted at the possibility of expanding upon the Bolt with more models if the car succeeded in helping the company win the affordable EV race. Instead, the Kansas factory will turn back to combustion next year as Chevy builds some gas-powered Equinox SUVs there, moving production from Mexico after getting hammered by new tariffs. The Buick Envision, which GM has been making in China for nearly a decade, will begin Kansas production in 2028.
The Bolt’s second sudden death is a big blow to American EV lovers. Without a $7,500 tax break for buying an electric vehicle, Americans badly need more affordable options. Bolt, which starts around $29,000 in its most basic form, was set to lead a pack that would include other 2026 arrivals such as the customizable, Jeff Bezos-backed Slate truck and the reimagined third-generation Nissan Leaf. Now, you’d better act fast if you want to get behind the wheel of a Bolt.
Practically every week brings a flood of climate tech funding news and announcements — startups raising a new round, a venture capital firm closing a fresh fund, and big projects hitting (and missing) milestones. Going forward, I’ll close out each week with a roundup of some of the biggest stories that I didn’t get a chance to cover in full.
This week, we’ve got money for electric ships, next-gen geothermal, and residential electrification in Europe. Yay!
Many say battery-powered cargo ships will never make sense — that batteries are too heavy, too bulky, and would take up too much valuable space. FleetZero says it can make it work. Last Friday, the electric shipping startup raised a $43 million Series A round led by Obvious Ventures, with participation from other firms including Maersk Growth, the shipping giant’s corporate venture arm, and Breakthrough Energy Ventures. The funding will support production of the company’s hybrid and electric propulsion systems, as well as new manufacturing and R&D operations in Houston.
Ships’ bunker fuel is extremely polluting. It accounts for roughly 3% of global CO2 emissions and dirties the air with other pollutants such as sulfur and nitrogen oxides. Most players in the shipping decarbonization space want to shift to liquid fuels such as e-ammonia or e-methanol — a move that would require mulit-million-dollar engine overhauls and retrofits. FleetZero says that battery electrification will prove to be cheaper and simpler. The company is building batteries large enough to hybridize — and potentially one day fully electrify — large container ships.
As FleetZero’s CEO and co-founder Steven Henderson told my colleague Robinson Meyer on a 2024 episode of Heatmap’s Shift Key podcast, batteries are a relatively simple maritime decarbonization solution because “you can use existing infrastructure and build on it. You don’t need a new fundamental technology to do this.” And while the company has yet to provide any cost estimates for electrifying commercial shipping, as Henderson put it, “the numbers to do this are not outside the realm of possibility.”
The next-generation geothermal startup Sage Geosystems announced on Wednesday that it raised a $97 million Series B round, co-led by the renewable energy company Ormat Technologies and the growth equity firm Carbon Direct Capital. This came atop a hot week for geothermal overall. As I wrote already, the artificial intelligence-powered geothermal developer Zanskar announced a $115 million Series C round for its pursuit of AI-driven conventional geothermal, while Axios reported that the geothermal unicorn Fervo Energy has filed for an IPO.
Like Fervo, Sage uses drilling technology adapted from the oil and gas industry to create its own artificial reservoirs in hot, dry rock. The startup then pumps these fractures full of water, where it absorbs heat from the surrounding rocks before being brought to the surface as steam that’s used to generate electricity. Sage’s CEO, Cindy Taff — a former Shell executive — told Bloomberg that this latest investment will accelerate the company’s project timeline by a full year or two, allowing the company to put power on Nevada’s grid sometime in 2027.
This latest funding follows Sage’s strategic partnership with Ormat, announced last year, and could help the startup make good on its agreement with Meta to deliver up to 150 megawatts of clean electricity for the tech giant’s data centers starting in 2027.
Berlin-based startup Cloover — which helps Europeans finance home electrification upgrades — announced a $22 million Series A round on Wednesday, alongside a $1.2 billion debt facility from an unnamed “leading European bank” that it can draw on. The company, which describes itself as both the “operating system for energy independence” and the “Shopify of Energy,” aims to help homeowners ditch fossil fuels by facilitating loans to cover the upfront cost of, say, buying and installing heat pumps, rooftop solar, or home batteries — something traditional banks struggle to finance.
Cloover’s a fintech platform allows home energy installers to manage complex projects while offering loans for green upgrades to customers at the point of sale. The software’s AI-driven credit underwriting evaluates not just a customer’s credit score, but also the projected energy savings and performance of the upgrade itself, helping align the price and terms of borrowing with the anticipated economic value of the asset.
Forbes reports that Cloover has already financed roughly 2,500 home energy installations. The company says it’s profitable, generating nearly $100 million in sales last year. With this new funding, the startup plans to expand across Europe and is projecting $500 million in sales this year, anticipating an explosion in demand for distributed energy resources.
One of the oldest players in the race to commercialize fusion energy, General Fusion, has been candid about its recent funding struggles, laying off 25% of its staff last spring while publicly pleading for more cash. This Thursday, it announced a lifeline: a SPAC merger that will provide the company with up to $335 million, if all goes according to plan. Read more about the deal in our Heatmap AM newsletter.
Current conditions: The monster snow storm headed eastward could dump more than a foot of snow on New York City this weekend • An extreme heat wave in Australia is driving temperatures past 104 degrees Fahrenheit • In northwest India, Jammu and Kashmir are bracing for up to 8 inches of snow.
Last month, Fervo Energy raised another $462 million in a Series E round to finance construction of the next-generation geothermal startup’s first major power plant. Pretty soon, retail investors will be able to get in on the hype. On Thursday, Axios reported that the company had filed confidential papers with the Securities and Exchange Commission in preparation for an initial public offering. Fervo’s IPO will be a milestone for the geothermal industry. For years, the business of tapping the Earth’s molten heat for energy has remained relatively small, geographically isolated, and dominated by incumbent players such as Ormat Technologies. But Fervo set off a startup boom when it demonstrated that it could use fracking technology to access hot rocks in places that don’t have the underground reservoirs that conventional geothermal companies rely upon. In yesterday’s newsletter, I told you about how Zanskar, a startup using artificial intelligence to find more conventional resources, and Sage Geosystems, a rival next-generation company to Fervo, had raised a combined $212 million. But as my colleague Matthew Zeitlin wrote in December when Fervo raised its most recent financing round, it’s not yet clear whether the company’s “enhanced” geothermal approach is price competitive. With how quickly things are progressing, we will soon find out.
Fervo isn’t the only big IPO news. General Fusion, the Canadian fusion energy startup TechCrunch describes as “struggling,” announced plans for a $1 billion reverse merger deal to go public on the Nasdaq. The move comes almost exactly a month after President Donald Trump’s social media company, the parent firm of Truth Social, inked a deal to merge with the fusion startup TAE Technologies and create the first publicly-traded fusion company in the U.S. Analysts I spoke to about the deal called it “flabberghasting,” and warned that TAE’s technology represented a more complex and dubious approach to commercializing fusion than that taken by rival companies such as Commonwealth Fusion Systems. Still, the IPO deals highlight the growing excitement over progress on generating power from a technology long mocked as the energy source of tomorrow that always will be. As Heatmap’s Katie Brigham artfully put it in 2024, “it is finally, possibly, almost time for fusion.”
General Motors plans to move manufacturing of the next generation of its Buick Envision SUV from China to the U.S. in two years and end production of the all-electric Chevrolet Bolt. The Detroit auto giant makes just one of its four SUV models in the U.S., leaving the cars vulnerable to Trump’s tariffs. The worst hit was the Envision, which is currently built in China. Starting in 2028, the latest version of the Envision will be produced in Kansas, taking over the assembly line that is currently churning out the Bolt.
It's a blow to GM's electric vehicle line. Chevy just brought back the Bolt in response to high demand after initially canceling production in 2023, because as Andrew Moseman put it in Heatmap, it's “the cheap EV we've needed all along.” While Chevy had always framed the return as a limited run, it was not previously clear how limited that would be.
Get Heatmap AM directly in your inbox every morning:
The Department of Energy said Thursday its newly rebranded Office of Energy Dominance Finance, formerly the Loan Programs Office, is “restructuring, revising, or eliminating more than $83 billion in Green New Scam loans and conditional commitments.” The move comes after “an exhaustive first-year review” of the $104 billion in principal loan obligations the Biden administration shelled out, including $85 billion the Trump administration accused of being “rushed out the door in the final months after Election Day.” In a statement, Secretary of Energy Chris Wright said the changes are meant to “ensure the responsible investment of taxpayer dollars.” While it’s not yet clear which projects are affected, the agency said the EDF eliminated about $9.5 billion in support for wind and solar projects and redirected that funding to natural gas and nuclear energy. But as Heatmap’s Emily Pontecorvo noted last night, the Energy Department hasn’t yet said which loans are set to be canceled as part of the latest cuts. The announcement may include loans that have already been canceled or restructured.
Sign up to receive Heatmap AM in your inbox every morning:
If you know anything about surging electricity demand, you’re likely to finger a single culprit: data centers. But worldwide, air conditioning dwarfs data centers as a demand driver. And in California, electric vehicles are on pace to edge out data centers as a bigger driver of peak demand on the grid. That’s according to a new report from the California Energy Commission. Just look at this chart:

As the Golden State tries to get a grip on its electricity system, Representative Ro Khanna, the progressive Silicon Valley congressman often discussed as a potential 2028 presidential candidate, has doubled down on his calls to break up the state’s largest utility. On Thursday, Khanna posted on X that PG&E “should be broken up and owned by customers, not shareholders. They are ripping off Californians by buying off politicians in Sacramento.” The Democrat has been calling for PG&E’s demise since at least 2019, when the utility was on the hook for billions of dollars in damages from a wildfire sparked by its equipment. But the idea hasn’t exactly caught on.
New energy technologies such as batteries, solar panels, and wind turbines are driving demand for minerals and spurring a controversial push for new mines on virgin lands. But a new study by researchers at the University of Queensland’s Sustainable Minerals Institute found that a production boom is already underway at existing mines. The peer-reviewed paper, which is the first comprehensive global analysis of brownfield mining expansion, found that existing mines are growing in size and scale. Just because the mines are already there doesn’t mean the new production doesn’t come with some social cost. Nearly 78% of the 366 mines analyzed in the study “are located in areas facing multiple high-risk socioeconomic conditions, including weak governance, poor corruption control, and limited press freedom,” the study found.
The Department of the Interior has a new coal mascot. On Thursday, the agency posted an animated picture of a cartoonish, rosy-cheeked, chicken nugget-shaped lump of coal clad in a yellow hardhat and construction gear. His name? Coalie. The idea isn’t original. Australia’s coal-mining trade group rolled out an almost identical mascot a few years ago — same anthropomorphic lump of coal, same yellow attire. The only difference? His name was Hector, and he wore glasses.