Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Spain’s Blackout and the Miracle of the Modern Power Grid

Rob and Jesse go deep on the electricity machine.

The blackout in Spain.
Heatmap Illustration/Getty Images

Last week, more than 50 million people across mainland Spain and Portugal suffered a blackout that lasted more than 10 hours and shuttered stores, halted trains, and dealt more than $1 billion in economic damage. At least eight deaths have been attributed to the power outage.

Almost immediately, some commentators blamed the blackout on the large share of renewables on the Iberian peninsula’s power grid. Are they right? How does the number of big, heavy, spinning objects on the grid affect grid operators’ ability to keep the lights on?

On this week’s episode of Shift Key, Jesse and Rob dive into what may have caused the Iberian blackout — as well as how grid operators manage supply and demand, voltage and frequency, and renewables and thermal resources, and operate the continent-spanning machine that is the power grid. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Robinson Meyer: So a number of people started saying, oh, this was actually caused because there wasn’t enough inertia on the grid — that Spain kind of flew too close to the sun, let’s say, and had too many instantaneous resources that are metered by inverters and not by these large mechanical generators attached to its grid. Some issue happened and it wasn’t able to maintain the frequency of its grid as needed. How likely do you think that is?

Jesse Jenkins: So I don’t think it’s plausible as the precipitating event, the initial thing that started to drive the grid towards collapse. I would say it did contribute once the Iberian grid disconnected from France.

So let me break that down: When Spain and Portugal are connected to the rest of the continental European grid, there’s an enormous amount of inertia in that system because it doesn’t actually matter what’s going on just in Spain. They’re connected to this continen- scale grid, and so as the frequency drops there, it drops a little bit in France, and it drops a little bit in Latvia and all the generators across Europe are contributing to that balance. So there was a surplus of inertia across Europe at the time.

Once the system in Iberia disconnected from France, though, now it’s operating on its own as an actual island, and there it has very little inertia because the system operator only scheduled a couple thousand megawatts of conventional thermal units of gas power plants and nuclear. And so it had a very high penetration on the peninsula of non-inertia-based resources like solar and wind. And so whatever is happening up to that point, once the grid disconnected, it certainly lacked enough inertia to recover at that point from the kind of cascading events. But it doesn’t seem like a lack of inertia contributed to the initial precipitating event.

Something — we don’t know what yet — caused two generators to simultaneously disconnect. And we know that we’ve observed oscillation in the frequency, meaning something happened to disturb the frequency in Spain before all this happened. And we don’t know exactly what that disturbance was.

There could have been a lot of different things. It could have been a sudden surge of wind or solar generation. That’s possible. It could have been something going wrong with the control system that manages the automatic response to changes in frequency — they were measuring the wrong thing, and they started to speed up or slow down, or something went wrong. That happened in the past, in the case of a generator in Florida that turned on and tried to synchronize with the grid and got its controls wrong, and that causes caused oscillations of the frequency that propagated all through the Eastern Interconnection — as far away as North Dakota, which is like 2,000 miles away, you know? So these things happen. Sometimes thermal generators screw up.

Music for Shift Key is by Adam Kromelow.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

Stardust Solutions, a Geoengineering Startup, Raises $60 Million to Build a Solar-Reflecting System by 2030

A U.S. firm led by former Israeli government physicists, Stardust seeks to patent its proprietary sunlight-scattering particle — but it won’t deploy its technology until global governments authorize such a move, its CEO says.

Stardust Solutions, a Geoengineering Startup, Raises $60 Million to Build a Solar-Reflecting System by 2030

The era of the geoengineering startup has seemingly arrived.

Stardust Solutions, a company led by a team of Israeli physicists, announced on Friday that it has raised $60 million in venture capital to develop technological building blocks that it says will make solar geoengineering possible by the beginning of next decade.

Keep reading...Show less
Yellow
Spotlight

How a Tiny Community Blocked Battery Storage in Over Half of Los Angeles County

Much of California’s biggest county is now off limits to energy storage.

Wildfire and battery storage.
Heatmap Illustration/Getty Images, Library of Congress

Residents of a tiny unincorporated community outside of Los Angeles have trounced a giant battery project in court — and in the process seem to have blocked energy storage projects in more than half of L.A. County, the biggest county in California.

A band of frustrated homeowners and businesses have for years aggressively fought a Hecate battery storage project proposed in Acton, California, a rural unincorporated community of about 7,000 residents, miles east of the L.A. metro area. As I wrote in my first feature for The Fight over a year ago, this effort was largely motivated by concerns about Acton as a high wildfire risk area. Residents worried that in the event of a large fire, a major battery installation would make an already difficult emergency response situation more dangerous. Acton leaders expressly opposed the project in deliberations before L.A. County planning officials, arguing that BESS facilities in general were not allowed under the existing zoning code in unincorporated areas.

Keep reading...Show less
Yellow
Hotspots

A Hawk Headache for Washington’s Biggest Wind Farm

And more of the week’s top news about renewable energy conflicts.

The United States.
Heatmap Illustration/Getty Images

1. Benton County, Washington – A state permitting board has overridden Governor Bob Ferguson to limit the size of what would’ve been Washington’s largest wind project over concerns about hawks.

  • In a unanimous decision targeting Horse Heaven Wind Farm, the Energy Facility Site Evaluation Council determined that no turbines could be built within two miles of any potential nests for ferruginous hawks, a bird species considered endangered by the state. It’s unclear how many turbines at Horse Heaven will be impacted but reports indicate at least roughly 40 turbines – approximately 20% of a project with a 72,000-acre development area.
  • Concerns about bird deaths and nest disruptions have been a primary point of contention against Horse Heaven specifically, cited by the local Yakama Nation as well as raised by homeowners concerned about viewsheds. As we told you last year, these project opponents as well as Benton County are contesting the project’s previous state approval in court. In July, that battle escalated to the Washington Supreme Court, where a decision is pending on whether to let the challenge proceed to trial.

2. Adams County, Colorado – This is a new one: Solar project opponents here are making calls to residents impersonating the developer to collect payments.

Keep reading...Show less
Yellow